Pub Date : 2025-11-29DOI: 10.1016/j.aop.2025.170313
Farhang Loran , Ali Mostafazadeh
Stationary potential scattering admits a formulation in terms of the quantum dynamics generated by a non-Hermitian effective Hamiltonian. We use this formulation to give a proof of the reciprocity theorem in two and three dimensions that does not rely on the properties of the scattering operator, Green’s functions, or Green’s identities. In particular, we identify reciprocity with an operator identity satisfied by an integral operator , called the fundamental transfer matrix. This is a multi-dimensional generalization of the transfer matrix of potential scattering in one dimension that stores the information about the scattering amplitude of the potential. We use the property of that is responsible for reciprocity to identify the analog of the relation, , in two and three dimensions, and establish a generic anti-pseudo-Hermiticity of the scattering operator. Our results apply for both real and complex potentials.
{"title":"Reciprocity theorem and fundamental transfer matrix","authors":"Farhang Loran , Ali Mostafazadeh","doi":"10.1016/j.aop.2025.170313","DOIUrl":"10.1016/j.aop.2025.170313","url":null,"abstract":"<div><div>Stationary potential scattering admits a formulation in terms of the quantum dynamics generated by a non-Hermitian effective Hamiltonian. We use this formulation to give a proof of the reciprocity theorem in two and three dimensions that does not rely on the properties of the scattering operator, Green’s functions, or Green’s identities. In particular, we identify reciprocity with an operator identity satisfied by an integral operator <span><math><mover><mrow><mi>M</mi></mrow><mrow><mo>̂</mo></mrow></mover></math></span>, called the fundamental transfer matrix. This is a multi-dimensional generalization of the transfer matrix <span><math><mi>M</mi></math></span> of potential scattering in one dimension that stores the information about the scattering amplitude of the potential. We use the property of <span><math><mover><mrow><mi>M</mi></mrow><mrow><mo>̂</mo></mrow></mover></math></span> that is responsible for reciprocity to identify the analog of the relation, <span><math><mrow><mo>det</mo><mi>M</mi><mo>=</mo><mn>1</mn></mrow></math></span>, in two and three dimensions, and establish a generic anti-pseudo-Hermiticity of the scattering operator. Our results apply for both real and complex potentials.</div></div>","PeriodicalId":8249,"journal":{"name":"Annals of Physics","volume":"485 ","pages":"Article 170313"},"PeriodicalIF":3.0,"publicationDate":"2025-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145691987","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-11-28DOI: 10.1016/j.aop.2025.170301
Rui Zhu
The pseudospin-3/2 Dirac–Weyl system is the kind of system bearing the quasiparticle band structure of two cones with different apex angles and their reversed replica touching at the apex, whose properties can be described by the pseudospin-3/2 Dirac equation. In this work, we analytically solved the pseudospin-3/2 Dirac equation and investigated the electronic transport properties in the double-barrier modulated two-dimensional system. The probability current density operator is explicitly derived from the time-dependent pseudospin-3/2 Dirac equation, which paves way for investigation of the electronic transport properties of general pseudospin- Dirac–Weyl systems with an integer or half integer larger than 1. As a result of the double-cone band structure, the pseudospin-3/2 system has two incident channels for a single incident energy and incident angle pair. Similar to its counterparts of pseudospin-1/2 and pseudospin-1 Dirac–Weyl systems, the Klein tunneling and resonant tunneling effects in the transmission probability are numerically observed for incidence coming from both Dirac cones in the double-barrier-modulated pseudospin-3/2 system. In contrast to its pseudospin-1/2 and -1 counterparts, the Klein tunneling and resonant tunneling effects are differentiated into double-channel and single-channel incidences, corresponding to different regimes in the - dispersion plane. Without a flat band, the super Klein tunneling effect of the pseudospin-1 Dirac–Weyl system does not occur in the pseudospin-3/2 system. Using the numerically obtained probability current density, the zero-temperature conductivity, shot noise, and Fano factor are calculated. As a combined result of double-channel incidence, Klein tunneling, and resonant tunneling, in comparison with its pseudospin-1/2 (graphene) and pseudospin-1 counterparts, the conductivity and shot noise in the pseudospin-3/2 double-barrier structure is enhanced. A Fano factor between 0.4 and 0.5 close to the Dirac point is observed.
{"title":"Transport properties of the pseudospin-3/2 Dirac–Weyl fermions in the double-barrier-modulated two-dimensional system","authors":"Rui Zhu","doi":"10.1016/j.aop.2025.170301","DOIUrl":"10.1016/j.aop.2025.170301","url":null,"abstract":"<div><div>The pseudospin-3/2 Dirac–Weyl system is the kind of system bearing the quasiparticle band structure of two cones with different apex angles and their reversed replica touching at the apex, whose properties can be described by the pseudospin-3/2 Dirac equation. In this work, we analytically solved the pseudospin-3/2 Dirac equation and investigated the electronic transport properties in the double-barrier modulated two-dimensional system. The probability current density operator is explicitly derived from the time-dependent pseudospin-3/2 Dirac equation, which paves way for investigation of the electronic transport properties of general pseudospin-<span><math><mi>s</mi></math></span> Dirac–Weyl systems with <span><math><mi>s</mi></math></span> an integer or half integer larger than 1. As a result of the double-cone band structure, the pseudospin-3/2 system has two incident channels for a single incident energy and incident angle pair. Similar to its counterparts of pseudospin-1/2 and pseudospin-1 Dirac–Weyl systems, the Klein tunneling and resonant tunneling effects in the transmission probability are numerically observed for incidence coming from both Dirac cones in the double-barrier-modulated pseudospin-3/2 system. In contrast to its pseudospin-1/2 and -1 counterparts, the Klein tunneling and resonant tunneling effects are differentiated into double-channel and single-channel incidences, corresponding to different regimes in the <span><math><mi>E</mi></math></span>-<span><math><msub><mrow><mi>k</mi></mrow><mrow><mi>y</mi></mrow></msub></math></span> dispersion plane. Without a flat band, the super Klein tunneling effect of the pseudospin-1 Dirac–Weyl system does not occur in the pseudospin-3/2 system. Using the numerically obtained probability current density, the zero-temperature conductivity, shot noise, and Fano factor are calculated. As a combined result of double-channel incidence, Klein tunneling, and resonant tunneling, in comparison with its pseudospin-1/2 (graphene) and pseudospin-1 counterparts, the conductivity and shot noise in the pseudospin-3/2 double-barrier structure is enhanced. A Fano factor between 0.4 and 0.5 close to the Dirac point <span><math><mrow><msub><mrow><mi>E</mi></mrow><mrow><mi>F</mi></mrow></msub><mo>=</mo><msub><mrow><mi>V</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></math></span> is observed.</div></div>","PeriodicalId":8249,"journal":{"name":"Annals of Physics","volume":"485 ","pages":"Article 170301"},"PeriodicalIF":3.0,"publicationDate":"2025-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145692411","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-11-27DOI: 10.1016/j.aop.2025.170300
G. Abellán , N. Bolívar , I. Vasilev
We construct and analyse a class of static spherically symmetric spacetimes in general relativity sourced exclusively by classical electrostatic configurations. Using a spherically symmetric Painlevé–Gullstrand-like metric with unit lapse and a radial shift function, we develop piecewise-defined solutions where the interior geometry is flat and the exterior is supported by several sources inspired by electromagnetic distributions. These include point-charge-like fields, Yukawa-screened electric fields, dielectric layers, and Hulthén-type field. The Einstein equations naturally impose a relation between the energy density and radial pressure, while the tangential pressure is derived from the metric. We systematically evaluate the classical energy conditions in each model and study the appearance of singular behaviour using Israel junction conditions. This framework offers an analytically tractable setting to explore the gravitational effects of physically simple, well-understood sources without resorting to exotic matter.
{"title":"Gravitational effects of sources inspired by ideal electromagnetic fields in spherical Painlevé–Gullstrand coordinates","authors":"G. Abellán , N. Bolívar , I. Vasilev","doi":"10.1016/j.aop.2025.170300","DOIUrl":"10.1016/j.aop.2025.170300","url":null,"abstract":"<div><div>We construct and analyse a class of static spherically symmetric spacetimes in general relativity sourced exclusively by classical electrostatic configurations. Using a spherically symmetric Painlevé–Gullstrand-like metric with unit lapse and a radial shift function, we develop piecewise-defined solutions where the interior geometry is flat and the exterior is supported by several sources inspired by electromagnetic distributions. These include point-charge-like fields, Yukawa-screened electric fields, dielectric layers, and Hulthén-type field. The Einstein equations naturally impose a relation between the energy density and radial pressure, while the tangential pressure is derived from the metric. We systematically evaluate the classical energy conditions in each model and study the appearance of singular behaviour using Israel junction conditions. This framework offers an analytically tractable setting to explore the gravitational effects of physically simple, well-understood sources without resorting to exotic matter.</div></div>","PeriodicalId":8249,"journal":{"name":"Annals of Physics","volume":"485 ","pages":"Article 170300"},"PeriodicalIF":3.0,"publicationDate":"2025-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145622793","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-11-25DOI: 10.1016/j.aop.2025.170306
Radouan Hab arrih , Ayoub Ghaba , Pablo Díaz , David Laroze , Ahmed Jellal
We study quantum steering and entanglement in two coupled harmonic oscillators using Wigner function techniques in phase space. We derive expressions for purity and quantum steering in the - and -directions. Our results extend previous studies from the weak coupling regime to the ultra-strong coupling regime, revealing significant deviations in behavior. In particular, we show that quantum steering between excited oscillators is completely absent even in the ultra-strong coupling regime. Similarly, resonant oscillators show no steering, and ground states cannot steer any receiver state. We find that quantum steering increases as the system approaches resonance and in certain ultra-strong coupling regimes. This behavior shows a clear asymmetry, with steering occurring in only one direction. It highlights the delicate balance of interaction strengths that shapes quantum correlations. These results improve our understanding of how excitation levels and coupling strengths affect quantum steering and entanglement in coupled harmonic oscillators.
{"title":"Quantum steering and entanglement in two coupled harmonic oscillators","authors":"Radouan Hab arrih , Ayoub Ghaba , Pablo Díaz , David Laroze , Ahmed Jellal","doi":"10.1016/j.aop.2025.170306","DOIUrl":"10.1016/j.aop.2025.170306","url":null,"abstract":"<div><div>We study quantum steering and entanglement in two coupled harmonic oscillators using Wigner function techniques in phase space. We derive expressions for purity and quantum steering in the <span><math><mi>x</mi></math></span>- and <span><math><mi>y</mi></math></span>-directions. Our results extend previous studies from the weak coupling regime to the ultra-strong coupling regime, revealing significant deviations in behavior. In particular, we show that quantum steering between excited oscillators is completely absent even in the ultra-strong coupling regime. Similarly, resonant oscillators show no steering, and ground states cannot steer any receiver state. We find that quantum steering increases as the system approaches resonance and in certain ultra-strong coupling regimes. This behavior shows a clear asymmetry, with steering occurring in only one direction. It highlights the delicate balance of interaction strengths that shapes quantum correlations. These results improve our understanding of how excitation levels and coupling strengths affect quantum steering and entanglement in coupled harmonic oscillators.</div></div>","PeriodicalId":8249,"journal":{"name":"Annals of Physics","volume":"484 ","pages":"Article 170306"},"PeriodicalIF":3.0,"publicationDate":"2025-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145621589","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-11-25DOI: 10.1016/j.aop.2025.170304
Himanshu Badhani , C.M. Chandrashekar
Evolutions under non-Hermitian Hamiltonians with unbroken symmetry can be considered unitary under appropriate choices of inner products, facilitated by the so-called metric operator. While it is understood that the choice of the metric operator has no bearing on the description of the system, in this work, we show that this choice does dictate the entanglement structure of the system. We show that the partial trace of the Hermitized density matrix gives the correct representation of the reduced subsystem, and based on such operations, we elucidate the metric dependency of the reduced dynamics and consequently the observable dependence of the subsystem decomposition. We use a non-Hermitian -symmetric quantum walk as a toy model to study this metric dependency, where we use the internal (coin state) as the subsystem of interest and study the coin-position entanglement and non-Markovianity of the coin dynamics.
{"title":"Reduced dynamics in quasi-Hermitian systems","authors":"Himanshu Badhani , C.M. Chandrashekar","doi":"10.1016/j.aop.2025.170304","DOIUrl":"10.1016/j.aop.2025.170304","url":null,"abstract":"<div><div>Evolutions under non-Hermitian Hamiltonians with unbroken <span><math><mrow><mi>P</mi><mi>T</mi></mrow></math></span> symmetry can be considered unitary under appropriate choices of inner products, facilitated by the so-called metric operator. While it is understood that the choice of the metric operator has no bearing on the description of the system, in this work, we show that this choice does dictate the entanglement structure of the system. We show that the partial trace of the Hermitized density matrix gives the correct representation of the reduced subsystem, and based on such operations, we elucidate the metric dependency of the reduced dynamics and consequently the observable dependence of the subsystem decomposition. We use a non-Hermitian <span><math><mi>PT</mi></math></span>-symmetric quantum walk as a toy model to study this metric dependency, where we use the internal (coin state) as the subsystem of interest and study the coin-position entanglement and non-Markovianity of the coin dynamics.</div></div>","PeriodicalId":8249,"journal":{"name":"Annals of Physics","volume":"484 ","pages":"Article 170304"},"PeriodicalIF":3.0,"publicationDate":"2025-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145621591","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-11-25DOI: 10.1016/j.aop.2025.170305
Sara Giordano , Miguel A. Martin-Delgado
Testing graph completeness is a critical problem in computer science and network theory. Leveraging quantum computation, we present an efficient algorithm using the Szegedy quantum walk and quantum phase estimation (QPE). Our algorithm, which takes the number of nodes and the adjacency matrix as input, constructs a quantum walk operator and applies QPE to estimate its eigenvalues. These eigenvalues reveal the graph’s structural properties, enabling us to determine its completeness. We establish a relationship between the number of nodes in a complete graph and the number of marked nodes, optimizing the success probability and running time. The time complexity of our algorithm is , where is the number of nodes of the graph. offering a clear quantum advantage over classical methods. This approach is useful in network structure analysis, evaluating classical routing algorithms, and assessing systems based on pairwise comparisons.
{"title":"Quantum algorithm for testing graph completeness","authors":"Sara Giordano , Miguel A. Martin-Delgado","doi":"10.1016/j.aop.2025.170305","DOIUrl":"10.1016/j.aop.2025.170305","url":null,"abstract":"<div><div>Testing graph completeness is a critical problem in computer science and network theory. Leveraging quantum computation, we present an efficient algorithm using the Szegedy quantum walk and quantum phase estimation (QPE). Our algorithm, which takes the number of nodes and the adjacency matrix as input, constructs a quantum walk operator and applies QPE to estimate its eigenvalues. These eigenvalues reveal the graph’s structural properties, enabling us to determine its completeness. We establish a relationship between the number of nodes in a complete graph and the number of marked nodes, optimizing the success probability and running time. The time complexity of our algorithm is <span><math><mrow><mi>O</mi><mrow><mo>(</mo><msup><mrow><mo>log</mo></mrow><mrow><mn>2</mn></mrow></msup><mi>n</mi><mo>)</mo></mrow></mrow></math></span>, where <span><math><mi>n</mi></math></span> is the number of nodes of the graph. offering a clear quantum advantage over classical methods. This approach is useful in network structure analysis, evaluating classical routing algorithms, and assessing systems based on pairwise comparisons.</div></div>","PeriodicalId":8249,"journal":{"name":"Annals of Physics","volume":"484 ","pages":"Article 170305"},"PeriodicalIF":3.0,"publicationDate":"2025-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145621638","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-11-24DOI: 10.1016/j.aop.2025.170298
Duttatreya , Ipsika Mohanty , Sanjib Dey
Quantum computing’s potential for exponential speedup is fundamentally limited by decoherence, a phenomenon arising from environmental interactions. Non-Hermitian quantum mechanics, particularly -symmetric systems, offers a novel framework for extending coherence times. This study examines a qubit’s coherence under non-Hermitian -symmetric dynamics, highlighting significantly enhanced coherence times compared to Hermitian setups. The effect is especially pronounced when both the system and environment exhibit -symmetry. Interestingly, greater environmental non-Hermiticity correlates with extended coherence, contrary to traditional expectations. These findings point to promising strategies for managing decoherence, which could significantly advance approaches to quantum information processing.
{"title":"Improved coherence time of a non-Hermitian qubit in a PT-symmetric environment","authors":"Duttatreya , Ipsika Mohanty , Sanjib Dey","doi":"10.1016/j.aop.2025.170298","DOIUrl":"10.1016/j.aop.2025.170298","url":null,"abstract":"<div><div>Quantum computing’s potential for exponential speedup is fundamentally limited by decoherence, a phenomenon arising from environmental interactions. Non-Hermitian quantum mechanics, particularly <span><math><mrow><mi>P</mi><mi>T</mi></mrow></math></span>-symmetric systems, offers a novel framework for extending coherence times. This study examines a qubit’s coherence under non-Hermitian <span><math><mrow><mi>P</mi><mi>T</mi></mrow></math></span>-symmetric dynamics, highlighting significantly enhanced coherence times compared to Hermitian setups. The effect is especially pronounced when both the system and environment exhibit <span><math><mrow><mi>P</mi><mi>T</mi></mrow></math></span>-symmetry. Interestingly, greater environmental non-Hermiticity correlates with extended coherence, contrary to traditional expectations. These findings point to promising strategies for managing decoherence, which could significantly advance approaches to quantum information processing.</div></div>","PeriodicalId":8249,"journal":{"name":"Annals of Physics","volume":"484 ","pages":"Article 170298"},"PeriodicalIF":3.0,"publicationDate":"2025-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145621590","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-11-24DOI: 10.1016/j.aop.2025.170302
Shahid Chaudhary , Muhammad Danish Sultan , Talha Anwar , Atif Mossad Ali EI-Rehim , Farruh Atamurotov , Ali M. Mubaraki , Muhammad Hadi , M.A. Sayed
We study the gravitational lensing, shadow structure, and accretion dynamics of black holes modified by dark photon interactions arising from a hidden gauge symmetry. The metric incorporates Yukawa-type and magnetic dipole potentials sourced by dark photons. Using the Gauss–Bonnet theorem, we derive the weak deflection angle and show that the dark photon coupling , mass , and magnetic dipole ratio produce measurable deviations from general relativity. We further analyze light propagation in a plasma medium, where chromatic dispersion enhances the influence of the dark sector on the deflection angle. Extending the analysis to massive particles through the Jacobi metric approach, we demonstrate that velocity-dependent corrections cause slower particles to experience stronger deflection. The optical appearance of thin accretion disks is modeled using the Novikov–Thorne formalism and relativistic ray tracing, revealing that dark photon effects alter disk brightness and secondary image formation. Finally, static spherical accretion and shadow imaging analyses show that variations in and significantly modify the shadow boundary and ring luminosity, offering potential observational signatures of hidden-sector physics.
{"title":"Gravitational lensing, shadow images and accretion dynamics of dark photon corrected black holes","authors":"Shahid Chaudhary , Muhammad Danish Sultan , Talha Anwar , Atif Mossad Ali EI-Rehim , Farruh Atamurotov , Ali M. Mubaraki , Muhammad Hadi , M.A. Sayed","doi":"10.1016/j.aop.2025.170302","DOIUrl":"10.1016/j.aop.2025.170302","url":null,"abstract":"<div><div>We study the gravitational lensing, shadow structure, and accretion dynamics of black holes modified by dark photon interactions arising from a hidden <span><math><mrow><mi>U</mi><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span> gauge symmetry. The metric incorporates Yukawa-type and magnetic dipole potentials sourced by dark photons. Using the Gauss–Bonnet theorem, we derive the weak deflection angle and show that the dark photon coupling <span><math><msub><mrow><mi>g</mi></mrow><mrow><mi>D</mi></mrow></msub></math></span>, mass <span><math><msub><mrow><mi>m</mi></mrow><mrow><msup><mrow><mi>A</mi></mrow><mrow><mo>′</mo></mrow></msup></mrow></msub></math></span>, and magnetic dipole ratio <span><math><mrow><msub><mrow><mi>μ</mi></mrow><mrow><mi>f</mi></mrow></msub><mo>/</mo><mi>Λ</mi></mrow></math></span> produce measurable deviations from general relativity. We further analyze light propagation in a plasma medium, where chromatic dispersion enhances the influence of the dark sector on the deflection angle. Extending the analysis to massive particles through the Jacobi metric approach, we demonstrate that velocity-dependent corrections cause slower particles to experience stronger deflection. The optical appearance of thin accretion disks is modeled using the Novikov–Thorne formalism and relativistic ray tracing, revealing that dark photon effects alter disk brightness and secondary image formation. Finally, static spherical accretion and shadow imaging analyses show that variations in <span><math><msub><mrow><mi>g</mi></mrow><mrow><mi>D</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>m</mi></mrow><mrow><msup><mrow><mi>A</mi></mrow><mrow><mo>′</mo></mrow></msup></mrow></msub></math></span> significantly modify the shadow boundary and ring luminosity, offering potential observational signatures of hidden-sector physics.</div></div>","PeriodicalId":8249,"journal":{"name":"Annals of Physics","volume":"485 ","pages":"Article 170302"},"PeriodicalIF":3.0,"publicationDate":"2025-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145692357","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-11-22DOI: 10.1016/j.aop.2025.170299
Alexey Dubinsky
We study axial gravitational perturbations of the Dymnikova regular black hole, an asymptotically flat spacetime in which the Schwarzschild singularity is replaced by a de Sitter core. Using the WKB method with Padé approximants, we compute grey-body factors, and absorption cross-sections, and test the recently proposed correspondence between quasinormal frequencies and transmission coefficients. We find that variations of the quantum parameter affect the effective potential only near the horizon, leading to minor deviations of grey-body factors and absorption cross-sections from the Schwarzschild case. As a result, the Hawking radiation spectrum is governed mainly by the modified Hawking temperature, with grey-body factors providing only subleading corrections. Unlike higher quasinormal overtones, which are highly sensitive to near-horizon deformations, the grey-body factors remain robust, a feature explicitly confirmed for the Dymnikova geometry. The correspondence between quasinormal modes and grey-body factors holds in our case with high accuracy for multipoles .
{"title":"Gravitational perturbations of Dymnikova black holes: Grey-body factors and absorption cross-sections","authors":"Alexey Dubinsky","doi":"10.1016/j.aop.2025.170299","DOIUrl":"10.1016/j.aop.2025.170299","url":null,"abstract":"<div><div>We study axial gravitational perturbations of the Dymnikova regular black hole, an asymptotically flat spacetime in which the Schwarzschild singularity is replaced by a de Sitter core. Using the WKB method with Padé approximants, we compute grey-body factors, and absorption cross-sections, and test the recently proposed correspondence between quasinormal frequencies and transmission coefficients. We find that variations of the quantum parameter <span><math><msub><mrow><mi>l</mi></mrow><mrow><mi>cr</mi></mrow></msub></math></span> affect the effective potential only near the horizon, leading to minor deviations of grey-body factors and absorption cross-sections from the Schwarzschild case. As a result, the Hawking radiation spectrum is governed mainly by the modified Hawking temperature, with grey-body factors providing only subleading corrections. Unlike higher quasinormal overtones, which are highly sensitive to near-horizon deformations, the grey-body factors remain robust, a feature explicitly confirmed for the Dymnikova geometry. The correspondence between quasinormal modes and grey-body factors holds in our case with high accuracy for multipoles <span><math><mrow><mi>ℓ</mi><mo>≥</mo><mn>2</mn></mrow></math></span>.</div></div>","PeriodicalId":8249,"journal":{"name":"Annals of Physics","volume":"485 ","pages":"Article 170299"},"PeriodicalIF":3.0,"publicationDate":"2025-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145600383","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-11-20DOI: 10.1016/j.aop.2025.170295
Frankbelson dos S. Azevedo , Faizuddin Ahmed , Edilberto O. Silva
In this paper, we investigate the Schrödinger equation in a three-dimensional helically twisted space characterized by a non-trivial torsion parameter. By applying exact separation of variables, we derive the radial equation governing the dynamics of quantum particles in this geometric background. Remarkably, the intrinsic coupling between angular and longitudinal momenta induced by the torsion gives rise to an attractive Coulomb-like potential term that emerges purely from the underlying geometry, without introducing any external fields or interactions. We obtain exact analytical solutions for the bound states, including both the energy spectrum and the normalized wave functions. Numerical calculations are also performed, and excellent agreement with the exact results is found. The interplay between the torsion parameter and the effective Coulomb-like interaction is analyzed in detail, revealing how geometric deformation gives rise to novel quantum confinement mechanisms in twisted spaces.
{"title":"Geometry-induced Coulomb-like potential in helically twisted quantum systems","authors":"Frankbelson dos S. Azevedo , Faizuddin Ahmed , Edilberto O. Silva","doi":"10.1016/j.aop.2025.170295","DOIUrl":"10.1016/j.aop.2025.170295","url":null,"abstract":"<div><div>In this paper, we investigate the Schrödinger equation in a three-dimensional helically twisted space characterized by a non-trivial torsion parameter. By applying exact separation of variables, we derive the radial equation governing the dynamics of quantum particles in this geometric background. Remarkably, the intrinsic coupling between angular and longitudinal momenta induced by the torsion gives rise to an attractive Coulomb-like potential term that emerges purely from the underlying geometry, without introducing any external fields or interactions. We obtain exact analytical solutions for the bound states, including both the energy spectrum and the normalized wave functions. Numerical calculations are also performed, and excellent agreement with the exact results is found. The interplay between the torsion parameter and the effective Coulomb-like interaction is analyzed in detail, revealing how geometric deformation gives rise to novel quantum confinement mechanisms in twisted spaces.</div></div>","PeriodicalId":8249,"journal":{"name":"Annals of Physics","volume":"484 ","pages":"Article 170295"},"PeriodicalIF":3.0,"publicationDate":"2025-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145577897","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}