Pub Date : 2024-02-29eCollection Date: 2024-01-01DOI: 10.2478/aite-2024-0006
Bhagirath Singh, Anthony M Jevnikar, Eric Desjardins
The immune system is regulated by a complex set of genetic, molecular, and cellular interactions. Rapid advances in the study of immunity and its network of interactions have been boosted by a spectrum of "omics" technologies that have generated huge amounts of data that have reached the status of big data (BD). With recent developments in artificial intelligence (AI), theoretical and clinical breakthroughs could emerge. Analyses of large data sets with AI tools will allow the formulation of new testable hypotheses open new research avenues and provide innovative strategies for regulating immunity and treating immunological diseases. This includes diagnosis and identification of rare diseases, prevention and treatment of autoimmune diseases, allergic disorders, infectious diseases, metabolomic disorders, cancer, and organ transplantation. However, ethical and regulatory challenges remain as to how these studies will be used to advance our understanding of basic immunology and how immunity might be regulated in health and disease. This will be particularly important for entities in which the complexity of interactions occurring at the same time and multiple cellular pathways have eluded conventional approaches to understanding and treatment. The analyses of BD by AI are likely to be complicated as both positive and negative outcomes of regulating immunity may have important ethical ramifications that need to be considered. We suggest there is an immediate need to develop guidelines as to how the analyses of immunological BD by AI tools should guide immune-based interventions to treat various diseases, prevent infections, and maintain health within an ethical framework.
{"title":"Artificial Intelligence, Big Data, and Regulation of Immunity: Challenges and Opportunities.","authors":"Bhagirath Singh, Anthony M Jevnikar, Eric Desjardins","doi":"10.2478/aite-2024-0006","DOIUrl":"10.2478/aite-2024-0006","url":null,"abstract":"<p><p>The immune system is regulated by a complex set of genetic, molecular, and cellular interactions. Rapid advances in the study of immunity and its network of interactions have been boosted by a spectrum of \"omics\" technologies that have generated huge amounts of data that have reached the status of big data (BD). With recent developments in artificial intelligence (AI), theoretical and clinical breakthroughs could emerge. Analyses of large data sets with AI tools will allow the formulation of new testable hypotheses open new research avenues and provide innovative strategies for regulating immunity and treating immunological diseases. This includes diagnosis and identification of rare diseases, prevention and treatment of autoimmune diseases, allergic disorders, infectious diseases, metabolomic disorders, cancer, and organ transplantation. However, ethical and regulatory challenges remain as to how these studies will be used to advance our understanding of basic immunology and how immunity might be regulated in health and disease. This will be particularly important for entities in which the complexity of interactions occurring at the same time and multiple cellular pathways have eluded conventional approaches to understanding and treatment. The analyses of BD by AI are likely to be complicated as both positive and negative outcomes of regulating immunity may have important ethical ramifications that need to be considered. We suggest there is an immediate need to develop guidelines as to how the analyses of immunological BD by AI tools should guide immune-based interventions to treat various diseases, prevent infections, and maintain health within an ethical framework.</p>","PeriodicalId":8389,"journal":{"name":"Archivum Immunologiae et Therapiae Experimentalis","volume":"72 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139989144","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-27eCollection Date: 2024-01-01DOI: 10.2478/aite-2024-0005
Martyna Kuczyńska, Marta Moskot, Magdalena Gabig-Cimińska
Impaired autophagy, due to the dysfunction of lysosomal organelles, contributes to maladaptive responses by pathways central to the immune system. Deciphering the immune-inflammatory ecosystem is essential, but remains a major challenge in terms of understanding the mechanisms responsible for autoimmune diseases. Accumulating evidence implicates a role that is played by a dysfunctional autophagy-lysosomal pathway (ALP) and an immune niche in psoriasis (Ps), one of the most common chronic skin diseases, characterized by the co-existence of autoimmune and autoinflammatory responses. The dysregulated autophagy associated with the defective lysosomal system is only one aspect of Ps pathogenesis. It probably cannot fully explain the pathomechanism involved in Ps, but it is likely important and should be seriously considered in Ps research. This review provides a recent update on discoveries in the field. Also, it sheds light on how the dysregulation of intracellular pathways, coming from modulated autophagy and endolysosomal trafficking, characteristic of key players of the disease, i.e., skin-resident cells, as well as circulating immune cells, may be responsible for immune impairment and the development of Ps.
{"title":"Insights into Autophagic Machinery and Lysosomal Function in Cells Involved in the Psoriatic Immune-Mediated Inflammatory Cascade.","authors":"Martyna Kuczyńska, Marta Moskot, Magdalena Gabig-Cimińska","doi":"10.2478/aite-2024-0005","DOIUrl":"10.2478/aite-2024-0005","url":null,"abstract":"<p><p>Impaired autophagy, due to the dysfunction of lysosomal organelles, contributes to maladaptive responses by pathways central to the immune system. Deciphering the immune-inflammatory ecosystem is essential, but remains a major challenge in terms of understanding the mechanisms responsible for autoimmune diseases. Accumulating evidence implicates a role that is played by a dysfunctional autophagy-lysosomal pathway (ALP) and an immune niche in psoriasis (Ps), one of the most common chronic skin diseases, characterized by the co-existence of autoimmune and autoinflammatory responses. The dysregulated autophagy associated with the defective lysosomal system is only one aspect of Ps pathogenesis. It probably cannot fully explain the pathomechanism involved in Ps, but it is likely important and should be seriously considered in Ps research. This review provides a recent update on discoveries in the field. Also, it sheds light on how the dysregulation of intracellular pathways, coming from modulated autophagy and endolysosomal trafficking, characteristic of key players of the disease, i.e., skin-resident cells, as well as circulating immune cells, may be responsible for immune impairment and the development of Ps.</p>","PeriodicalId":8389,"journal":{"name":"Archivum Immunologiae et Therapiae Experimentalis","volume":"72 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139970853","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-12eCollection Date: 2024-01-01DOI: 10.2478/aite-2024-0004
Mahsa Afkhamipour, Fatemeh Kaviani, Samaneh Dalali, Tohid Piri-Gharaghie, Abbas Doosti
Most gastric cancers (GC) are thought to be caused by Helicobacter pylori (H. pylori) infections. However, there is mounting evidence that GC patients with positive H. pylori status have improved prognoses. The H. pylori-induced cellular immune reaction may inhibit cancer. In this study, BALB/c mice were immunized using recombinant plasmids that encode the ureF gene of H. pylori. Purified functional splenic CD3+ T lymphocytes are used to study the anticancer effects in vitro and in vivo. The immunological state of GC patients with ongoing H. pylori infection is mimicked by the H. pylori DNA vaccines, which cause a change in the reaction from Th1 to Th2. Human GC cells grow more slowly when stimulated CD3+ T lymphocytes are used as adoptive infusions because they reduce GC xenograft development in vivo. The more excellent ratios of infiltrating CD8+/CD4+ T cells, the decreased invasion of regulatory FOXP3+ Treg lymphocytes, and the increased apoptosis brought on by Caspase9/Caspase-3 overexpression and Survivin downregulation may all contribute to the consequences. Our findings suggest that in people with advanced GC, H. pylori pIRES2-DsRed-Express-ureF DNA vaccines may have immunotherapeutic utility.
大多数胃癌(GC)被认为是由幽门螺旋杆菌(H. pylori)感染引起的。然而,越来越多的证据表明,幽门螺杆菌阳性的胃癌患者预后较好。幽门螺杆菌诱导的细胞免疫反应可能会抑制癌症。在这项研究中,使用编码幽门螺杆菌ureF基因的重组质粒对BALB/c小鼠进行免疫。纯化的功能性脾脏 CD3+ T 淋巴细胞用于研究体外和体内的抗癌效果。幽门螺杆菌 DNA 疫苗可模拟幽门螺杆菌持续感染的 GC 患者的免疫状态,使其反应从 Th1 转变为 Th2。当使用刺激性 CD3+ T 淋巴细胞作为收养性输注时,人类 GC 细胞的生长速度会更慢,因为它们会减少 GC 异种移植在体内的发展。浸润的 CD8+/CD4+ T 细胞比例更优、调节性 FOXP3+ Treg 淋巴细胞侵入减少、Caspase9/Caspase-3 过度表达和 Survivin 下调导致细胞凋亡增加,这些都可能是导致上述后果的原因。我们的研究结果表明,对于晚期胃癌患者,幽门螺杆菌 pIRES2-DsRed-Express-ureF DNA 疫苗可能具有免疫治疗作用。
{"title":"Potential Gastric Cancer Immunotherapy: Stimulating the Immune System with <i>Helicobacter pylori</i> pIRES2-DsRed-Express-<i>ureF</i> DNA Vaccines.","authors":"Mahsa Afkhamipour, Fatemeh Kaviani, Samaneh Dalali, Tohid Piri-Gharaghie, Abbas Doosti","doi":"10.2478/aite-2024-0004","DOIUrl":"10.2478/aite-2024-0004","url":null,"abstract":"<p><p>Most gastric cancers (GC) are thought to be caused by <i>Helicobacter pylori</i> (<i>H. pylori</i>) infections. However, there is mounting evidence that GC patients with positive <i>H. pylori</i> status have improved prognoses. The <i>H. pylori</i>-induced cellular immune reaction may inhibit cancer. In this study, BALB/c mice were immunized using recombinant plasmids that encode the <i>ureF</i> gene of <i>H. pylori</i>. Purified functional splenic CD3<sup>+</sup> T lymphocytes are used to study the anticancer effects <i>in vitro</i> and <i>in vivo</i>. The immunological state of GC patients with ongoing <i>H. pylori</i> infection is mimicked by the <i>H. pylori</i> DNA vaccines, which cause a change in the reaction from Th1 to Th2. Human GC cells grow more slowly when stimulated CD3<sup>+</sup> T lymphocytes are used as adoptive infusions because they reduce GC xenograft development <i>in vivo</i>. The more excellent ratios of infiltrating CD8<sup>+</sup>/CD4<sup>+</sup> T cells, the decreased invasion of regulatory FOXP3<sup>+</sup> Treg lymphocytes, and the increased apoptosis brought on by Caspase9/Caspase-3 overexpression and Survivin downregulation may all contribute to the consequences. Our findings suggest that in people with advanced GC, <i>H. pylori</i> pIRES2-DsRed-Express-<i>ureF</i> DNA vaccines may have immunotherapeutic utility.</p>","PeriodicalId":8389,"journal":{"name":"Archivum Immunologiae et Therapiae Experimentalis","volume":"72 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139721333","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Katarzyna Kaczmarek, Jerzy Więckiewicz, Ivo Que, Adrianna Gałuszka-Bulaga, Alan Chan, Maciej Siedlar, Jarek Baran
Abstract Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) selectively induces apoptosis of sensitive cancer cells, including colorectal cancer (CRC). Due to its short biological half-life after intravenous administration and related clinical ineffectiveness, novel formulations of TRAIL need to be developed. Here we propose Lactococcus lactis bacteria as a vehicle for local delivery of human soluble TRAIL (hsTRAIL) in CRC. The use of common probiotics targeting guts as carriers for TRAIL could ensure its sustained release at the tumor site and extend the duration of its activity. We have already engineered hsTRAIL-secreting L.lactis bacteria and showed their effectiveness in elimination of human CRC cells in vitro and in vivo in a mouse subcutaneous model. Here, L.lactis(hsTRAIL+) were administered by gastric gavage to SCID mice with orthotopically developed HCT116 tumor in cecum, in monotherapy or in combination with metformin (MetF), already shown to enhance the hsTRAIL anti-tumor activity in subcutaneous CRC model. Oral administration of L.lactis(hsTRAIL+) resulted in significant progression of HCT116 tumors and shortening of the colon crypts. Secretion of hsTRAIL in the colon was accompanied by infiltration of the primary tumor with M2-macrophages, while MetF promoted transient colonization of the gut by L.lactis. Our study indicates that L.lactis bacteria after oral administration enable delivery of biologically active hsTRAIL to colon, however its potential therapeutic effect in CRC treatment is abolished by its pro-tumorigenic signalling, leading to the recruitment of M2-macrophages and tumor growth promotion.
{"title":"Human Soluble TRAIL Secreted by Modified Lactococcus lactis Bacteria Promotes Tumor Growth in the Orthotopic Mouse Model of Colorectal Cancer","authors":"Katarzyna Kaczmarek, Jerzy Więckiewicz, Ivo Que, Adrianna Gałuszka-Bulaga, Alan Chan, Maciej Siedlar, Jarek Baran","doi":"10.2478/aite-2024-0002","DOIUrl":"https://doi.org/10.2478/aite-2024-0002","url":null,"abstract":"Abstract Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) selectively induces apoptosis of sensitive cancer cells, including colorectal cancer (CRC). Due to its short biological half-life after intravenous administration and related clinical ineffectiveness, novel formulations of TRAIL need to be developed. Here we propose Lactococcus lactis bacteria as a vehicle for local delivery of human soluble TRAIL (hsTRAIL) in CRC. The use of common probiotics targeting guts as carriers for TRAIL could ensure its sustained release at the tumor site and extend the duration of its activity. We have already engineered hsTRAIL-secreting L.lactis bacteria and showed their effectiveness in elimination of human CRC cells in vitro and in vivo in a mouse subcutaneous model. Here, L.lactis(hsTRAIL+) were administered by gastric gavage to SCID mice with orthotopically developed HCT116 tumor in cecum, in monotherapy or in combination with metformin (MetF), already shown to enhance the hsTRAIL anti-tumor activity in subcutaneous CRC model. Oral administration of L.lactis(hsTRAIL+) resulted in significant progression of HCT116 tumors and shortening of the colon crypts. Secretion of hsTRAIL in the colon was accompanied by infiltration of the primary tumor with M2-macrophages, while MetF promoted transient colonization of the gut by L.lactis. Our study indicates that L.lactis bacteria after oral administration enable delivery of biologically active hsTRAIL to colon, however its potential therapeutic effect in CRC treatment is abolished by its pro-tumorigenic signalling, leading to the recruitment of M2-macrophages and tumor growth promotion.","PeriodicalId":8389,"journal":{"name":"Archivum Immunologiae et Therapiae Experimentalis","volume":"104 5","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139393797","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Karol Gostomczyk, Jędrzej Borowczak, Marta Siekielska-Domanowska, Krzysztof Szczerbowski, Mateusz Maniewski, Mariusz Dubiel, Łukasz Szylberg, Magdalena Bodnar
Abstract The widespread occurrence of SARS-CoV-2 infections and the diverse range of symptoms have placed significant strain on healthcare systems worldwide. Pregnancy has also been affected by COVID-19, with an increased risk of complications and unfavorable outcomes for expectant mothers. Multiple studies indicate that SARS-CoV-2 can infiltrate the placenta, breach its protective barrier, and infect the fetus. Although the precise mechanisms of intrauterine transmission remain unclear, factors such as perinatal infection, macrophages, sexual intercourse, and the virus’ interaction with host angiotensin-converting enzyme 2 (ACE2) and neuropilin-1 (NRP-1) proteins appear to play a role in this process. The integrity of the placental barrier fluctuates throughout pregnancy and appears to influence the likelihood of fetal transmission. The expression of placental cell receptors, like ACE2, changes during pregnancy and in response to placental damage. However, due to the consistent presence of others, such as NRP-1, SARS-CoV-2 may potentially enter the fetus at different stages of pregnancy. NRP-1 is also found in macrophages, implicating maternal macrophages and Hofbauer cells as potential routes for viral transmission. Our current understanding of SARS-CoV-2's vertical transmission pathways remains limited. Some researchers question the ACE2-associated transmission model due to the relatively low expression of ACE2 in the placenta. Existing studies investigating perinatal transmission and the impact of sexual intercourse have either involved small sample sizes or lacked statistical significance. This review aims to explore the current state of knowledge regarding the potential mechanisms of COVID-19 vertical transmission, identifying areas where further research is needed to fill the gaps in our understanding.
{"title":"Mechanisms of SARS-CoV-2 Placental Transmission","authors":"Karol Gostomczyk, Jędrzej Borowczak, Marta Siekielska-Domanowska, Krzysztof Szczerbowski, Mateusz Maniewski, Mariusz Dubiel, Łukasz Szylberg, Magdalena Bodnar","doi":"10.2478/aite-2024-0001","DOIUrl":"https://doi.org/10.2478/aite-2024-0001","url":null,"abstract":"Abstract The widespread occurrence of SARS-CoV-2 infections and the diverse range of symptoms have placed significant strain on healthcare systems worldwide. Pregnancy has also been affected by COVID-19, with an increased risk of complications and unfavorable outcomes for expectant mothers. Multiple studies indicate that SARS-CoV-2 can infiltrate the placenta, breach its protective barrier, and infect the fetus. Although the precise mechanisms of intrauterine transmission remain unclear, factors such as perinatal infection, macrophages, sexual intercourse, and the virus’ interaction with host angiotensin-converting enzyme 2 (ACE2) and neuropilin-1 (NRP-1) proteins appear to play a role in this process. The integrity of the placental barrier fluctuates throughout pregnancy and appears to influence the likelihood of fetal transmission. The expression of placental cell receptors, like ACE2, changes during pregnancy and in response to placental damage. However, due to the consistent presence of others, such as NRP-1, SARS-CoV-2 may potentially enter the fetus at different stages of pregnancy. NRP-1 is also found in macrophages, implicating maternal macrophages and Hofbauer cells as potential routes for viral transmission. Our current understanding of SARS-CoV-2's vertical transmission pathways remains limited. Some researchers question the ACE2-associated transmission model due to the relatively low expression of ACE2 in the placenta. Existing studies investigating perinatal transmission and the impact of sexual intercourse have either involved small sample sizes or lacked statistical significance. This review aims to explore the current state of knowledge regarding the potential mechanisms of COVID-19 vertical transmission, identifying areas where further research is needed to fill the gaps in our understanding.","PeriodicalId":8389,"journal":{"name":"Archivum Immunologiae et Therapiae Experimentalis","volume":"4 8","pages":"1 - 10"},"PeriodicalIF":3.2,"publicationDate":"2023-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139155567","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-24DOI: 10.1007/s00005-023-00691-y
Adam Niezgoda, Grzegorz Biegański, Jacek Wachowiak, Jarosław Czarnota, Krzysztof Siemionow, Ahlke Heydemann, Anna Ziemiecka, Maria H. Sikorska, Katarzyna Bożyk, Maria Siemionow
Duchenne muscular dystrophy (DMD) is a lethal X-linked disease caused by mutations in the dystrophin gene, leading to muscle degeneration and wasting. Electromyography (EMG) is an objective electrophysiological biomarker of muscle fiber function in muscular dystrophies. A novel, DT-DEC01 therapy, consisting of Dystrophin Expressing Chimeric (DEC) cells created by fusing allogeneic myoblasts from normal donors with autologous myoblasts from DMD-affected patients, was assessed for safety and preliminary efficacy in boys of age 6–15 years old (n = 3). Assessments included EMG testing of selected muscles of upper (deltoideus, biceps brachii) and lower (rectus femoris and gastrocnemius) extremities at the screening visit and at 3, 6, and 12 months following systemic–intraosseous administration of a single low dose of DT-DEC01 therapy (Bioethics Committee approval no. 46/2019). No immunosuppression was administered. Safety of DT-DEC01 was confirmed by the lack of therapy-related Adverse Events or Serious Adverse Events up to 22 months following DT-DEC01 administration. EMG of selected muscles of both, ambulatory and non-ambulatory patients confirmed preliminary efficacy of DT-DEC01 therapy by an increase in motor unit potentials (MUP) duration, amplitudes, and polyphasic MUPs at 12 months. This study confirmed EMG as a reliable and objective biomarker of functional assessment in DMD patients after intraosseous administration of the novel DT-DEC01 therapy.
{"title":"Assessment of Motor Unit Potentials Duration as the Biomarker of DT-DEC01 Cell Therapy Efficacy in Duchenne Muscular Dystrophy Patients up to 12 Months After Systemic–Intraosseous Administration","authors":"Adam Niezgoda, Grzegorz Biegański, Jacek Wachowiak, Jarosław Czarnota, Krzysztof Siemionow, Ahlke Heydemann, Anna Ziemiecka, Maria H. Sikorska, Katarzyna Bożyk, Maria Siemionow","doi":"10.1007/s00005-023-00691-y","DOIUrl":"10.1007/s00005-023-00691-y","url":null,"abstract":"<div><p>Duchenne muscular dystrophy (DMD) is a lethal X-linked disease caused by mutations in the dystrophin gene, leading to muscle degeneration and wasting. Electromyography (EMG) is an objective electrophysiological biomarker of muscle fiber function in muscular dystrophies. A novel, DT-DEC01 therapy, consisting of Dystrophin Expressing Chimeric (DEC) cells created by fusing allogeneic myoblasts from normal donors with autologous myoblasts from DMD-affected patients, was assessed for safety and preliminary efficacy in boys of age 6–15 years old (<i>n</i> = 3). Assessments included EMG testing of selected muscles of upper (deltoideus, biceps brachii) and lower (rectus femoris and gastrocnemius) extremities at the screening visit and at 3, 6, and 12 months following systemic–intraosseous administration of a single low dose of DT-DEC01 therapy (Bioethics Committee approval no. 46/2019). No immunosuppression was administered. Safety of DT-DEC01 was confirmed by the lack of therapy-related Adverse Events or Serious Adverse Events up to 22 months following DT-DEC01 administration. EMG of selected muscles of both, ambulatory and non-ambulatory patients confirmed preliminary efficacy of DT-DEC01 therapy by an increase in motor unit potentials (MUP) duration, amplitudes, and polyphasic MUPs at 12 months. This study confirmed EMG as a reliable and objective biomarker of functional assessment in DMD patients after intraosseous administration of the novel DT-DEC01 therapy.</p></div>","PeriodicalId":8389,"journal":{"name":"Archivum Immunologiae et Therapiae Experimentalis","volume":"71 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00005-023-00691-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138298191","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-26DOI: 10.1007/s00005-023-00688-7
Junying Qiao, Shanshan Guo, Xianjie Huang, Luodan Zhang, Fan Li, Yazhen Fan
This study aimed to observe the expression of angiopoietin-2 (Ang-2) in the lung tissue of juvenile SD rats with lipopolysaccharide (LPS)-induced acute lung injury (ALI) and to clarify the role of ulinastatin (UTI). Ninety 18–21-day-old juvenile SD male rats were randomly divided into five groups (n = 18). ALI rat model was established by intraperitoneal injection of LPS (LPS 10 mg/kg), while the control group was given the same dose of normal saline. The UTI intervention group was given the injection of UTI (5000 U/mL) immediately after the injection of LPS, which was divided into UTI low-dose group (LPS + 5 ml/kg UTI), UTI medium-dose group (LPS + 10 ml/kg UTI), and UTI high-dose group (LPS + 20 ml/kg UTI).The respiratory status of each group of rats was observed, and six rats were randomly selected to be killed in each group at 6, 12, and 24 h, and the lung tissues were dissected and retained. The pathological changes of the lung tissues were observed by hematoxylin–eosin (HE) staining, the expression levels and locations of Ang-2 and vascular endothelial growth factor (VEGF) in lung tissue were observed by immunohistochemical staining, and the expressions of genes and proteins of Ang-2 and VEGF were detected by quantitative reverse transcription polymerase chain reaction (RT-PCR) and Western blot analysis. Three hours after intraperitoneal injection, rats in the model group developed shortness of breath and the developed respiratory distress progressed over time. The lung pathological changes in the model group were obvious compared with those in the control group, and gradually worsened with time, and the pathological changes of lung in the rats in the UTI intervention group were reduced compared with those in the model group. At different time points, the expressions of Ang-2 and VEGF in the lung tissue of rats in the model group were higher than those in the control group, and were lower in the UTI intervention group than those in the model group. The expressions of Ang-2 and VEGF protein were lower in the low-dose group of UTI group than those in the high-dose group of UTI group at different time points (P < 0.05), and the expressions of Ang-2 and VEGF protein in the low-dose group of UTI were significantly lower than those in the medium-dose group at 12 h and 24 h (P < 0.05). The expression of Ang-2 was increased in the lung tissue of juvenile SD rats with LPS-induced ALI, and was associated with the degree of lung injury. UTI might attenuate LPS-induced ALI by inhibiting the expression of Ang-2 in lung tissue, and the low dose was more obvious than the medium and high dose.
{"title":"Expression of Angiopoietin-2 in Lung Tissue of Juvenile SD Rats with Lipopolysaccharide-Induced Acute Lung Injury and the Role of Ulinastatin","authors":"Junying Qiao, Shanshan Guo, Xianjie Huang, Luodan Zhang, Fan Li, Yazhen Fan","doi":"10.1007/s00005-023-00688-7","DOIUrl":"10.1007/s00005-023-00688-7","url":null,"abstract":"<div><p>This study aimed to observe the expression of angiopoietin-2 (Ang-2) in the lung tissue of juvenile SD rats with lipopolysaccharide (LPS)-induced acute lung injury (ALI) and to clarify the role of ulinastatin (UTI). Ninety 18–21-day-old juvenile SD male rats were randomly divided into five groups (<i>n</i> = 18). ALI rat model was established by intraperitoneal injection of LPS (LPS 10 mg/kg), while the control group was given the same dose of normal saline. The UTI intervention group was given the injection of UTI (5000 U/mL) immediately after the injection of LPS, which was divided into UTI low-dose group (LPS + 5 ml/kg UTI), UTI medium-dose group (LPS + 10 ml/kg UTI), and UTI high-dose group (LPS + 20 ml/kg UTI).The respiratory status of each group of rats was observed, and six rats were randomly selected to be killed in each group at 6, 12, and 24 h, and the lung tissues were dissected and retained. The pathological changes of the lung tissues were observed by hematoxylin–eosin (HE) staining, the expression levels and locations of Ang-2 and vascular endothelial growth factor (VEGF) in lung tissue were observed by immunohistochemical staining, and the expressions of genes and proteins of Ang-2 and VEGF were detected by quantitative reverse transcription polymerase chain reaction (RT-PCR) and Western blot analysis. Three hours after intraperitoneal injection, rats in the model group developed shortness of breath and the developed respiratory distress progressed over time. The lung pathological changes in the model group were obvious compared with those in the control group, and gradually worsened with time, and the pathological changes of lung in the rats in the UTI intervention group were reduced compared with those in the model group. At different time points, the expressions of Ang-2 and VEGF in the lung tissue of rats in the model group were higher than those in the control group, and were lower in the UTI intervention group than those in the model group. The expressions of Ang-2 and VEGF protein were lower in the low-dose group of UTI group than those in the high-dose group of UTI group at different time points (<i>P</i> < 0.05), and the expressions of Ang-2 and VEGF protein in the low-dose group of UTI were significantly lower than those in the medium-dose group at 12 h and 24 h (<i>P</i> < 0.05). The expression of Ang-2 was increased in the lung tissue of juvenile SD rats with LPS-induced ALI, and was associated with the degree of lung injury. UTI might attenuate LPS-induced ALI by inhibiting the expression of Ang-2 in lung tissue, and the low dose was more obvious than the medium and high dose.</p></div>","PeriodicalId":8389,"journal":{"name":"Archivum Immunologiae et Therapiae Experimentalis","volume":"71 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50160479","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-02DOI: 10.1007/s00005-023-00687-8
Marta Śledź, Alicja Wojciechowska, Radosław Zagożdżon, Beata Kaleta
{"title":"Correction to: In Situ Programming of CAR-T Cells: A Pressing Need in Modern Immunotherapy","authors":"Marta Śledź, Alicja Wojciechowska, Radosław Zagożdżon, Beata Kaleta","doi":"10.1007/s00005-023-00687-8","DOIUrl":"10.1007/s00005-023-00687-8","url":null,"abstract":"","PeriodicalId":8389,"journal":{"name":"Archivum Immunologiae et Therapiae Experimentalis","volume":"71 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00005-023-00687-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10148814","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chronic hyperglycemia involves persistent high-glucose exposure and correlates with retinal degeneration. It causes various diseases, including diabetic retinopathy (DR), a major cause of adult vision loss. Most in vitro studies have investigated the damaging short-term effects of high glucose exposure on retinal pigment epithelial (RPE) cells. DR is also a severe complication of diabetes. In this study, we established a model with prolonged high-glucose exposure (15 and 75 mM exogenous glucose for two months) to mimic RPE tissue pathophysiology in patients with hyperglycemia. Prolonged high-glucose exposure attenuated glucose uptake and clonogenicity in ARPE-19 cells. It also significantly increased reactive oxygen species levels and decreased antioxidant protein (superoxide dismutase 2) levels in RPE cells, possibly causing oxidative stress and DNA damage and impairing proliferation. Western blotting showed that autophagic stress, endoplasmic reticulum stress, and genotoxic stress were induced by prolonged high-glucose exposure in RPE cells. Despite a moderate apoptotic cell population detected using the Annexin V-staining assay, the increases in the senescence-associated proteins p53 and p21 and SA-β-gal-positive cells suggest that prolonged high-glucose exposure dominantly sensitized RPE cells to premature senescence. Comprehensive next-generation sequencing suggested that upregulation of oxidative stress and DNA damage-associated pathways contributed to stress-induced premature senescence of ARPE-19 cells. Our findings elucidate the pathophysiology of hyperglycemia-associated retinal diseases and should benefit the future development of preventive drugs.
Graphical Abstract
Prolonged high-glucose exposure downregulates glucose uptake and oxidative stress by increasing reactive oxygen species (ROS) production through regulation of superoxide dismutase 2 (SOD2) expression. Autophagic stress, ER stress, and DNA damage stress (genotoxic stress) are also induced by prolonged high-glucose exposure in RPE cells. Consequently, multiple stresses induce the upregulation of the senescence-associated proteins p53 and p21. Although both apoptosis and premature senescence contribute to high glucose exposure-induced anti-proliferation of RPE cells, the present work shows that premature senescence rather than apoptosis is the dominant cause of RPE degeneration, eventually leading to the pathogenesis of DR.