Pub Date : 2024-09-27DOI: 10.1016/j.aop.2024.169810
Avra Banerjee, Dwipesh Majumder
We have considered a quantum droplet of two components of Bose–Einstein condensate (BEC) inside the electron of a Rydberg atom to study the surface mode of collective excitation using the Bogoliubov theory of excitation. We have calculated the surface excitation spectrum for various Rydberg electron-atom interaction strengths. From the energy spectrum, we calculated the surface tension of the droplet as a function of Rydberg electron-atom interaction strength. Our study shows that the electron-atom interaction enhances the surface energy; hence, the droplet will be more stable inside the electron of a Rydberg atom.
{"title":"Surface excitation of Rydberg dressed quantum droplet of Bose–Einstein Condensates","authors":"Avra Banerjee, Dwipesh Majumder","doi":"10.1016/j.aop.2024.169810","DOIUrl":"10.1016/j.aop.2024.169810","url":null,"abstract":"<div><div>We have considered a quantum droplet of two components of Bose–Einstein condensate (BEC) inside the electron of a Rydberg atom to study the surface mode of collective excitation using the Bogoliubov theory of excitation. We have calculated the surface excitation spectrum for various Rydberg electron-atom interaction strengths. From the energy spectrum, we calculated the surface tension of the droplet as a function of Rydberg electron-atom interaction strength. Our study shows that the electron-atom interaction enhances the surface energy; hence, the droplet will be more stable inside the electron of a Rydberg atom.</div></div>","PeriodicalId":8249,"journal":{"name":"Annals of Physics","volume":"470 ","pages":"Article 169810"},"PeriodicalIF":3.0,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142359237","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-26DOI: 10.1016/j.aop.2024.169809
Alberto Escalante, Jesús Aldair Pantoja-González, Victor Julian Pérez-Aquino
The Hamiltonian analysis for the linearized gravity plus a Chern–Simons term is performed. The first-class and second-class constraints for arbitrary values of are presented, and one physical degree of freedom is reported. The second-class constraints are removed, and the corresponding generalized Dirac brackets are constructed; then, the difference between theories with different values of is remarked.
{"title":"Canonical analysis of linearized λR gravity plus a Chern–Simons term","authors":"Alberto Escalante, Jesús Aldair Pantoja-González, Victor Julian Pérez-Aquino","doi":"10.1016/j.aop.2024.169809","DOIUrl":"10.1016/j.aop.2024.169809","url":null,"abstract":"<div><div>The Hamiltonian analysis for the linearized <span><math><mrow><mi>λ</mi><mi>R</mi></mrow></math></span> gravity plus a Chern–Simons term is performed. The first-class and second-class constraints for arbitrary values of <span><math><mi>λ</mi></math></span> are presented, and one physical degree of freedom is reported. The second-class constraints are removed, and the corresponding generalized Dirac brackets are constructed; then, the difference between theories with different values of <span><math><mi>λ</mi></math></span> is remarked.</div></div>","PeriodicalId":8249,"journal":{"name":"Annals of Physics","volume":"470 ","pages":"Article 169809"},"PeriodicalIF":3.0,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142327047","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-26DOI: 10.1016/j.aop.2024.169814
Suhail Khan , Shafqat Ul Islam , Sushant G. Ghosh , Sunil D. Maharaj
Interpreting the cosmological constant as the energy of the vacuum and using a gravitational decoupling approach leads to a new Kerr–anti-de Sitter (AdS) black hole. The metric of the new Kerr–AdS is more straightforward than the standard Kerr–AdS and geometrically richer, showing the rotation’s impact as a warped curvature. We investigate the relationship between the unstable photon orbits and thermodynamic phase transition to the new Kerr–AdS black hole background. We derive an exact expression for thermodynamic properties of black holes, including mass (), Hawking temperature (), entropy (), heat capacity (), and free energy (), by relating the negative cosmological constant to positive pressure through the equation , where represents the horizon radius, and by introducing its conjugate variable as the thermodynamic volume . When , black holes with exhibit stability against thermal fluctuations, while those with are unstable. Our analysis of Gibbs free energy reveals a phase transition from small globally unstable black holes to large globally stable ones. Additionally, investigating the system’s criticality and determining the critical exponents shows that our system shares similarities with a Van der Waals (vdW) fluid. In the reduced parameter space, we observe nonmonotonic behaviours of the photon sphere radius and the critical impact parameter when the pressure is below its critical value. It indicates that alterations in the photon sphere radius and the minimum impact parameter can act as order parameters for the phase transition between small and large black holes. In discussing the applicability of the Maxwell equal area law, we highlight the presence of a characteristic vdW-like oscillation in the diagram. This oscillation, denoting the phase transition from a small black hole to a large one, can be substituted by an isobar. Furthermore, we present the distribution of critical points in parameter space and derive a fitting formula for the co-existence curve.
{"title":"Photon orbits and phase transition for gravitational decoupled Kerr anti-de Sitter black holes","authors":"Suhail Khan , Shafqat Ul Islam , Sushant G. Ghosh , Sunil D. Maharaj","doi":"10.1016/j.aop.2024.169814","DOIUrl":"10.1016/j.aop.2024.169814","url":null,"abstract":"<div><div>Interpreting the cosmological constant as the energy of the vacuum and using a gravitational decoupling approach leads to a new Kerr–anti-de Sitter (AdS) black hole. The metric of the new Kerr–AdS is more straightforward than the standard Kerr–AdS and geometrically richer, showing the rotation’s impact as a warped curvature. We investigate the relationship between the unstable photon orbits and thermodynamic phase transition to the new Kerr–AdS black hole background. We derive an exact expression for thermodynamic properties of black holes, including mass (<span><math><mi>M</mi></math></span>), Hawking temperature (<span><math><mi>T</mi></math></span>), entropy (<span><math><mi>S</mi></math></span>), heat capacity (<span><math><mi>G</mi></math></span>), and free energy (<span><math><mi>G</mi></math></span>), by relating the negative cosmological constant to positive pressure through the equation <span><math><mrow><mi>P</mi><mo>=</mo><mo>−</mo><mi>Λ</mi><mo>/</mo><mn>8</mn><mi>π</mi><mo>=</mo><mn>3</mn><mo>/</mo><mn>8</mn><mi>π</mi><msup><mrow><mi>l</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span>, where <span><math><mi>l</mi></math></span> represents the horizon radius, and by introducing its conjugate variable as the thermodynamic volume <span><math><mi>V</mi></math></span>. When <span><math><mrow><mi>P</mi><mo><</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>c</mi></mrow></msub></mrow></math></span>, black holes with <span><math><mrow><msub><mrow><mi>C</mi></mrow><mrow><mi>P</mi></mrow></msub><mo>></mo><mn>0</mn></mrow></math></span> exhibit stability against thermal fluctuations, while those with <span><math><mrow><msub><mrow><mi>C</mi></mrow><mrow><mi>P</mi></mrow></msub><mo>≤</mo><mn>0</mn></mrow></math></span> are unstable. Our analysis of Gibbs free energy reveals a phase transition from small globally unstable black holes to large globally stable ones. Additionally, investigating the system’s <span><math><mrow><mi>P</mi><mo>−</mo><mi>V</mi></mrow></math></span> criticality and determining the critical exponents shows that our system shares similarities with a Van der Waals (vdW) fluid. In the reduced parameter space, we observe nonmonotonic behaviours of the photon sphere radius and the critical impact parameter when the pressure is below its critical value. It indicates that alterations in the photon sphere radius and the minimum impact parameter can act as order parameters for the phase transition between small and large black holes. In discussing the applicability of the Maxwell equal area law, we highlight the presence of a characteristic vdW-like oscillation in the <span><math><mrow><mi>P</mi><mo>−</mo><mi>V</mi></mrow></math></span> diagram. This oscillation, denoting the phase transition from a small black hole to a large one, can be substituted by an isobar. Furthermore, we present the distribution of critical points in parameter space and derive a fitting formula for the co-existence curve.</div></div>","PeriodicalId":8249,"journal":{"name":"Annals of Physics","volume":"470 ","pages":"Article 169814"},"PeriodicalIF":3.0,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142359239","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-24DOI: 10.1016/j.aop.2024.169813
Akash Bose
The present work deals with observational data analysis of four different models of homogeneous and isotropic Friedmann–Lemaitre–Robertson–Walker (FLRW) cosmology with torsion, where the torsion function is described by a scalar function associated with the spin of the matter. It has been found that among the four models, the third model, where the torsion function is proportional to Hubble parameter as well as power law of matter density, best fits the observational data. Further, the evolution of the torsion function reveals that torsion was subdominant relative to matter energy density during the matter-dominated era. However, torsion gradually becomes dominant following the transition into the current late-time accelerating phase. It plays a pivotal role as an alternative to dark energy, thereby accounting for the present cosmic acceleration.
{"title":"Late-time constraints on homogeneous and isotropic FLRW cosmology with torsion","authors":"Akash Bose","doi":"10.1016/j.aop.2024.169813","DOIUrl":"10.1016/j.aop.2024.169813","url":null,"abstract":"<div><div>The present work deals with observational data analysis of four different models of homogeneous and isotropic Friedmann–Lemaitre–Robertson–Walker (FLRW) cosmology with torsion, where the torsion function is described by a scalar function <span><math><mrow><mi>ϕ</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mrow></math></span> associated with the spin of the matter. It has been found that among the four models, the third model, where the torsion function is proportional to Hubble parameter as well as power law of matter density, best fits the observational data. Further, the evolution of the torsion function reveals that torsion was subdominant relative to matter energy density during the matter-dominated era. However, torsion gradually becomes dominant following the transition into the current late-time accelerating phase. It plays a pivotal role as an alternative to dark energy, thereby accounting for the present cosmic acceleration.</div></div>","PeriodicalId":8249,"journal":{"name":"Annals of Physics","volume":"470 ","pages":"Article 169813"},"PeriodicalIF":3.0,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142323180","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-24DOI: 10.1016/j.aop.2024.169811
Yi-Sheng Fu , Jing Wang
<div><div>We study the effects of marginally spinful electron–electron interactions on the low-energy instabilities and favorable phase transitions in a two-dimensional (2D) spin-<span><math><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></math></span> semimetal that owns a quadratic band crossing point (QBCP) parabolically touched by the upper and lower bands. In the framework of a renormalization group procedure, all sorts of interactions are treated on the equal footing to derive the coupled energy-dependent evolutions of all interaction couplings that govern the low-energy properties. Deciphering the essential physical information of such flows, we at first find that the tendencies of interaction parameters fall into three categories including Limit case, Special case, and General case based on the initial conditions. In addition, the 2D QBCP system is attracted to several distinct kinds of fixed points (FPs) in the interaction-parameter space, namely <span><math><msubsup><mrow><mi>FP</mi></mrow><mrow><mn>1</mn></mrow><mrow><mo>+</mo></mrow></msubsup></math></span>/<span><math><msubsup><mrow><mi>FP</mi></mrow><mrow><mn>2</mn></mrow><mrow><mo>−</mo></mrow></msubsup></math></span>, <span><math><msubsup><mrow><mi>FP</mi></mrow><mrow><mn>1</mn></mrow><mrow><mo>±</mo></mrow></msubsup></math></span>/ <span><math><msubsup><mrow><mi>FP</mi></mrow><mrow><mn>2</mn></mrow><mrow><mo>±</mo></mrow></msubsup></math></span>/<span><math><msubsup><mrow><mi>FP</mi></mrow><mrow><mn>3</mn></mrow><mrow><mo>±</mo></mrow></msubsup></math></span>, and <span><math><mrow><msubsup><mrow><mi>FP</mi></mrow><mrow><mn>1</mn></mrow><mrow><mo>±</mo></mrow></msubsup><mo>/</mo><msubsup><mrow><mi>FP</mi></mrow><mrow><mn>3</mn></mrow><mrow><mo>±</mo></mrow></msubsup><mo>/</mo><msubsup><mrow><mi>FP</mi></mrow><mrow><mn>41</mn><mo>,</mo><mn>42</mn><mo>,</mo><mn>43</mn></mrow><mrow><mo>±</mo></mrow></msubsup></mrow></math></span> with the subscripts characterizing the features of FPs for the Limit, Special, and General cases, respectively. Furthermore, as approaching these FPs, we demonstrate that the spinful fermion–fermion interactions can induce a number of favorable instabilities accompanied by certain phase transitions. Specifically, the quantum anomalous Hall (QAH), quantum spin Hall (QSH), and nematic (Nem.) site(bond) states are dominant for <span><math><msubsup><mrow><mi>FP</mi></mrow><mrow><mn>1</mn></mrow><mrow><mo>±</mo></mrow></msubsup></math></span>, <span><math><msubsup><mrow><mi>FP</mi></mrow><mrow><mn>2</mn></mrow><mrow><mo>±</mo></mrow></msubsup></math></span>, and <span><math><msubsup><mrow><mi>FP</mi></mrow><mrow><mn>3</mn></mrow><mrow><mo>±</mo></mrow></msubsup></math></span>, respectively. Rather, QSH becomes anisotropic nearby <span><math><msubsup><mrow><mi>FP</mi></mrow><mrow><mn>41</mn><mo>,</mo><mn>42</mn><mo>,</mo><mn>43</mn></mrow><mrow><mo>±</mo></mrow></msubsup></math></span> with one component leading and the others subleading. Besides, Nem.site(bond), chi
{"title":"Favorable phase transitions induced by spinful electron–electron interactions in two-dimensional semimetal with a quadratic band crossing point","authors":"Yi-Sheng Fu , Jing Wang","doi":"10.1016/j.aop.2024.169811","DOIUrl":"10.1016/j.aop.2024.169811","url":null,"abstract":"<div><div>We study the effects of marginally spinful electron–electron interactions on the low-energy instabilities and favorable phase transitions in a two-dimensional (2D) spin-<span><math><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></math></span> semimetal that owns a quadratic band crossing point (QBCP) parabolically touched by the upper and lower bands. In the framework of a renormalization group procedure, all sorts of interactions are treated on the equal footing to derive the coupled energy-dependent evolutions of all interaction couplings that govern the low-energy properties. Deciphering the essential physical information of such flows, we at first find that the tendencies of interaction parameters fall into three categories including Limit case, Special case, and General case based on the initial conditions. In addition, the 2D QBCP system is attracted to several distinct kinds of fixed points (FPs) in the interaction-parameter space, namely <span><math><msubsup><mrow><mi>FP</mi></mrow><mrow><mn>1</mn></mrow><mrow><mo>+</mo></mrow></msubsup></math></span>/<span><math><msubsup><mrow><mi>FP</mi></mrow><mrow><mn>2</mn></mrow><mrow><mo>−</mo></mrow></msubsup></math></span>, <span><math><msubsup><mrow><mi>FP</mi></mrow><mrow><mn>1</mn></mrow><mrow><mo>±</mo></mrow></msubsup></math></span>/ <span><math><msubsup><mrow><mi>FP</mi></mrow><mrow><mn>2</mn></mrow><mrow><mo>±</mo></mrow></msubsup></math></span>/<span><math><msubsup><mrow><mi>FP</mi></mrow><mrow><mn>3</mn></mrow><mrow><mo>±</mo></mrow></msubsup></math></span>, and <span><math><mrow><msubsup><mrow><mi>FP</mi></mrow><mrow><mn>1</mn></mrow><mrow><mo>±</mo></mrow></msubsup><mo>/</mo><msubsup><mrow><mi>FP</mi></mrow><mrow><mn>3</mn></mrow><mrow><mo>±</mo></mrow></msubsup><mo>/</mo><msubsup><mrow><mi>FP</mi></mrow><mrow><mn>41</mn><mo>,</mo><mn>42</mn><mo>,</mo><mn>43</mn></mrow><mrow><mo>±</mo></mrow></msubsup></mrow></math></span> with the subscripts characterizing the features of FPs for the Limit, Special, and General cases, respectively. Furthermore, as approaching these FPs, we demonstrate that the spinful fermion–fermion interactions can induce a number of favorable instabilities accompanied by certain phase transitions. Specifically, the quantum anomalous Hall (QAH), quantum spin Hall (QSH), and nematic (Nem.) site(bond) states are dominant for <span><math><msubsup><mrow><mi>FP</mi></mrow><mrow><mn>1</mn></mrow><mrow><mo>±</mo></mrow></msubsup></math></span>, <span><math><msubsup><mrow><mi>FP</mi></mrow><mrow><mn>2</mn></mrow><mrow><mo>±</mo></mrow></msubsup></math></span>, and <span><math><msubsup><mrow><mi>FP</mi></mrow><mrow><mn>3</mn></mrow><mrow><mo>±</mo></mrow></msubsup></math></span>, respectively. Rather, QSH becomes anisotropic nearby <span><math><msubsup><mrow><mi>FP</mi></mrow><mrow><mn>41</mn><mo>,</mo><mn>42</mn><mo>,</mo><mn>43</mn></mrow><mrow><mo>±</mo></mrow></msubsup></math></span> with one component leading and the others subleading. Besides, Nem.site(bond), chi","PeriodicalId":8249,"journal":{"name":"Annals of Physics","volume":"470 ","pages":"Article 169811"},"PeriodicalIF":3.0,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142359238","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-23DOI: 10.1016/j.aop.2024.169812
Sergiu I. Vacaru
Nonassociative modifications of general relativity, GR, defined by star products with R-flux deformations in string gravity consist an important subclass of modified gravity theories, MGTs. A longstanding criticism for elaborating quantum gravity, QG, argue that the asymptotic safety does not survive once certain perturbative terms (in general, nonassociative and noncommutative) are included in the projection space. The goal of this work is to prove that a generalized asymptotic safety scenario allows us to formulate physically viable nonassociative QG theories using effective models defined by generic off-diagonal solutions and nonlinear symmetries in nonassociative geometric flow and gravity theories. We elaborate on a new nonholonomic functional renormalization techniques with parametric renormalization group, RG, flow equations for effective actions supplemented by certain canonical two-loop counter-terms. The geometric constructions and quantum deformations are performed for nonassociative phase spaces modelled as R-flux deformed cotangent Lorentz bundles. Our results prove that theories involving nonassociative modifications of GR can be well defined both as classical nonassociative MGTs and QG models. Such theories are characterized by generalized G. Perelman thermodynamic variables which are computed for certain examples of nonassociative geometric and RG flows.
广义相对论(GR)的非共轭修正,由弦引力中具有 R 流变形的星积定义,是修正引力理论(MGT)的一个重要子类。长期以来,对量子引力(QG)的批评认为,一旦在投影空间中包含了某些微扰项(一般来说,非联立和非交换),其渐近安全性就不复存在了。这项工作的目标是证明广义渐近安全性方案允许我们利用非对偶几何流和引力理论中的通用非对偶解和非线性对称性定义的有效模型来提出物理上可行的非对偶 QG 理论。我们详细阐述了一种新的非荷尔蒙函数重正化技术,它具有参数重正化群(RG),有效作用的流动方程辅以某些典型的二环反条件。几何构造和量子变形是针对以 R 流变形余切洛伦兹束为模型的非耦合相空间进行的。我们的结果证明,涉及 GR 的非耦合修正的理论可以很好地定义为经典非耦合 MGT 和 QG 模型。这些理论由广义 G. 佩雷尔曼热力学变量表征,而这些变量是针对某些非耦合几何流和 RG 流的例子计算出来的。
{"title":"Asymptotic safe nonassociative quantum gravity with star R-flux products, Goroff–Sagnotti counter-terms, and geometric flows","authors":"Sergiu I. Vacaru","doi":"10.1016/j.aop.2024.169812","DOIUrl":"10.1016/j.aop.2024.169812","url":null,"abstract":"<div><div>Nonassociative modifications of general relativity, GR, defined by star products with R-flux deformations in string gravity consist an important subclass of modified gravity theories, MGTs. A longstanding criticism for elaborating quantum gravity, QG, argue that the asymptotic safety does not survive once certain perturbative terms (in general, nonassociative and noncommutative) are included in the projection space. The goal of this work is to prove that a generalized asymptotic safety scenario allows us to formulate physically viable nonassociative QG theories using effective models defined by generic off-diagonal solutions and nonlinear symmetries in nonassociative geometric flow and gravity theories. We elaborate on a new nonholonomic functional renormalization techniques with parametric renormalization group, RG, flow equations for effective actions supplemented by certain canonical two-loop counter-terms. The geometric constructions and quantum deformations are performed for nonassociative phase spaces modelled as R-flux deformed cotangent Lorentz bundles. Our results prove that theories involving nonassociative modifications of GR can be well defined both as classical nonassociative MGTs and QG models. Such theories are characterized by generalized G. Perelman thermodynamic variables which are computed for certain examples of nonassociative geometric and RG flows.</div></div>","PeriodicalId":8249,"journal":{"name":"Annals of Physics","volume":"470 ","pages":"Article 169812"},"PeriodicalIF":3.0,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142319815","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-23DOI: 10.1016/j.aop.2024.169806
Yuan-Ming Lu
The Lieb-Schultz-Mattis (LSM) theorem and its generalizations are a class of powerful no-go theorems that rule out any short-range-entangled (SRE) symmetric ground state irrespective of the specific Hamiltonian, based only on certain microscopic inputs, such as symmetries and particle filling numbers. In this work, we introduce and provide physical arguments for a new class of LSM-type theorems, where any symmetry-allowed SRE ground state must be a symmetry-protected topological (SPT) phase with robust gapless edge states, such as topological insulators and superconductors. The key ingredient is to replace the lattice translation symmetry in usual LSM theorems by the magnetic translation symmetry. These theorems provide new insights into realistic models and experimental realizations of SPT phases in interacting bosons and fermions.
{"title":"Lieb-Schultz-Mattis theorems for symmetry-protected topological phases","authors":"Yuan-Ming Lu","doi":"10.1016/j.aop.2024.169806","DOIUrl":"10.1016/j.aop.2024.169806","url":null,"abstract":"<div><div>The Lieb-Schultz-Mattis (LSM) theorem and its generalizations are a class of powerful no-go theorems that rule out any short-range-entangled (SRE) symmetric ground state irrespective of the specific Hamiltonian, based only on certain microscopic inputs, such as symmetries and particle filling numbers. In this work, we introduce and provide physical arguments for a new class of LSM-type theorems, where any symmetry-allowed SRE ground state must be a symmetry-protected topological (SPT) phase with robust gapless edge states, such as topological insulators and superconductors. The key ingredient is to replace the lattice translation symmetry in usual LSM theorems by the magnetic translation symmetry. These theorems provide new insights into realistic models and experimental realizations of SPT phases in interacting bosons and fermions.</div></div>","PeriodicalId":8249,"journal":{"name":"Annals of Physics","volume":"470 ","pages":"Article 169806"},"PeriodicalIF":3.0,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142314690","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-21DOI: 10.1016/j.aop.2024.169808
S.A. Kadam, L.K. Duchaniya, B. Mishra
In this paper, we have outlined the development of an autonomous dynamical system within a general scalar-tensor gravity framework. This framework encompasses the overall structure of the non-minimally coupled scalar field functions for both the torsion scalar () and the boundary term (). We have examined three well-motivated forms of potential functions and constrained the model parameters through dynamical system analysis. This analysis has played a crucial role in identifying cosmologically viable models. We have analysed the behaviour of dynamical parameters such as equation-of-state parameters, as well all the standard density parameters for radiation, matter, and dark energy to assess their compatibility with current observational data. The phase space diagrams are presented to support the stability conditions of the corresponding critical points. The Universe is apparent in its late-time cosmic acceleration phase via the dark energy-dominated critical points. Additionally, we compare our findings with the most prevailing CDM model. The outcomes are further inspected using the cosmological data sets of Supernovae Ia and the Hubble rate .
在本文中,我们概述了在一般标量张量引力框架内开发自主动力系统的过程。该框架包括扭转标量(T)和边界项(B)的非最小耦合标量场函数的整体结构。我们研究了三种动机良好的势函数形式,并通过动力系统分析对模型参数进行了约束。这种分析在确定宇宙学上可行的模型方面发挥了至关重要的作用。我们分析了动力学参数(如状态方程参数)的行为,以及辐射、物质和暗能量的所有标准密度参数,以评估它们与当前观测数据的兼容性。我们给出了相空间图,以支持相应临界点的稳定条件。通过暗能量主导的临界点,宇宙显然处于晚期宇宙加速阶段。此外,我们还将我们的发现与最流行的ΛCDM模型进行了比较。我们还利用超新星 Ia 和哈勃速率 H(z) 的宇宙学数据集进一步检验了研究结果。
{"title":"Teleparallel gravity and quintessence: The role of nonminimal boundary couplings","authors":"S.A. Kadam, L.K. Duchaniya, B. Mishra","doi":"10.1016/j.aop.2024.169808","DOIUrl":"10.1016/j.aop.2024.169808","url":null,"abstract":"<div><div>In this paper, we have outlined the development of an autonomous dynamical system within a general scalar-tensor gravity framework. This framework encompasses the overall structure of the non-minimally coupled scalar field functions for both the torsion scalar (<span><math><mi>T</mi></math></span>) and the boundary term (<span><math><mi>B</mi></math></span>). We have examined three well-motivated forms of potential functions and constrained the model parameters through dynamical system analysis. This analysis has played a crucial role in identifying cosmologically viable models. We have analysed the behaviour of dynamical parameters such as equation-of-state parameters, as well all the standard density parameters for radiation, matter, and dark energy to assess their compatibility with current observational data. The phase space diagrams are presented to support the stability conditions of the corresponding critical points. The Universe is apparent in its late-time cosmic acceleration phase via the dark energy-dominated critical points. Additionally, we compare our findings with the most prevailing <span><math><mi>Λ</mi></math></span>CDM model. The outcomes are further inspected using the cosmological data sets of Supernovae Ia and the Hubble rate <span><math><mrow><mi>H</mi><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow></mrow></math></span>.</div></div>","PeriodicalId":8249,"journal":{"name":"Annals of Physics","volume":"470 ","pages":"Article 169808"},"PeriodicalIF":3.0,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142319816","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-19DOI: 10.1016/j.aop.2024.169802
K.K. Nandi , R.N. Izmailov , R. Kh. Karimov , A.A. Potapov
Inspired by the string theory, the braneworld picture introduces extra dimensions beyond the four that may have observable non-trivial effects in short distance (strong field) gravity experiments. A case in point is the Randall–Sundrum braneworld picture that projects the bulk Weyl tensor onto the brane providing a stress tensor in the effective Einstein field equations on the brane. Dadhich, Maartens, Papadopoulos and Rezania (DMPR) derived an exact braneworld black hole solution of the brane vacuum field equations. The solution formally resembles that of Reissner–Nordström but is physically different from it since the ”tidal charge” in the solution is not the electric charge but an imprint from the fifth dimension allowing both signs in the power law modification to the Schwarzschild metric . The corresponding black holes are designated as DMPR. We study here the effect of on strong field lensing observables and compare in the eikonal limit the ring down quasinormal mode (QNM) frequencies of DMPR with those of DMPR+ , the two variants of tidal charge modified Schwarzschild black hole (). It turns out that the tidal charge can significantly modify the Schwarzschild lensing observables and QNM frequencies. In particular, we find that the Pretorius–Khurana critical exponent of circular null orbits in the DMPR black hole has a lower value than that for the Schwarzschild black hole, which indicates a stronger Lyapunov instability suggesting that the accretion disks of DMPR black holes would appear brighter. The case of the SgrA* black hole is considered for a possible constraint on from the EHT observation of its shadow size.
{"title":"Observable strong field effects of extra spacetime dimension in the braneworld black hole","authors":"K.K. Nandi , R.N. Izmailov , R. Kh. Karimov , A.A. Potapov","doi":"10.1016/j.aop.2024.169802","DOIUrl":"10.1016/j.aop.2024.169802","url":null,"abstract":"<div><p>Inspired by the string theory, the braneworld picture introduces extra dimensions beyond the four that may have observable non-trivial effects in short distance (strong field) gravity experiments. A case in point is the Randall–Sundrum braneworld picture that projects the <span><math><mrow><mn>5</mn><mi>d</mi></mrow></math></span> bulk Weyl tensor onto the <span><math><mrow><mn>3</mn><mi>d</mi></mrow></math></span> brane providing a stress tensor in the effective Einstein field equations on the brane. Dadhich, Maartens, Papadopoulos and Rezania (DMPR) derived an exact braneworld black hole solution of the brane vacuum field equations. The solution formally resembles that of Reissner–Nordström but is physically different from it since the ”tidal charge” <span><math><mi>Υ</mi></math></span> in the solution is not the electric charge but an imprint from the fifth dimension allowing both signs in the power law modification <span><math><mrow><mo>±</mo><mfrac><mrow><msup><mrow><mi>Υ</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow><mrow><msup><mrow><mi>r</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfrac></mrow></math></span> to the Schwarzschild metric <span><math><mfenced><mrow><mi>Υ</mi><mo>=</mo><mn>0</mn></mrow></mfenced></math></span>. The corresponding black holes are designated as DMPR<span><math><mo>±</mo></math></span>. We study here the effect of <span><math><mi>Υ</mi></math></span> on strong field lensing observables and compare in the eikonal limit the ring down quasinormal mode (QNM) frequencies of DMPR<span><math><mo>−</mo></math></span> with those of DMPR+ , the two variants of tidal charge modified Schwarzschild black hole (<span><math><mrow><mi>Υ</mi><mo>=</mo><mn>0</mn></mrow></math></span>). It turns out that the tidal charge can significantly modify the Schwarzschild lensing observables and QNM frequencies. In particular, we find that the Pretorius–Khurana critical exponent <span><math><mi>γ</mi></math></span> of circular null orbits in the DMPR<span><math><mo>−</mo></math></span> black hole has a lower value than that for the Schwarzschild black hole, which indicates a stronger Lyapunov instability suggesting that the accretion disks of DMPR<span><math><mo>−</mo></math></span> black holes would appear brighter. The case of the SgrA* black hole is considered for a possible constraint on <span><math><mi>Υ</mi></math></span> from the EHT observation of its shadow size.</p></div>","PeriodicalId":8249,"journal":{"name":"Annals of Physics","volume":"470 ","pages":"Article 169802"},"PeriodicalIF":3.0,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142274156","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-17DOI: 10.1016/j.aop.2024.169807
Subhrajyoti Roy , Rhombik Roy , Arnaldo Gammal , Barnali Chakrabarti , Budhaditya Chatterjee
We explore the ground states of strongly interacting bosons in the vanishingly small and weak lattices using the multiconfiguration time-dependent Hartree method for bosons (MCTDHB) which calculate numerically exact many-body wave function. Two new many-body phases: fragmented or quasi superfluid (QSF) and incomplete fragmented Mott or quasi Mott insulator (QMI) are emerged due to the strong interplay between short-range contact interaction and lattice depth. Fragmentation is utilized as a figure of merit to distinguish these two new phases. We utilize the eigenvalues of the reduced one-body density matrix and define an order parameter that characterizes the pathway from a very weak lattice to a deep lattice. We provide a detailed investigation through the measures of one- and two-body correlations and information entropy. We find that the structures in one- and two-body coherence are good markers to understand the gradual built-up of intra-well correlation and decay of inter-well correlation with increase in lattice depth. For the dipolar interaction, the many-body features become more distinct and true Mott state can appear even in a shallow lattice. Whereas, for incommensurate fraction of particles, incomplete localization happens that exhibits distinct features in the measure of two-body coherence.
{"title":"Phases and coherence of strongly interacting finite bosonic systems in shallow optical lattice","authors":"Subhrajyoti Roy , Rhombik Roy , Arnaldo Gammal , Barnali Chakrabarti , Budhaditya Chatterjee","doi":"10.1016/j.aop.2024.169807","DOIUrl":"10.1016/j.aop.2024.169807","url":null,"abstract":"<div><div>We explore the ground states of strongly interacting bosons in the vanishingly small and weak lattices using the multiconfiguration time-dependent Hartree method for bosons (MCTDHB) which calculate numerically exact many-body wave function. Two new many-body phases: fragmented or quasi superfluid (QSF) and incomplete fragmented Mott or quasi Mott insulator (QMI) are emerged due to the strong interplay between short-range contact interaction and lattice depth. Fragmentation is utilized as a figure of merit to distinguish these two new phases. We utilize the eigenvalues of the reduced one-body density matrix and define an order parameter that characterizes the pathway from a very weak lattice to a deep lattice. We provide a detailed investigation through the measures of one- and two-body correlations and information entropy. We find that the structures in one- and two-body coherence are good markers to understand the gradual built-up of intra-well correlation and decay of inter-well correlation with increase in lattice depth. For the dipolar interaction, the many-body features become more distinct and true Mott state can appear even in a shallow lattice. Whereas, for incommensurate fraction of particles, incomplete localization happens that exhibits distinct features in the measure of two-body coherence.</div></div>","PeriodicalId":8249,"journal":{"name":"Annals of Physics","volume":"470 ","pages":"Article 169807"},"PeriodicalIF":3.0,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142314689","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}