首页 > 最新文献

Archives of Pharmacal Research最新文献

英文 中文
Paritaprevir ameliorates experimental acute lung injury in vitro and in vivo Paritaprevir在体外和体内改善实验性急性肺损伤
IF 6.7 3区 医学 Q1 Chemistry Pub Date : 2023-06-12 DOI: 10.1007/s12272-023-01451-4
Rui Ren, Xin Wang, Zehui Xu, Wanglin Jiang

Paritaprevir is a potent inhibitor of the NS3/4A protease used to treat chronic hepatitis C virus infection. However, its therapeutic effect on acute lung injury (ALI) remains to be elucidated. In this study, we investigated the effect of paritaprevir on a lipopolysaccharide (LPS)-induced two-hit rat ALI model. The anti-ALI mechanism of paritaprevir was also studied in human pulmonary microvascular endothelial (HM) cells following LPS-induced injury in vitro. Administration of 30 mg/kg paritaprevir for 3 days protected rats from LPS-induced ALI, as reflected by the changes in the lung coefficient (from 0.75 to 0.64) and lung pathology scores (from 5.17 to 5.20). Furthermore, the levels of the protective adhesion protein VE-cadherin and tight junction protein claudin-5 increased, and the cytoplasmic p-FOX-O1 and nuclear β-catenin and FOX-O1 levels decreased. Similar effects were observed in vitro with LPS-treated HM cells, including decreased nuclear β-catenin and FOX-O1 levels and higher VE-cadherin and claudin-5 levels. Moreover, β-catenin inhibition resulted in higher p-FOX-O1 levels in the cytoplasm. These results suggested that paritaprevir could alleviate experimental ALI via the β-catenin/p-Akt/ FOX-O1 signaling pathway.

Paritarevir是NS3/4A蛋白酶的有效抑制剂,用于治疗慢性丙型肝炎病毒感染。然而,其对急性肺损伤(ALI)的治疗作用仍有待阐明。在本研究中,我们研究了帕利他韦对脂多糖(LPS)诱导的两次撞击大鼠ALI模型的影响。本文还研究了帕利他韦在体外LPS诱导的人肺微血管内皮细胞损伤后的抗ALI机制。30 mg/kg帕利他韦连续3天可保护大鼠免受LPS诱导的ALI,肺系数(从0.75到0.64)和肺病理评分(从5.17到5.20)的变化反映了这一点。此外,保护性粘附蛋白VE钙粘蛋白和紧密连接蛋白claudin-5的水平增加,β-连环蛋白和FOX-O1水平下降。LPS处理的HM细胞在体外也观察到类似的作用,包括降低核β-连环蛋白和FOX-O1水平,以及升高VE钙粘蛋白和claudin-5水平。此外,β-连环蛋白抑制导致细胞质中p-FOX-O1水平升高。这些结果表明,帕利他韦可以通过β-catenin/p-Akt/FOX-O1信号通路减轻实验性ALI。
{"title":"Paritaprevir ameliorates experimental acute lung injury in vitro and in vivo","authors":"Rui Ren,&nbsp;Xin Wang,&nbsp;Zehui Xu,&nbsp;Wanglin Jiang","doi":"10.1007/s12272-023-01451-4","DOIUrl":"10.1007/s12272-023-01451-4","url":null,"abstract":"<div><p>Paritaprevir is a potent inhibitor of the NS3/4A protease used to treat chronic hepatitis C virus infection. However, its therapeutic effect on acute lung injury (ALI) remains to be elucidated. In this study, we investigated the effect of paritaprevir on a lipopolysaccharide (LPS)-induced two-hit rat ALI model. The anti-ALI mechanism of paritaprevir was also studied in human pulmonary microvascular endothelial (HM) cells following LPS-induced injury in <i>vitro</i>. Administration of 30 mg/kg paritaprevir for 3 days protected rats from LPS-induced ALI, as reflected by the changes in the lung coefficient (from 0.75 to 0.64) and lung pathology scores (from 5.17 to 5.20). Furthermore, the levels of the protective adhesion protein VE-cadherin and tight junction protein claudin-5 increased, and the cytoplasmic p-FOX-O1 and nuclear β-catenin and FOX-O1 levels decreased. Similar effects were observed in vitro with LPS-treated HM cells, including decreased nuclear β-catenin and FOX-O1 levels and higher VE-cadherin and claudin-5 levels. Moreover, β-catenin inhibition resulted in higher p-FOX-O1 levels in the cytoplasm. These results suggested that paritaprevir could alleviate experimental ALI via the β-catenin/p-Akt/ FOX-O1 signaling pathway.</p></div>","PeriodicalId":8287,"journal":{"name":"Archives of Pharmacal Research","volume":null,"pages":null},"PeriodicalIF":6.7,"publicationDate":"2023-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12272-023-01451-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9797082","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Harnessing deep learning into hidden mutations of neurological disorders for therapeutic challenges 利用深度学习研究神经系统疾病的隐藏突变,以应对治疗挑战
IF 6.7 3区 医学 Q1 Chemistry Pub Date : 2023-06-01 DOI: 10.1007/s12272-023-01450-5
Sumin Yang, Sung-Hyun Kim, Mingon Kang, Jae-Yeol Joo

The relevant study of transcriptome-wide variations and neurological disorders in the evolved field of genomic data science is on the rise. Deep learning has been highlighted utilizing algorithms on massive amounts of data in a human-like manner, and is expected to predict the dependency or druggability of hidden mutations within the genome. Enormous mutational variants in coding and noncoding transcripts have been discovered along the genome by far, despite of the fine-tuned genetic proofreading machinery. These variants could be capable of inducing various pathological conditions, including neurological disorders, which require lifelong care. Several limitations and questions emerge, including the use of conventional processes via limited patient-driven sequence acquisitions and decoding-based inferences as well as how rare variants can be deduced as a population-specific etiology. These puzzles require harnessing of advanced systems for precise disease prediction, drug development and drug applications. In this review, we summarize the pathophysiological discoveries of pathogenic variants in both coding and noncoding transcripts in neurological disorders, and the current advantage of deep learning applications. In addition, we discuss the challenges encountered and how to outperform them with advancing interpretation.

在基因组数据科学的发展领域中,转录组范围变异和神经系统疾病的相关研究正在兴起。深度学习以类似人类的方式利用算法处理大量数据,并有望预测基因组中隐藏突变的依赖性或可药物性。尽管有精细的基因校对机制,但到目前为止,在基因组中已经发现了大量编码和非编码转录本的突变变异。这些变异可能会诱发各种病理状况,包括需要终身护理的神经系统疾病。出现了一些限制和问题,包括通过有限的患者驱动序列获取和基于解码的推断使用常规过程,以及如何将罕见变异推断为人群特异性病因。这些难题需要利用先进的系统进行精确的疾病预测、药物开发和药物应用。在这篇综述中,我们总结了神经系统疾病中编码和非编码转录物致病性变异的病理生理学发现,以及目前深度学习应用的优势。此外,我们还讨论了所遇到的挑战以及如何通过先进的解释来超越它们。
{"title":"Harnessing deep learning into hidden mutations of neurological disorders for therapeutic challenges","authors":"Sumin Yang,&nbsp;Sung-Hyun Kim,&nbsp;Mingon Kang,&nbsp;Jae-Yeol Joo","doi":"10.1007/s12272-023-01450-5","DOIUrl":"10.1007/s12272-023-01450-5","url":null,"abstract":"<div><p>The relevant study of transcriptome-wide variations and neurological disorders in the evolved field of genomic data science is on the rise. Deep learning has been highlighted utilizing algorithms on massive amounts of data in a human-like manner, and is expected to predict the dependency or druggability of hidden mutations within the genome. Enormous mutational variants in coding and noncoding transcripts have been discovered along the genome by far, despite of the fine-tuned genetic proofreading machinery. These variants could be capable of inducing various pathological conditions, including neurological disorders, which require lifelong care. Several limitations and questions emerge, including the use of conventional processes via limited patient-driven sequence acquisitions and decoding-based inferences as well as how rare variants can be deduced as a population-specific etiology. These puzzles require harnessing of advanced systems for precise disease prediction, drug development and drug applications. In this review, we summarize the pathophysiological discoveries of pathogenic variants in both coding and noncoding transcripts in neurological disorders, and the current advantage of deep learning applications. In addition, we discuss the challenges encountered and how to outperform them with advancing interpretation.</p></div>","PeriodicalId":8287,"journal":{"name":"Archives of Pharmacal Research","volume":null,"pages":null},"PeriodicalIF":6.7,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9785968","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Recent advances in GPR35 pharmacology; 5-HIAA serotonin metabolite becomes a ligand GPR35的药理研究进展5-HIAA 5-羟色胺代谢物成为配体
IF 6.7 3区 医学 Q1 Chemistry Pub Date : 2023-05-25 DOI: 10.1007/s12272-023-01449-y
Dong-Soon Im

GPR35, an orphan receptor, has been waiting for its ligand since its cloning in 1998. Many endogenous and exogenous molecules have been suggested to act as agonists of GPR35 including kynurenic acid, zaprinast, lysophosphatidic acid, and CXCL17. However, complex and controversial responses to ligands among species have become a huge hurdle in the development of therapeutics in addition to the orphan state. Recently, a serotonin metabolite, 5-hydroxyindoleacetic acid (5-HIAA), is reported to be a high potency ligand for GPR35 by investigating the increased expression of GPR35 in neutrophils. In addition, a transgenic knock-in mouse line is developed, in which GPR35 was replaced with a human ortholog, making it possible not only to overcome the different selectivity of agonists among species but also to conduct therapeutic experiments on human GPR35 in mouse models. In the present article, I review the recent advances and prospective therapeutic directions in GPR35 research. Especially, I’d like to draw attention of readers to the finding of 5-HIAA as a ligand of GPR35 and lead to apply the 5-HIAA and human GPR35 knock-in mice to their research fields in a variety of pathophysiological conditions.

GPR35是一种孤儿受体,自1998年克隆以来一直在等待它的配体。许多内源性和外源性分子被认为是GPR35的激动剂,包括犬尿酸、扎普利司特、溶血磷脂酸和CXCL17。然而,除了孤儿状态外,物种之间对配体的复杂和有争议的反应已经成为治疗药物发展的巨大障碍。最近,一种血清素代谢物5-羟基吲哚乙酸(5-HIAA)通过研究GPR35在中性粒细胞中的表达增加,被报道为GPR35的高效配体。此外,我们开发了一种转基因敲入小鼠系,其中GPR35被人类同源物取代,不仅可以克服激动剂在物种之间的不同选择性,而且可以在小鼠模型中对人类GPR35进行治疗实验。本文就GPR35的研究进展及未来治疗方向作一综述。特别想提请读者注意的是,发现5-HIAA作为GPR35的配体,并导致5-HIAA和人GPR35敲入小鼠在多种病理生理条件下应用于各自的研究领域。
{"title":"Recent advances in GPR35 pharmacology; 5-HIAA serotonin metabolite becomes a ligand","authors":"Dong-Soon Im","doi":"10.1007/s12272-023-01449-y","DOIUrl":"10.1007/s12272-023-01449-y","url":null,"abstract":"<div><p>GPR35, an orphan receptor, has been waiting for its ligand since its cloning in 1998. Many endogenous and exogenous molecules have been suggested to act as agonists of GPR35 including kynurenic acid, zaprinast, lysophosphatidic acid, and CXCL17. However, complex and controversial responses to ligands among species have become a huge hurdle in the development of therapeutics in addition to the orphan state. Recently, a serotonin metabolite, 5-hydroxyindoleacetic acid (5-HIAA), is reported to be a high potency ligand for GPR35 by investigating the increased expression of GPR35 in neutrophils. In addition, a transgenic knock-in mouse line is developed, in which GPR35 was replaced with a human ortholog, making it possible not only to overcome the different selectivity of agonists among species but also to conduct therapeutic experiments on human GPR35 in mouse models. In the present article, I review the recent advances and prospective therapeutic directions in GPR35 research. Especially, I’d like to draw attention of readers to the finding of 5-HIAA as a ligand of GPR35 and lead to apply the 5-HIAA and human GPR35 knock-in mice to their research fields in a variety of pathophysiological conditions.</p></div>","PeriodicalId":8287,"journal":{"name":"Archives of Pharmacal Research","volume":null,"pages":null},"PeriodicalIF":6.7,"publicationDate":"2023-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9785380","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Effects of CYP2C9 and CYP2C19 genetic polymorphisms on the pharmacokinetics and pharmacodynamics of gliclazide in healthy subjects CYP2C9和CYP2C19基因多态性对格列齐特在健康人体内药代动力学和药效学的影响
IF 6.7 3区 医学 Q1 Chemistry Pub Date : 2023-04-25 DOI: 10.1007/s12272-023-01448-z
Pureum Kang, Chang-Keun Cho, Choon-Gon Jang, Seok-Yong Lee, Yun Jeong Lee, Chang-Ik Choi, Jung-Woo Bae

Gliclazide metabolism is mediated by genetically polymorphic CYP2C9 and CYP2C19 enzymes. We investigated the effects of CYP2C9 and CYP2C19 genetic polymorphisms on the pharmacokinetics and pharmacodynamics of gliclazide. Twenty-seven Korean healthy volunteers were administered a single oral dose of gliclazide 80 mg. The plasma concentration of gliclazide was quantified for the pharmacokinetic analysis and plasma concentrations of glucose and insulin were measured as pharmacodynamic parameters. The pharmacokinetics of gliclazide showed a significant difference according to the number of defective alleles of combined CYP2C9 and CYP2C19. The two defective alleles group (group 3) and one defective allele group (group 2) showed 2.34- and 1.46-fold higher AUC0–∞ (P < 0.001), and 57.1 and 32.3% lower CL/F (P < 0.001), compared to those of the no defective allele group (group 1), respectively. The CYP2C9IM–CYP2C19IM group had AUC0–∞ increase of 1.49-fold (P < 0.05) and CL/F decrease by 29.9% (P < 0.01), compared with the CYP2C9 Normal Metabolizer (CYP2C9NM)–CYP2C19IM group. The CYP2C9NM–CYP2C19PM group and CYP2C9NM–CYP2C19IM group showed 2.41- and 1.51-fold higher AUC0–∞ (P < 0.001), and 59.6 and 35.4% lower CL/F (P < 0.001), compared to those of the CYP2C9NM–CYP2C19NM group, respectively. The results represented that CYP2C9 and CYP2C19 genetic polymorphisms significantly affected the pharmacokinetics of gliclazide. Although the genetic polymorphism of CYP2C19 had a greater effect on the pharmacokinetics of gliclazide, the genetic polymorphism of CYP2C9 also had a significant effect. On the other hand, plasma glucose and insulin responses to gliclazide were not significantly affected by the CYP2C9–CYP2C19 genotypes, requiring further well-controlled studies with long-term dosing of gliclazide in diabetic patients.

格列齐特代谢是由基因多态性CYP2C9和CYP2C19酶介导的。我们研究了CYP2C9和CYP2C19基因多态性对格列齐特药代动力学和药效学的影响。27名韩国健康志愿者口服单剂量格列齐特80毫克。定量测定血浆格列齐特浓度进行药代动力学分析,测定血浆葡萄糖和胰岛素浓度作为药效学参数。根据CYP2C9和CYP2C19联合缺陷等位基因的数量,格列齐特的药代动力学有显著差异。2个缺陷等位基因组(3组)和1个缺陷等位基因组(2组)的AUC0 -∞分别比无缺陷等位基因组(1组)高2.34倍和1.46倍(P < 0.001), CL/F分别比无缺陷等位基因组(1组)低57.1倍和32.3% (P < 0.001)。与CYP2C9正常代谢产物(CYP2C9NM) - cyp2c19im组相比,CYP2C9IM-CYP2C19IM组AUC0 -∞升高1.49倍(P < 0.05), CL/F降低29.9% (P < 0.01)。CYP2C9NM-CYP2C19PM组和CYP2C9NM-CYP2C19IM组AUC0 -∞分别比CYP2C9NM-CYP2C19NM组高2.41倍和1.51倍(P < 0.001), CL/F分别比CYP2C9NM-CYP2C19NM组低59.6%和35.4% (P < 0.001)。结果表明,CYP2C9和CYP2C19基因多态性显著影响格列齐特的药代动力学。虽然CYP2C19基因多态性对格列齐特的药代动力学影响较大,但CYP2C9基因多态性也有显著影响。另一方面,血浆葡萄糖和胰岛素对格列齐特的反应不受CYP2C9-CYP2C19基因型的显著影响,需要进一步对糖尿病患者长期给药格列齐特进行良好的对照研究。
{"title":"Effects of CYP2C9 and CYP2C19 genetic polymorphisms on the pharmacokinetics and pharmacodynamics of gliclazide in healthy subjects","authors":"Pureum Kang,&nbsp;Chang-Keun Cho,&nbsp;Choon-Gon Jang,&nbsp;Seok-Yong Lee,&nbsp;Yun Jeong Lee,&nbsp;Chang-Ik Choi,&nbsp;Jung-Woo Bae","doi":"10.1007/s12272-023-01448-z","DOIUrl":"10.1007/s12272-023-01448-z","url":null,"abstract":"<div><p>Gliclazide metabolism is mediated by genetically polymorphic CYP2C9 and CYP2C19 enzymes. We investigated the effects of <i>CYP2C9</i> and <i>CYP2C19</i> genetic polymorphisms on the pharmacokinetics and pharmacodynamics of gliclazide. Twenty-seven Korean healthy volunteers were administered a single oral dose of gliclazide 80 mg. The plasma concentration of gliclazide was quantified for the pharmacokinetic analysis and plasma concentrations of glucose and insulin were measured as pharmacodynamic parameters. The pharmacokinetics of gliclazide showed a significant difference according to the number of defective alleles of combined <i>CYP2C9</i> and <i>CYP2C19</i>. The two defective alleles group (group 3) and one defective allele group (group 2) showed 2.34- and 1.46-fold higher AUC<sub>0–∞</sub> (<i>P</i> &lt; 0.001), and 57.1 and 32.3% lower CL/F (<i>P</i> &lt; 0.001), compared to those of the no defective allele group (group 1), respectively. The <i>CYP2C9IM–</i><i>CYP2C19IM</i> group had AUC<sub>0–∞</sub> increase of 1.49-fold (<i>P</i> &lt; 0.05) and CL/F decrease by 29.9% (<i>P</i> &lt; 0.01), compared with the <i>CYP2C9 Normal Metabolizer</i> (<i>CYP2C9NM</i>)–<i>CYP2C19IM</i> group. The <i>CYP2C9NM–CYP2C19PM</i> group and <i>CYP2C9NM–CYP2C19IM</i> group showed 2.41- and 1.51-fold higher AUC<sub>0–∞</sub> (<i>P</i> &lt; 0.001), and 59.6 and 35.4% lower CL/F (<i>P</i> &lt; 0.001), compared to those of the <i>CYP2C9NM–CYP2C19NM</i> group, respectively. The results represented that <i>CYP2C9</i> and <i>CYP2C19</i> genetic polymorphisms significantly affected the pharmacokinetics of gliclazide. Although the genetic polymorphism of <i>CYP2C19</i> had a greater effect on the pharmacokinetics of gliclazide, the genetic polymorphism of <i>CYP2C9</i> also had a significant effect. On the other hand, plasma glucose and insulin responses to gliclazide were not significantly affected by the <i>CYP2C9–CYP2C19</i> genotypes, requiring further well-controlled studies with long-term dosing of gliclazide in diabetic patients.\u0000</p></div>","PeriodicalId":8287,"journal":{"name":"Archives of Pharmacal Research","volume":null,"pages":null},"PeriodicalIF":6.7,"publicationDate":"2023-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12272-023-01448-z.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9423494","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Antibody drug conjugates as targeted cancer therapy: past development, present challenges and future opportunities 抗体药物偶联物作为靶向癌症治疗:过去的发展,目前的挑战和未来的机遇
IF 6.7 3区 医学 Q1 Chemistry Pub Date : 2023-04-18 DOI: 10.1007/s12272-023-01447-0
Ritwik Maiti, Bhumika Patel, Nrupesh Patel, Mehul Patel, Alkesh Patel, Nirav Dhanesha

Antibody drug conjugates (ADCs) are promising cancer therapeutics with minimal toxicity as compared to small cytotoxic molecules alone and have shown the evidence to overcome resistance against tumor and prevent relapse of cancer. The ADC has a potential to change the paradigm of cancer chemotherapeutic treatment. At present, 13 ADCs have been approved by USFDA for the treatment of various types of solid tumor and haematological malignancies. This review covers the three structural components of an ADC—antibody, linker, and cytotoxic payload—along with their respective structure, chemistry, mechanism of action, and influence on the activity of ADCs. It covers comprehensive insight on structural role of linker towards efficacy, stability & toxicity of ADCs, different types of linkers & various conjugation techniques. A brief overview of various analytical techniques used for the qualitative and quantitative analysis of ADC is summarized. The current challenges of ADCs, such as heterogeneity, bystander effect, protein aggregation, inefficient internalization or poor penetration into tumor cells, narrow therapeutic index, emergence of resistance, etc., are outlined along with recent advances and future opportunities for the development of more promising next-generation ADCs.

抗体药物偶联物(adc)是一种很有前景的癌症治疗药物,与单独的小细胞毒性分子相比,它的毒性很小,并且已经显示出克服肿瘤耐药性和防止癌症复发的证据。ADC有可能改变癌症化疗治疗的模式。目前,已有13种adc被美国fda批准用于治疗各种类型的实体瘤和血液系统恶性肿瘤。本文综述了adc的三种结构成分——抗体、连接体和细胞毒性有效载荷,以及它们各自的结构、化学、作用机制和对adc活性的影响。它涵盖了对连接器在功效,稳定性和amp方面的结构作用的全面见解;adc、不同类型连接器的毒性;各种共轭技术。简要概述了用于ADC定性和定量分析的各种分析技术。本文概述了adc目前面临的挑战,如异质性、旁观者效应、蛋白质聚集、肿瘤细胞内化效率低或渗透能力差、治疗指数窄、耐药性的出现等,以及更有前景的下一代adc的最新进展和未来发展机遇。
{"title":"Antibody drug conjugates as targeted cancer therapy: past development, present challenges and future opportunities","authors":"Ritwik Maiti,&nbsp;Bhumika Patel,&nbsp;Nrupesh Patel,&nbsp;Mehul Patel,&nbsp;Alkesh Patel,&nbsp;Nirav Dhanesha","doi":"10.1007/s12272-023-01447-0","DOIUrl":"10.1007/s12272-023-01447-0","url":null,"abstract":"<div><p>Antibody drug conjugates (ADCs) are promising cancer therapeutics with minimal toxicity as compared to small cytotoxic molecules alone and have shown the evidence to overcome resistance against tumor and prevent relapse of cancer. The ADC has a potential to change the paradigm of cancer chemotherapeutic treatment. At present, 13 ADCs have been approved by USFDA for the treatment of various types of solid tumor and haematological malignancies. This review covers the three structural components of an ADC—antibody, linker, and cytotoxic payload—along with their respective structure, chemistry, mechanism of action, and influence on the activity of ADCs. It covers comprehensive insight on structural role of linker towards efficacy, stability &amp; toxicity of ADCs, different types of linkers &amp; various conjugation techniques. A brief overview of various analytical techniques used for the qualitative and quantitative analysis of ADC is summarized. The current challenges of ADCs, such as heterogeneity, bystander effect, protein aggregation, inefficient internalization or poor penetration into tumor cells, narrow therapeutic index, emergence of resistance, etc., are outlined along with recent advances and future opportunities for the development of more promising next-generation ADCs.</p></div>","PeriodicalId":8287,"journal":{"name":"Archives of Pharmacal Research","volume":null,"pages":null},"PeriodicalIF":6.7,"publicationDate":"2023-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9772168","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Phytochemistry and pharmacology of natural prenylated flavonoids 天然烯丙基黄酮的植物化学和药理学研究
IF 6.7 3区 医学 Q1 Chemistry Pub Date : 2023-04-14 DOI: 10.1007/s12272-023-01443-4
Hua-Wei Lv, Qiao-Liang Wang, Meng Luo, Meng-Di Zhu, Hui-Min Liang, Wen-Jing Li, Hai Cai, Zhong-Bo Zhou, Hong Wang, Sheng-Qiang Tong, Xing-Nuo Li

Prenylated flavonoids are a special kind of flavonoid derivative possessing one or more prenyl groups in the parent nucleus of the flavonoid. The presence of the prenyl side chain enriched the structural diversity of flavonoids and increased their bioactivity and bioavailability. Prenylated flavonoids show a wide range of biological activities, such as anti-cancer, anti-inflammatory, neuroprotective, anti-diabetic, anti-obesity, cardioprotective effects, and anti-osteoclastogenic activities. In recent years, many compounds with significant activity have been discovered with the continuous excavation of the medicinal value of prenylated flavonoids, and have attracted the extensive attention of pharmacologists. This review summarizes recent progress on research into natural active prenylated flavonoids to promote new discoveries of their medicinal value.

烯丙基化类黄酮是一类特殊的类黄酮衍生物,在类黄酮的母核中含有一个或多个烯丙基。烯丙基侧链的存在丰富了黄酮类化合物的结构多样性,提高了其生物活性和生物利用度。烯丙基黄酮类化合物具有广泛的生物活性,如抗癌、抗炎、神经保护、抗糖尿病、抗肥胖、心脏保护和抗破骨细胞活性等。近年来,随着对烯酰化类黄酮药用价值的不断挖掘,发现了许多具有显著活性的化合物,引起了药理学家的广泛关注。本文综述了近年来天然活性戊烯酸类黄酮的研究进展,以期促进其药用价值的新发现。
{"title":"Phytochemistry and pharmacology of natural prenylated flavonoids","authors":"Hua-Wei Lv,&nbsp;Qiao-Liang Wang,&nbsp;Meng Luo,&nbsp;Meng-Di Zhu,&nbsp;Hui-Min Liang,&nbsp;Wen-Jing Li,&nbsp;Hai Cai,&nbsp;Zhong-Bo Zhou,&nbsp;Hong Wang,&nbsp;Sheng-Qiang Tong,&nbsp;Xing-Nuo Li","doi":"10.1007/s12272-023-01443-4","DOIUrl":"10.1007/s12272-023-01443-4","url":null,"abstract":"<div><p>Prenylated flavonoids are a special kind of flavonoid derivative possessing one or more prenyl groups in the parent nucleus of the flavonoid. The presence of the prenyl side chain enriched the structural diversity of flavonoids and increased their bioactivity and bioavailability. Prenylated flavonoids show a wide range of biological activities, such as anti-cancer, anti-inflammatory, neuroprotective, anti-diabetic, anti-obesity, cardioprotective effects, and anti-osteoclastogenic activities. In recent years, many compounds with significant activity have been discovered with the continuous excavation of the medicinal value of prenylated flavonoids, and have attracted the extensive attention of pharmacologists. This review summarizes recent progress on research into natural active prenylated flavonoids to promote new discoveries of their medicinal value.</p></div>","PeriodicalId":8287,"journal":{"name":"Archives of Pharmacal Research","volume":null,"pages":null},"PeriodicalIF":6.7,"publicationDate":"2023-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12272-023-01443-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9348366","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Aspergillus co-cultures: A recent insight into their secondary metabolites and microbial interactions 曲霉共培养:对其次生代谢物和微生物相互作用的最新见解
IF 6.7 3区 医学 Q1 Chemistry Pub Date : 2023-04-10 DOI: 10.1007/s12272-023-01442-5
Abdullah Alanzi, Esraa A. Elhawary, Mohamed L. Ashour, Ashaimaa Y. Moussa

There is an urgent need for novel antibiotics to combat emerging resistant microbial strains. One of the most pressing resources is Aspergillus microbial cocultures. The genome of Aspergillus species comprises a far larger number of novel gene clusters than previously expected, and novel strategies and approaches are essential to exploit this potential source of new drugs and pharmacological agents. This is the first review consulting recent developments and chemical diversity of Aspergillus cocultures and highlighting its untapped richness. The analyzed data revealed that cocultivation of several Aspergillus species with other microorganisms, including bacteria, plants, and fungi, is a source of novel bioactive natural products. Various vital chemical skeleton leads were newly produced or augmented in Aspergillus cocultures, among which were taxol, cytochalasans, notamides, pentapeptides, silibinin, and allianthrones. The possibility of mycotoxin production or complete elimination in cocultivations was detected, which pave the way for better decontamination strategies. Most cocultures revealed a remarkable improvement in their antimicrobial or cytotoxic behavior due to their produced chemical patterns; for instance, weldone and asperterrin whose antitumor and antibacterial activities, respectively, were superior. Microbial cocultivation elicited the upregulation or production of specific metabolites whose importance and significance are yet to be revealed. With more than 155 compounds isolated from Aspergillus cocultures in the last 10 years, showing overproduction, reduction, or complete suppression under the optimized coculture circumstances, this study filled a gap for medicinal chemists searching for new lead sources or bioactive molecules as anticancer agents or antimicrobials.

迫切需要新的抗生素来对抗新出现的耐药微生物菌株。其中最紧迫的资源是曲霉微生物共培养。曲霉物种的基因组包含的新基因簇的数量比以前预期的要多得多,新的策略和方法对于开发这一潜在的新药和药理学制剂至关重要。这是第一次回顾了曲霉共培养物的最新发展和化学多样性,并强调了其未开发的丰富性。分析数据表明,几种曲霉与其他微生物(包括细菌、植物和真菌)共培养是新型生物活性天然产物的来源。在曲霉共培养过程中新产生或增加了多种重要的化学骨架引线,其中包括紫杉醇、细胞chalasans、notamides、五肽、水飞蓟宾和联胺。在共培养中检测到霉菌毒素产生或完全消除的可能性,这为更好的去污染策略铺平了道路。大多数共培养由于其产生的化学模式而显示出其抗菌或细胞毒性行为的显著改善;例如,weldone和asperterrin分别具有较好的抗肿瘤和抗菌活性。微生物共培养引起了特定代谢物的上调或产生,其重要性和意义尚未揭示。近10年来,从曲霉共培养中分离出的化合物超过155种,在优化的共培养环境下表现出过量生产、减少或完全抑制,填补了药物化学家寻找新的铅源或生物活性分子作为抗癌剂或抗菌剂的空白。
{"title":"Aspergillus co-cultures: A recent insight into their secondary metabolites and microbial interactions","authors":"Abdullah Alanzi,&nbsp;Esraa A. Elhawary,&nbsp;Mohamed L. Ashour,&nbsp;Ashaimaa Y. Moussa","doi":"10.1007/s12272-023-01442-5","DOIUrl":"10.1007/s12272-023-01442-5","url":null,"abstract":"<div><p>There is an urgent need for novel antibiotics to combat emerging resistant microbial strains. One of the most pressing resources is <i>Aspergillus</i> microbial cocultures. The genome of <i>Aspergillus</i> species comprises a far larger number of novel gene clusters than previously expected, and novel strategies and approaches are essential to exploit this potential source of new drugs and pharmacological agents. This is the first review consulting recent developments and chemical diversity of <i>Aspergillus</i> cocultures and highlighting its untapped richness. The analyzed data revealed that cocultivation of several <i>Aspergillus</i> species with other microorganisms, including bacteria, plants, and fungi, is a source of novel bioactive natural products. Various vital chemical skeleton leads were newly produced or augmented in <i>Aspergillus</i> cocultures, among which were taxol, cytochalasans, notamides, pentapeptides, silibinin, and allianthrones. The possibility of mycotoxin production or complete elimination in cocultivations was detected, which pave the way for better decontamination strategies. Most cocultures revealed a remarkable improvement in their antimicrobial or cytotoxic behavior due to their produced chemical patterns; for instance, weldone and asperterrin whose antitumor and antibacterial activities, respectively, were superior. Microbial cocultivation elicited the upregulation or production of specific metabolites whose importance and significance are yet to be revealed. With more than 155 compounds isolated from <i>Aspergillus</i> cocultures in the last 10 years, showing overproduction, reduction, or complete suppression under the optimized coculture circumstances, this study filled a gap for medicinal chemists searching for new lead sources or bioactive molecules as anticancer agents or antimicrobials.</p></div>","PeriodicalId":8287,"journal":{"name":"Archives of Pharmacal Research","volume":null,"pages":null},"PeriodicalIF":6.7,"publicationDate":"2023-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12272-023-01442-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9343520","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Metformin mitigates renal dysfunction in obese insulin-resistant rats via activation of the AMPK/PPARα pathway 二甲双胍通过激活AMPK/PPARα通路减轻肥胖胰岛素抵抗大鼠的肾功能障碍
IF 6.7 3区 医学 Q1 Chemistry Pub Date : 2023-03-26 DOI: 10.1007/s12272-023-01439-0
Laongdao Thongnak, Nattavadee Pengrattanachot, Sasivimon Promsan, Nichakorn Phengpol, Prempree Sutthasupha, Krit Jaikumkao, Anusorn Lungkaphin

Insulin signaling and lipid metabolism are disrupted by long-term consumption of a high-fat diet (HFD). This disruption can lead to insulin resistance, dyslipidemia and subsequently renal dysfunction as a consequence of the inactivation of the AMP-activated protein kinase (AMPK) and peroxisome proliferator-activated receptor-α (PPARα) or AMPK/PPARα pathways. We investigated the impact of metformin on the prevention of renal dysfunction through the modulation of AMPK-regulated PPARα-dependent pathways in insulin-resistant rats induced by a HFD. Male Wistar rats were fed a HFD for 16 weeks to induce insulin resistance. After insulin resistance had been confirmed, metformin (30 mg/kg) or gemfibrozil (50 mg/kg) was given orally for 8 weeks. Evidence of insulin resistance, dyslipidemia, lipid accumulation and kidney injury were observed in HF rats. Impairment of lipid oxidation, energy metabolism and renal organic anion transporter 3 (Oat3) expression and function were demonstrated in HF rats. Metformin can stimulate the AMPK/PPARα pathways and suppress sterol regulatory element-binding transcription factor 1 (SREBP1) and fatty acid synthase (FAS) signaling (SREBP1/FAS) to enable the regulation of lipid metabolism. Renal inflammatory markers and renal fibrosis expression induced by a HFD were more effectively reduced after metformin treatment than after gemfibrozil treatment. Interestingly, renal Oat3 function and expression and kidney injury were improved following metformin and gemfibrozil treatment. Renal cluster of differentiation 36 (CD36) or sodium glucose cotransporter type 2 (SGLT2) expression did not differ after treatment with metformin or gemfibrozil. Metformin and gemfibrozil could reduce the impairment of renal injury in obese conditions induced by a HFD through the AMPK/PPARα-dependent pathway. Interestingly, metformin demonstrated greater efficacy than gemfibrozil in attenuating renal lipotoxicity through the AMPK-regulated SREBP1/FAS signaling pathway.

胰岛素信号和脂质代谢被长期高脂肪饮食(HFD)所破坏。由于amp活化的蛋白激酶(AMPK)和过氧化物酶体增殖物活化受体-α (PPARα)或AMPK/PPARα途径失活,这种破坏可导致胰岛素抵抗、血脂异常和随后的肾功能障碍。在HFD诱导的胰岛素抵抗大鼠中,我们研究了二甲双胍通过调节ampk调节的ppar α依赖通路来预防肾功能障碍的影响。雄性Wistar大鼠喂HFD 16周诱导胰岛素抵抗。确诊胰岛素抵抗后,给予二甲双胍(30mg /kg)或吉非齐尔(50mg /kg)口服8周。在HF大鼠中观察到胰岛素抵抗、血脂异常、脂质积累和肾损伤的证据。心衰大鼠的脂质氧化、能量代谢和肾有机阴离子转运蛋白3 (Oat3)的表达和功能受到损害。二甲双胍可以刺激AMPK/PPARα通路,抑制甾醇调节元件结合转录因子1 (SREBP1)和脂肪酸合成酶(FAS)信号通路(SREBP1/FAS),从而调控脂质代谢。二甲双胍治疗比吉非齐治疗更有效地降低了HFD诱导的肾脏炎症标志物和肾纤维化表达。有趣的是,在二甲双胍和吉非齐治疗后,肾脏Oat3功能和表达以及肾损伤得到改善。在二甲双胍或吉非齐治疗后,肾分化簇36 (CD36)或葡萄糖钠共转运蛋白2型(SGLT2)的表达没有差异。二甲双胍和吉非齐尔可以通过AMPK/ ppar α依赖途径减轻HFD诱导的肥胖肾损伤的损害。有趣的是,通过ampk调控的SREBP1/FAS信号通路,二甲双胍在减轻肾脂毒性方面比吉非罗吉更有效。
{"title":"Metformin mitigates renal dysfunction in obese insulin-resistant rats via activation of the AMPK/PPARα pathway","authors":"Laongdao Thongnak,&nbsp;Nattavadee Pengrattanachot,&nbsp;Sasivimon Promsan,&nbsp;Nichakorn Phengpol,&nbsp;Prempree Sutthasupha,&nbsp;Krit Jaikumkao,&nbsp;Anusorn Lungkaphin","doi":"10.1007/s12272-023-01439-0","DOIUrl":"10.1007/s12272-023-01439-0","url":null,"abstract":"<div><p>Insulin signaling and lipid metabolism are disrupted by long-term consumption of a high-fat diet (HFD). This disruption can lead to insulin resistance, dyslipidemia and subsequently renal dysfunction as a consequence of the inactivation of the AMP-activated protein kinase (AMPK) and peroxisome proliferator-activated receptor-α (PPARα) or AMPK/PPARα pathways. We investigated the impact of metformin on the prevention of renal dysfunction through the modulation of AMPK-regulated PPARα-dependent pathways in insulin-resistant rats induced by a HFD. Male Wistar rats were fed a HFD for 16 weeks to induce insulin resistance. After insulin resistance had been confirmed, metformin (30 mg/kg) or gemfibrozil (50 mg/kg) was given orally for 8 weeks. Evidence of insulin resistance, dyslipidemia, lipid accumulation and kidney injury were observed in HF rats. Impairment of lipid oxidation, energy metabolism and renal organic anion transporter 3 (Oat3) expression and function were demonstrated in HF rats. Metformin can stimulate the AMPK/PPARα pathways and suppress sterol regulatory element-binding transcription factor 1 (SREBP1) and fatty acid synthase (FAS) signaling (SREBP1/FAS) to enable the regulation of lipid metabolism. Renal inflammatory markers and renal fibrosis expression induced by a HFD were more effectively reduced after metformin treatment than after gemfibrozil treatment. Interestingly, renal Oat3 function and expression and kidney injury were improved following metformin and gemfibrozil treatment. Renal cluster of differentiation 36 (CD36) or sodium glucose cotransporter type 2 (SGLT2) expression did not differ after treatment with metformin or gemfibrozil. Metformin and gemfibrozil could reduce the impairment of renal injury in obese conditions induced by a HFD through the AMPK/PPARα-dependent pathway. Interestingly, metformin demonstrated greater efficacy than gemfibrozil in attenuating renal lipotoxicity through the AMPK-regulated SREBP1/FAS signaling pathway.</p></div>","PeriodicalId":8287,"journal":{"name":"Archives of Pharmacal Research","volume":null,"pages":null},"PeriodicalIF":6.7,"publicationDate":"2023-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12272-023-01439-0.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9420079","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The function, mechanisms, and clinical applications of metformin: potential drug, unlimited potentials 二甲双胍的作用、作用机制及临床应用:潜力药物,潜力无限
IF 6.7 3区 医学 Q1 Chemistry Pub Date : 2023-03-24 DOI: 10.1007/s12272-023-01445-2
Jianhong Liu, Ming Zhang, Dan Deng, Xiao Zhu

Metformin has been used clinically for more than 60 years. As time goes by, more and more miraculous effects of metformin beyond the clinic have been discovered and discussed. In addition to the clinically approved hypoglycemic effect, it also has a positive metabolic regulation effect on the human body that cannot be ignored. Such as anti-cancer, anti-aging, brain repair, cardiovascular protection, gastrointestinal regulation, hair growth and inhibition of thyroid nodules, and other nonclinical effects. Metformin affects almost the entire body in the situation taking it over a long period, and the preventive effects of metformin in addition to treating diabetes are also beginning to be recommended in some guidelines. This review is mainly composed of four parts: the development history of metformin, the progress of clinical efficacy, the nonclinical efficacy of metformin, and the consideration and prospect of its application.

二甲双胍在临床上已经使用了60多年。随着时间的推移,越来越多的二甲双胍在临床之外的奇效被发现和讨论。除了临床认可的降糖作用外,它对人体还有不可忽视的正向代谢调节作用。如抗癌、抗衰老、脑修复、心血管保护、胃肠调节、毛发生长和抑制甲状腺结节等非临床作用。在长期服用二甲双胍的情况下,二甲双胍几乎影响到整个身体,并且除了治疗糖尿病外,二甲双胍的预防作用也开始在一些指南中被推荐。本文主要由四部分组成:二甲双胍的发展历史、临床疗效进展、二甲双胍的非临床疗效、二甲双胍应用的思考与展望。
{"title":"The function, mechanisms, and clinical applications of metformin: potential drug, unlimited potentials","authors":"Jianhong Liu,&nbsp;Ming Zhang,&nbsp;Dan Deng,&nbsp;Xiao Zhu","doi":"10.1007/s12272-023-01445-2","DOIUrl":"10.1007/s12272-023-01445-2","url":null,"abstract":"<div><p>Metformin has been used clinically for more than 60 years. As time goes by, more and more miraculous effects of metformin beyond the clinic have been discovered and discussed. In addition to the clinically approved hypoglycemic effect, it also has a positive metabolic regulation effect on the human body that cannot be ignored. Such as anti-cancer, anti-aging, brain repair, cardiovascular protection, gastrointestinal regulation, hair growth and inhibition of thyroid nodules, and other nonclinical effects. Metformin affects almost the entire body in the situation taking it over a long period, and the preventive effects of metformin in addition to treating diabetes are also beginning to be recommended in some guidelines. This review is mainly composed of four parts: the development history of metformin, the progress of clinical efficacy, the nonclinical efficacy of metformin, and the consideration and prospect of its application.</p></div>","PeriodicalId":8287,"journal":{"name":"Archives of Pharmacal Research","volume":null,"pages":null},"PeriodicalIF":6.7,"publicationDate":"2023-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9771022","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Regulation of NOX/p38 MAPK/PPARα pathways and miR-155 expression by boswellic acids reduces hepatic injury in experimentally-induced alcoholic liver disease mouse model: novel mechanistic insight 乳香酸调节NOX/p38 MAPK/PPARα通路和miR-155表达减轻实验性酒精性肝病小鼠模型中的肝损伤:新的机制见解
IF 6.7 3区 医学 Q1 Chemistry Pub Date : 2023-03-23 DOI: 10.1007/s12272-023-01441-6
Rania M. Salama, Samah S. Abbas, Samar F. Darwish, Al Aliaa Sallam, Noura F. Elmongy, Sara A. El Wakeel

Alcoholic liver disease (ALD) refers to hepatic ailments induced by excessive alcohol intake. The pathogenesis of ALD comprises a complex interplay between various mechanistic pathways, among which inflammation and oxidative stress are key players. Boswellic acids (BAs), found in Boswellia serrata, have shown hepatoprotective effects owing to their antioxidant and anti-inflammatory activities, nevertheless, their therapeutic potential against ALD has not been previously investigated. Hence, this study was performed to depict the possible protective effect of BAs and detect their underlying mechanism of action in an experimentally-induced ALD mouse model. Male BALB/c mice were equally categorized into six groups: control, BAs-treated, ALD, and ALD that received BAs at three-dose levels (125, 250, and 500 mg/kg) by oral gavage for 14 days. Results showed that the high dose of BAs had the most protective impact against ALD according to histopathology examination, blood alcohol concentration (BAC), and liver function enzymes. Mechanistic investigations revealed that BAs (500 mg/kg) caused a significant decrease in cytochrome P450 2E1(CYP2E1), nicotine adenine dinucleotide phosphate oxidase (NOX) 1/2/4, p38 mitogen-activated protein kinase (MAPK), and sterol regulatory element-binding protein-1c (SREBP-1c) levels, and the expression of miR-155, yet increased peroxisome proliferator-activated receptor alpha (PPARα) levels. This led to an improvement in lipid profile and reduced hepatic inflammation, oxidative stress, and apoptosis indices. In summary, our study concludes that BAs can protect against ethanol-induced hepatic injury, via modulating NOX/p38 MAPK/PPARα pathways and miR-155 expression.

酒精性肝病(ALD)是指由过量饮酒引起的肝脏疾病。ALD的发病机制包括各种机制途径之间的复杂相互作用,其中炎症和氧化应激是关键因素。在锯状Boswellia serrata中发现的Boswellic acids(BA)由于其抗氧化和抗炎活性而显示出保肝作用,然而,它们对ALD的治疗潜力此前尚未得到研究。因此,本研究旨在描述BA可能的保护作用,并在实验诱导的ALD小鼠模型中检测其潜在的作用机制。雄性BALB/c小鼠被平等地分为六组:对照组、BA治疗组、ALD组和ALD组,它们通过经口灌胃接受三个剂量水平(125、250和500 mg/kg)的BA,持续14天。结果显示,从组织病理学检查、血液酒精浓度(BAC)和肝功能酶来看,高剂量BA对ALD的保护作用最大。机制研究显示,BA(500 mg/kg)导致细胞色素P450 2E1(CYP2E1)、尼古丁腺嘌呤二核苷酸磷酸氧化酶(NOX)1/2/4、p38丝裂原活化蛋白激酶(MAPK)和固醇调节元件结合蛋白-1c(SREBP-1c)水平显著降低,但过氧化物酶体增殖物激活受体α(PPARα)水平增加。这导致了脂质状况的改善,并减少了肝脏炎症、氧化应激和细胞凋亡指数。总之,我们的研究得出结论,BA可以通过调节NOX/p38 MAPK/PPARα通路和miR-155的表达来预防乙醇诱导的肝损伤。
{"title":"Regulation of NOX/p38 MAPK/PPARα pathways and miR-155 expression by boswellic acids reduces hepatic injury in experimentally-induced alcoholic liver disease mouse model: novel mechanistic insight","authors":"Rania M. Salama,&nbsp;Samah S. Abbas,&nbsp;Samar F. Darwish,&nbsp;Al Aliaa Sallam,&nbsp;Noura F. Elmongy,&nbsp;Sara A. El Wakeel","doi":"10.1007/s12272-023-01441-6","DOIUrl":"10.1007/s12272-023-01441-6","url":null,"abstract":"<div><p>Alcoholic liver disease (ALD) refers to hepatic ailments induced by excessive alcohol intake. The pathogenesis of ALD comprises a complex interplay between various mechanistic pathways, among which inflammation and oxidative stress are key players. Boswellic acids (BAs), found in <i>Boswellia serrata</i>, have shown hepatoprotective effects owing to their antioxidant and anti-inflammatory activities, nevertheless, their therapeutic potential against ALD has not been previously investigated. Hence, this study was performed to depict the possible protective effect of BAs and detect their underlying mechanism of action in an experimentally-induced ALD mouse model. Male BALB/c mice were equally categorized into six groups: control, BAs-treated, ALD, and ALD that received BAs at three-dose levels (125, 250, and 500 mg/kg) by oral gavage for 14 days. Results showed that the high dose of BAs had the most protective impact against ALD according to histopathology examination, blood alcohol concentration (BAC), and liver function enzymes. Mechanistic investigations revealed that BAs (500 mg/kg) caused a significant decrease in cytochrome P450 2E1(CYP2E1), nicotine adenine dinucleotide phosphate oxidase (NOX) 1/2/4, p38 mitogen-activated protein kinase (MAPK), and sterol regulatory element-binding protein-1c (SREBP-1c) levels, and the expression of miR-155, yet increased peroxisome proliferator-activated receptor alpha (PPARα) levels. This led to an improvement in lipid profile and reduced hepatic inflammation, oxidative stress, and apoptosis indices. In summary, our study concludes that BAs can protect against ethanol-induced hepatic injury, via modulating NOX/p38 MAPK/PPARα pathways and miR-155 expression.</p></div>","PeriodicalId":8287,"journal":{"name":"Archives of Pharmacal Research","volume":null,"pages":null},"PeriodicalIF":6.7,"publicationDate":"2023-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12272-023-01441-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9344106","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
期刊
Archives of Pharmacal Research
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1