首页 > 最新文献

ArXiv最新文献

英文 中文
The Multiscale Surface Vision Transformer. 多尺度表面视觉转换器。
Pub Date : 2024-06-11
Simon Dahan, Logan Z J Williams, Daniel Rueckert, Emma C Robinson

Surface meshes are a favoured domain for representing structural and functional information on the human cortex, but their complex topology and geometry pose significant challenges for deep learning analysis. While Transformers have excelled as domainagnostic architectures for sequence-to-sequence learning, the quadratic cost of the self-attention operation remains an obstacle for many dense prediction tasks. Inspired by some of the latest advances in hierarchical modelling with vision transformers, we introduce the Multiscale Surface Vision Transformer (MS-SiT) as a backbone architecture for surface deep learning. The self-attention mechanism is applied within local-mesh-windows to allow for high-resolution sampling of the underlying data, while a shifted-window strategy improves the sharing of information between windows. Neighbouring patches are successively merged, allowing the MS-SiT to learn hierarchical representations suitable for any prediction task. Results demonstrate that the MS-SiT outperforms existing surface deep learning methods for neonatal phenotyping prediction tasks using the Developing Human Connectome Project (dHCP) dataset. Furthermore, building the MS-SiT backbone into a U-shaped architecture for surface segmentation demonstrates competitive results on cortical parcellation using the UK Biobank (UKB) and manually-annotated MindBoggle datasets. Code and trained models are publicly available at https://github.com/metrics-lab/surface-vision-transformers.

表面网格是表示人类皮层结构和功能信息的一个受欢迎的领域,但其复杂的拓扑结构和几何结构对深度学习分析提出了重大挑战。虽然Transformers在序列到序列学习的领域不可知架构方面表现出色,尤其是在卷积运算的转换不是平凡的结构中,但自注意运算的二次代价仍然是许多密集预测任务的障碍。受视觉转换器分层建模的一些最新进展的启发,我们引入了多尺度表面视觉转换器(MS-SiT)作为表面深度学习的主干架构。自注意机制应用于局部网格窗口中,以允许对底层数据进行高分辨率采样,而移位窗口策略则改善了窗口之间的信息共享。相邻的补丁被连续地合并,从而允许MS-SiT学习适用于任何预测任务的分层表示。结果表明,在使用开发人类连接体项目(dHCP)数据集进行新生儿表型预测任务方面,MS-SiT优于现有的表面深度学习方法。此外,使用英国生物库(UKB)和手动注释的MindBoggle数据集,将MS-SiT主干构建成用于表面分割的U形架构,证明了皮层分割的竞争结果。代码和经过训练的模型可在https://github.com/metrics-lab/surface-vision-transformers.
{"title":"The Multiscale Surface Vision Transformer.","authors":"Simon Dahan, Logan Z J Williams, Daniel Rueckert, Emma C Robinson","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Surface meshes are a favoured domain for representing structural and functional information on the human cortex, but their complex topology and geometry pose significant challenges for deep learning analysis. While Transformers have excelled as domainagnostic architectures for sequence-to-sequence learning, the quadratic cost of the self-attention operation remains an obstacle for many dense prediction tasks. Inspired by some of the latest advances in hierarchical modelling with vision transformers, we introduce the Multiscale Surface Vision Transformer (MS-SiT) as a backbone architecture for surface deep learning. The self-attention mechanism is applied within local-mesh-windows to allow for high-resolution sampling of the underlying data, while a shifted-window strategy improves the sharing of information between windows. Neighbouring patches are successively merged, allowing the MS-SiT to learn hierarchical representations suitable for any prediction task. Results demonstrate that the MS-SiT outperforms existing surface deep learning methods for neonatal phenotyping prediction tasks using the Developing Human Connectome Project (dHCP) dataset. Furthermore, building the MS-SiT backbone into a U-shaped architecture for surface segmentation demonstrates competitive results on cortical parcellation using the UK Biobank (UKB) and manually-annotated MindBoggle datasets. Code and trained models are publicly available at https://github.com/metrics-lab/surface-vision-transformers.</p>","PeriodicalId":8425,"journal":{"name":"ArXiv","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10055498/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9239375","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Geometry-Complete Diffusion for 3D Molecule Generation and Optimization. 用于三维分子生成和优化的几何完全扩散。
Pub Date : 2024-05-24
Alex Morehead, Jianlin Cheng

Motivation: Generative deep learning methods have recently been proposed for generating 3D molecules using equivariant graph neural networks (GNNs) within a denoising diffusion framework. However, such methods are unable to learn important geometric properties of 3D molecules, as they adopt molecule-agnostic and non-geometric GNNs as their 3D graph denoising networks, which notably hinders their ability to generate valid large 3D molecules.

Results: In this work, we address these gaps by introducing the Geometry-Complete Diffusion Model (GCDM) for 3D molecule generation, which outperforms existing 3D molecular diffusion models by significant margins across conditional and unconditional settings for the QM9 dataset and the larger GEOM-Drugs dataset, respectively. Importantly, we demonstrate that GCDM's generative denoising process enables the model to generate a significant proportion of valid and energetically-stable large molecules at the scale of GEOM-Drugs, whereas previous methods fail to do so with the features they learn. Additionally, we show that extensions of GCDM can not only effectively design 3D molecules for specific protein pockets but can be repurposed to consistently optimize the geometry and chemical composition of existing 3D molecules for molecular stability and property specificity, demonstrating new versatility of molecular diffusion models.

Availability: Code and data are freely available on GitHub.

去噪扩散概率模型(DDPM)最近在生成建模领域掀起了风暴,在计算机视觉和计算生物学等学科中开创了从文本引导的图像生成到结构引导的蛋白质设计等各种任务的最新成果。沿着后一条研究路线,最近提出了在DDPM框架内使用等变图神经网络(GNN)生成3D分子的方法。然而,这种方法无法在分子图生成过程中学习3D分子的重要几何和物理特性,因为它们采用分子不可知和非几何GNN作为其3D图去噪网络,这对它们有效扩展到大型3D分子数据集的能力产生了负面影响。在这项工作中,我们通过引入用于3D分子生成的几何完全扩散模型(GCDM)来解决这些差距,该模型在QM9数据集以及更大的GEOM Drugs数据集的条件和无条件设置方面显著优于现有的3D分子扩散模型。重要的是,我们证明了GCDM学习的用于3D分子生成的几何完整去噪过程允许模型以GEOM Drugs的规模生成真实稳定的大分子,而以前的方法在学习的特征上无法做到这一点。此外,我们还表明,GCDM的几何特征可以有效地重新调整用途,直接优化现有3D分子的几何结构和化学组成,以获得特定的分子特性,从而展示了分子扩散模型在现实世界中的新的多功能性。我们的源代码、数据和再现性说明可在https://github.com/BioinfoMachineLearning/bio-diffusion.
{"title":"Geometry-Complete Diffusion for 3D Molecule Generation and Optimization.","authors":"Alex Morehead, Jianlin Cheng","doi":"","DOIUrl":"","url":null,"abstract":"<p><strong>Motivation: </strong>Generative deep learning methods have recently been proposed for generating 3D molecules using equivariant graph neural networks (GNNs) within a denoising diffusion framework. However, such methods are unable to learn important geometric properties of 3D molecules, as they adopt molecule-agnostic and non-geometric GNNs as their 3D graph denoising networks, which notably hinders their ability to generate valid large 3D molecules.</p><p><strong>Results: </strong>In this work, we address these gaps by introducing the Geometry-Complete Diffusion Model (GCDM) for 3D molecule generation, which outperforms existing 3D molecular diffusion models by significant margins across conditional and unconditional settings for the QM9 dataset and the larger GEOM-Drugs dataset, respectively. Importantly, we demonstrate that GCDM's generative denoising process enables the model to generate a significant proportion of valid and energetically-stable large molecules at the scale of GEOM-Drugs, whereas previous methods fail to do so with the features they learn. Additionally, we show that extensions of GCDM can not only effectively design 3D molecules for specific protein pockets but can be repurposed to consistently optimize the geometry and chemical composition of existing 3D molecules for molecular stability and property specificity, demonstrating new versatility of molecular diffusion models.</p><p><strong>Availability: </strong>Code and data are freely available on GitHub.</p>","PeriodicalId":8425,"journal":{"name":"ArXiv","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9934735/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9740776","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Brain Tumor Segmentation (BraTS) Challenge 2023: Focus on Pediatrics (CBTN-CONNECT-DIPGR-ASNR-MICCAI BraTS-PEDs). 2023年脑肿瘤分割(BraTS)挑战:专注儿科(CBTN-CONNECT-DIPGR-ASNR-MICAI BraTS PEDs)。
Pub Date : 2024-05-23
Anahita Fathi Kazerooni, Nastaran Khalili, Xinyang Liu, Debanjan Haldar, Zhifan Jiang, Syed Muhammed Anwar, Jake Albrecht, Maruf Adewole, Udunna Anazodo, Hannah Anderson, Sina Bagheri, Ujjwal Baid, Timothy Bergquist, Austin J Borja, Evan Calabrese, Verena Chung, Gian-Marco Conte, Farouk Dako, James Eddy, Ivan Ezhov, Ariana Familiar, Keyvan Farahani, Shuvanjan Haldar, Juan Eugenio Iglesias, Anastasia Janas, Elaine Johansen, Blaise V Jones, Florian Kofler, Dominic LaBella, Hollie Anne Lai, Koen Van Leemput, Hongwei Bran Li, Nazanin Maleki, Aaron S McAllister, Zeke Meier, Bjoern Menze, Ahmed W Moawad, Khanak K Nandolia, Julija Pavaine, Marie Piraud, Tina Poussaint, Sanjay P Prabhu, Zachary Reitman, Andres Rodriguez, Jeffrey D Rudie, Ibraheem Salman Shaikh, Lubdha M Shah, Nakul Sheth, Russel Taki Shinohara, Wenxin Tu, Karthik Viswanathan, Chunhao Wang, Jeffrey B Ware, Benedikt Wiestler, Walter Wiggins, Anna Zapaishchykova, Mariam Aboian, Miriam Bornhorst, Peter de Blank, Michelle Deutsch, Maryam Fouladi, Lindsey Hoffman, Benjamin Kann, Margot Lazow, Leonie Mikael, Ali Nabavizadeh, Roger Packer, Adam Resnick, Brian Rood, Arastoo Vossough, Spyridon Bakas, Marius George Linguraru

Pediatric tumors of the central nervous system are the most common cause of cancer-related death in children. The five-year survival rate for high-grade gliomas in children is less than 20%. Due to their rarity, the diagnosis of these entities is often delayed, their treatment is mainly based on historic treatment concepts, and clinical trials require multi-institutional collaborations. The MICCAI Brain Tumor Segmentation (BraTS) Challenge is a landmark community benchmark event with a successful history of 12 years of resource creation for the segmentation and analysis of adult glioma. Here we present the CBTN-CONNECT-DIPGR-ASNR-MICCAI BraTS-PEDs 2023 challenge, which represents the first BraTS challenge focused on pediatric brain tumors with data acquired across multiple international consortia dedicated to pediatric neuro-oncology and clinical trials. The BraTS-PEDs 2023 challenge focuses on benchmarking the development of volumentric segmentation algorithms for pediatric brain glioma through standardized quantitative performance evaluation metrics utilized across the BraTS 2023 cluster of challenges. Models gaining knowledge from the BraTS-PEDs multi-parametric structural MRI (mpMRI) training data will be evaluated on separate validation and unseen test mpMRI dataof high-grade pediatric glioma. The CBTN-CONNECT-DIPGR-ASNR-MICCAI BraTS-PEDs 2023 challenge brings together clinicians and AI/imaging scientists to lead to faster development of automated segmentation techniques that could benefit clinical trials, and ultimately the care of children with brain tumors.

儿童中枢神经系统肿瘤是导致儿童癌症相关死亡的最常见原因。儿童高级别胶质瘤的五年生存率不到20%。由于其罕见性,这些实体的诊断往往被推迟,它们的治疗主要基于历史治疗理念,临床试验需要多机构合作。MICCAI脑肿瘤分割(BraTS)挑战赛是一项具有里程碑意义的社区基准活动,在成人神经胶质瘤的分割和分析方面有着12年的成功资源创建历史。在这里,我们提出了CBTN-CONNECT-DIPGR-ASNR-MICAI BraTS PEDs 2023挑战,这是第一个专注于儿童脑肿瘤的BraTS挑战,数据是通过多个致力于儿童神经肿瘤学和临床试验的国际联盟获得的。BraTS PEDs 2023挑战集中于通过在BraTS 2023挑战集群中使用的标准化定量性能评估指标,对儿童脑胶质瘤的体积中心分割算法的开发进行基准测试。从BraTS PEDs多参数结构MRI(mpMRI)训练数据中获得知识的模型将在高级儿童神经胶质瘤的单独验证和未公开测试mpMRI数据上进行评估。CBTN-CONNECT-DIPGR-ASNR-MICAI BraTS PEDs 2023挑战将临床医生和人工智能/成像科学家聚集在一起,更快地开发自动化分割技术,这可能有利于临床试验,并最终有利于脑肿瘤儿童的护理。
{"title":"The Brain Tumor Segmentation (BraTS) Challenge 2023: <i>Focus on Pediatrics (CBTN-CONNECT-DIPGR-ASNR-MICCAI BraTS-PEDs)</i>.","authors":"Anahita Fathi Kazerooni, Nastaran Khalili, Xinyang Liu, Debanjan Haldar, Zhifan Jiang, Syed Muhammed Anwar, Jake Albrecht, Maruf Adewole, Udunna Anazodo, Hannah Anderson, Sina Bagheri, Ujjwal Baid, Timothy Bergquist, Austin J Borja, Evan Calabrese, Verena Chung, Gian-Marco Conte, Farouk Dako, James Eddy, Ivan Ezhov, Ariana Familiar, Keyvan Farahani, Shuvanjan Haldar, Juan Eugenio Iglesias, Anastasia Janas, Elaine Johansen, Blaise V Jones, Florian Kofler, Dominic LaBella, Hollie Anne Lai, Koen Van Leemput, Hongwei Bran Li, Nazanin Maleki, Aaron S McAllister, Zeke Meier, Bjoern Menze, Ahmed W Moawad, Khanak K Nandolia, Julija Pavaine, Marie Piraud, Tina Poussaint, Sanjay P Prabhu, Zachary Reitman, Andres Rodriguez, Jeffrey D Rudie, Ibraheem Salman Shaikh, Lubdha M Shah, Nakul Sheth, Russel Taki Shinohara, Wenxin Tu, Karthik Viswanathan, Chunhao Wang, Jeffrey B Ware, Benedikt Wiestler, Walter Wiggins, Anna Zapaishchykova, Mariam Aboian, Miriam Bornhorst, Peter de Blank, Michelle Deutsch, Maryam Fouladi, Lindsey Hoffman, Benjamin Kann, Margot Lazow, Leonie Mikael, Ali Nabavizadeh, Roger Packer, Adam Resnick, Brian Rood, Arastoo Vossough, Spyridon Bakas, Marius George Linguraru","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Pediatric tumors of the central nervous system are the most common cause of cancer-related death in children. The five-year survival rate for high-grade gliomas in children is less than 20%. Due to their rarity, the diagnosis of these entities is often delayed, their treatment is mainly based on historic treatment concepts, and clinical trials require multi-institutional collaborations. The MICCAI Brain Tumor Segmentation (BraTS) Challenge is a landmark community benchmark event with a successful history of 12 years of resource creation for the segmentation and analysis of adult glioma. Here we present the CBTN-CONNECT-DIPGR-ASNR-MICCAI BraTS-PEDs 2023 challenge, which represents the first BraTS challenge focused on pediatric brain tumors with data acquired across multiple international consortia dedicated to pediatric neuro-oncology and clinical trials. The BraTS-PEDs 2023 challenge focuses on benchmarking the development of volumentric segmentation algorithms for pediatric brain glioma through standardized quantitative performance evaluation metrics utilized across the BraTS 2023 cluster of challenges. Models gaining knowledge from the BraTS-PEDs multi-parametric structural MRI (mpMRI) training data will be evaluated on separate validation and unseen test mpMRI dataof high-grade pediatric glioma. The CBTN-CONNECT-DIPGR-ASNR-MICCAI BraTS-PEDs 2023 challenge brings together clinicians and AI/imaging scientists to lead to faster development of automated segmentation techniques that could benefit clinical trials, and ultimately the care of children with brain tumors.</p>","PeriodicalId":8425,"journal":{"name":"ArXiv","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10246083/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9959581","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fibration symmetries and cluster synchronization in the Caenorhabditis elegans connectome. 秀丽隐杆线虫连接体中的纤维对称性和簇同步性。
Pub Date : 2024-05-03
Bryant Avila, Pedro Augusto, Manuel Zimmer, Matteo Serafino, Hernán A Makse

Capturing how the Caenorhabditis elegans connectome structure gives rise to its neuron functionality remains unclear. It is through fiber symmetries found in its neuronal connectivity that synchronization of a group of neurons can be determined. To understand these we investigate graph symmetries and search for such in the symmetrized versions of the forward and backward locomotive sub-networks of the Caenorhabditi elegans worm neuron network. The use of ordinarily differential equations simulations admissible to these graphs are used to validate the predictions of these fiber symmetries and are compared to the more restrictive orbit symmetries. Additionally fibration symmetries are used to decompose these graphs into their fundamental building blocks which reveal units formed by nested loops or multilayered fibers. It is found that fiber symmetries of the connectome can accurately predict neuronal synchronization even under not idealized connectivity as long as the dynamics are within stable regimes of simulations.

目前尚不清楚秀丽隐杆线虫连接体结构是如何产生其神经元功能的。正是通过在神经元连接中发现的纤维对称性,才能确定一组神经元的同步性。为了理解这些,我们研究了图的对称性,并在秀丽隐杆线虫蠕虫神经元网络的前向和后向机车子网络的对称化版本中寻找这种对称性。使用可用于这些图的常微分方程模拟来验证这些纤维对称性的预测,并与更严格的轨道对称性进行比较。此外,纤维对称性被用来将这些图分解为它们的基本构建块,这些构建块揭示了由嵌套环或多层纤维形成的单元。研究发现,即使在非理想连接的情况下,只要动力学处于稳定的模拟范围内,连接体的纤维对称性也可以准确预测神经元同步。
{"title":"Fibration symmetries and cluster synchronization in the <i>Caenorhabditis elegans</i> connectome.","authors":"Bryant Avila, Pedro Augusto, Manuel Zimmer, Matteo Serafino, Hernán A Makse","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Capturing how the <i>Caenorhabditis elegans</i> connectome structure gives rise to its neuron functionality remains unclear. It is through fiber symmetries found in its neuronal connectivity that synchronization of a group of neurons can be determined. To understand these we investigate graph symmetries and search for such in the symmetrized versions of the forward and backward locomotive sub-networks of the <i>Caenorhabditi elegans</i> worm neuron network. The use of ordinarily differential equations simulations admissible to these graphs are used to validate the predictions of these fiber symmetries and are compared to the more restrictive orbit symmetries. Additionally fibration symmetries are used to decompose these graphs into their fundamental building blocks which reveal units formed by nested loops or multilayered fibers. It is found that fiber symmetries of the connectome can accurately predict neuronal synchronization even under not idealized connectivity as long as the dynamics are within stable regimes of simulations.</p>","PeriodicalId":8425,"journal":{"name":"ArXiv","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10312817/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10117030","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Leak Proof PDBBind: A Reorganized Dataset of Protein-Ligand Complexes for More Generalizable Binding Affinity Prediction. 防漏PDBBind:蛋白质配体复合物的重组数据集,用于更通用的结合亲和力预测。
Pub Date : 2024-05-03
Jie Li, Xingyi Guan, Oufan Zhang, Kunyang Sun, Yingze Wang, Dorian Bagni, Teresa Head-Gordon

Many physics-based and machine-learned scoring functions (SFs) used to predict protein-ligand binding free energies have been trained on the PDBBind dataset. However, it is controversial as to whether new SFs are actually improving since the general, refined, and core datasets of PDBBind are cross-contaminated with proteins and ligands with high similarity, and hence they may not perform comparably well in binding prediction of new protein-ligand complexes. In this work we have carefully prepared a cleaned PDBBind data set of non-covalent binders that are split into training, validation, and test datasets to control for data leakage, defined as proteins and ligands with high sequence and structural similarity. The resulting leak-proof (LP)-PDBBind data is used to retrain four popular SFs: AutoDock Vina, Random Forest (RF)-Score, InteractionGraphNet (IGN), and DeepDTA, to better test their capabilities when applied to new protein-ligand complexes. In particular we have formulated a new independent data set, BDB2020+, by matching high quality binding free energies from BindingDB with co-crystalized ligand-protein complexes from the PDB that have been deposited since 2020. Based on all the benchmark results, the retrained models using LP-PDBBind consistently perform better, with IGN especially being recommended for scoring and ranking applications for new protein-ligand systems.

已经在PDBBind数据集上训练了许多用于预测蛋白质配体结合自由能的基于物理和机器学习的评分函数(SF)。然而,对于新的SF是否真的在改善,这是有争议的,因为PDBBind的通用、精炼和核心数据集被具有高度相似性的蛋白质和配体交叉污染,因此它们在新的蛋白质-配体复合物的结合预测中可能表现得不太好。在这项工作中,我们仔细准备了一个非共价结合物的清洁PDBBind数据集,该数据集被划分为训练、验证和测试数据集,以控制数据泄露。由此产生的防漏(LP)-PDBBind数据用于重新训练四种流行的SF:AutoDock vina、Random Forest(RF)-Score、InteractionGraphNet(IGN)和DeepDTA,以更好地测试它们在应用于新的蛋白质-配体复合物时的能力。特别是,我们通过将BindingDB的高质量结合自由能与自2020年以来沉积的PDB的共结晶配体-蛋白质复合物相匹配,制定了一个新的独立数据集BDB2020+。基于所有的基准结果,使用依赖3D信息的LP PDBBind的再训练模型始终处于最佳状态,IGN尤其被推荐用于新蛋白质配体系统的评分和排名应用。
{"title":"Leak Proof PDBBind: A Reorganized Dataset of Protein-Ligand Complexes for More Generalizable Binding Affinity Prediction.","authors":"Jie Li, Xingyi Guan, Oufan Zhang, Kunyang Sun, Yingze Wang, Dorian Bagni, Teresa Head-Gordon","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Many physics-based and machine-learned scoring functions (SFs) used to predict protein-ligand binding free energies have been trained on the PDBBind dataset. However, it is controversial as to whether new SFs are actually improving since the general, refined, and core datasets of PDBBind are cross-contaminated with proteins and ligands with high similarity, and hence they may not perform comparably well in binding prediction of new protein-ligand complexes. In this work we have carefully prepared a cleaned PDBBind data set of non-covalent binders that are split into training, validation, and test datasets to control for data leakage, defined as proteins and ligands with high sequence and structural similarity. The resulting leak-proof (LP)-PDBBind data is used to retrain four popular SFs: AutoDock Vina, Random Forest (RF)-Score, InteractionGraphNet (IGN), and DeepDTA, to better test their capabilities when applied to new protein-ligand complexes. In particular we have formulated a new independent data set, BDB2020+, by matching high quality binding free energies from BindingDB with co-crystalized ligand-protein complexes from the PDB that have been deposited since 2020. Based on all the benchmark results, the retrained models using LP-PDBBind consistently perform better, with IGN especially being recommended for scoring and ranking applications for new protein-ligand systems.</p>","PeriodicalId":8425,"journal":{"name":"ArXiv","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10462179/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10134134","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CarcassFormer: An End-to-end Transformer-based Framework for Simultaneous Localization, Segmentation and Classification of Poultry Carcass Defect CarcassFormer:基于端到端变压器的家禽胴体缺陷同时定位、分割和分类框架
Pub Date : 2024-05-01 DOI: 10.48550/arXiv.2404.11429
Minh Q. Tran, Sang Truong, Arthur F. A. Fernandes, Michael Kidd, Ngan Le
{"title":"CarcassFormer: An End-to-end Transformer-based Framework for Simultaneous Localization, Segmentation and Classification of Poultry Carcass Defect","authors":"Minh Q. Tran, Sang Truong, Arthur F. A. Fernandes, Michael Kidd, Ngan Le","doi":"10.48550/arXiv.2404.11429","DOIUrl":"https://doi.org/10.48550/arXiv.2404.11429","url":null,"abstract":"","PeriodicalId":8425,"journal":{"name":"ArXiv","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141144492","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Matching Patients to Clinical Trials with Large Language Models. 用大型语言模型将患者与临床试验相匹配。
Pub Date : 2024-04-27
Qiao Jin, Zifeng Wang, Charalampos S Floudas, Fangyuan Chen, Changlin Gong, Dara Bracken-Clarke, Elisabetta Xue, Yifan Yang, Jimeng Sun, Zhiyong Lu

Clinical trials are often hindered by the challenge of patient recruitment. In this work, we introduce TrialGPT, a first-of-its-kind large language model (LLM) framework to assist patient-to-trial matching. Given a patient note, TrialGPT predicts the patient's eligibility on a criterion-by-criterion basis and then consolidates these predictions to assess the patient's eligibility for the target trial. We evaluate the trial-level prediction performance of TrialGPT on three publicly available cohorts of 184 patients with over 18,000 trial annotations. We also engaged three physicians to label over 1,000 patient-criterion pairs to assess its criterion-level prediction accuracy. Experimental results show that TrialGPT achieves a criterion-level accuracy of 87.3% with faithful explanations, close to the expert performance (88.7%-90.0%). The aggregated TrialGPT scores are highly correlated with human eligibility judgments, and they outperform the best-competing models by 32.6% to 57.2% in ranking and excluding clinical trials. Furthermore, our user study reveals that TrialGPT can significantly reduce the screening time (by 42.6%) in a real-life clinical trial matching task. These results and analyses have demonstrated promising opportunities for clinical trial matching with LLMs such as TrialGPT.

临床试验对推进药物开发和循证医学至关重要,但其成功往往受到患者招募挑战的阻碍。在这项工作中,我们研究了大型语言模型(LLM)的潜力,以帮助个体患者和转诊医生从广泛的选择中确定合适的临床试验。具体来说,我们介绍了TrialGPT,这是一种新的架构,使用LLM来预测标准级别的合格性,并提供详细的解释,然后根据免费文本患者笔记对这些解释进行汇总,以对候选临床试验进行排名和排除。我们在三个公开的184名患者队列和18238项注释临床试验中评估了TrialGPT。实验结果证明了几个关键发现:首先,TrialGPT通过忠实的解释实现了高标准级的预测精度。其次,综合试验水平的TrialGPT分数与专家资格注释高度相关。第三,这些分数被证明可以有效地对临床试验进行排名,并排除不合格的候选人。我们的错误分析表明,由于医学知识和特定领域的上下文理解有限,目前的LLM仍然会犯一些错误。尽管如此,我们相信LLM的解释能力是非常有价值的。未来有必要研究如何将此类人工智能助手集成到现实世界环境中的常规试验匹配工作流程中,以提高其效率。
{"title":"Matching Patients to Clinical Trials with Large Language Models.","authors":"Qiao Jin, Zifeng Wang, Charalampos S Floudas, Fangyuan Chen, Changlin Gong, Dara Bracken-Clarke, Elisabetta Xue, Yifan Yang, Jimeng Sun, Zhiyong Lu","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Clinical trials are often hindered by the challenge of patient recruitment. In this work, we introduce TrialGPT, a first-of-its-kind large language model (LLM) framework to assist patient-to-trial matching. Given a patient note, TrialGPT predicts the patient's eligibility on a criterion-by-criterion basis and then consolidates these predictions to assess the patient's eligibility for the target trial. We evaluate the trial-level prediction performance of TrialGPT on three publicly available cohorts of 184 patients with over 18,000 trial annotations. We also engaged three physicians to label over 1,000 patient-criterion pairs to assess its criterion-level prediction accuracy. Experimental results show that TrialGPT achieves a criterion-level accuracy of 87.3% with faithful explanations, close to the expert performance (88.7%-90.0%). The aggregated TrialGPT scores are highly correlated with human eligibility judgments, and they outperform the best-competing models by 32.6% to 57.2% in ranking and excluding clinical trials. Furthermore, our user study reveals that TrialGPT can significantly reduce the screening time (by 42.6%) in a real-life clinical trial matching task. These results and analyses have demonstrated promising opportunities for clinical trial matching with LLMs such as TrialGPT.</p>","PeriodicalId":8425,"journal":{"name":"ArXiv","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10418514/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10038202","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fluctuating landscapes and heavy tails in animal behavior. 缓慢驱动随机过程中的突发复杂性。
Pub Date : 2024-04-16
Antonio Carlos Costa, Gautam Sridhar, Claire Wyart, Massimo Vergassola

Animal behavior is shaped by a myriad of mechanisms acting on a wide range of scales, which hampers quantitative reasoning and the identification of general principles. Here, we combine data analysis and theory to investigate the relationship between behavioral plasticity and heavy-tailed statistics often observed in animal behavior. Specifically, we first leverage high-resolution recordings of C. elegans locomotion to show that stochastic transitions among long-lived behaviors exhibit heavy-tailed first passage time distributions and correlation functions. Such heavy tails can be explained by slow adaptation of behavior over time. This particular result motivates our second step of introducing a general model where we separate fast dynamics on a quasi-stationary multi-well potential, from non-ergodic, slowly varying modes. We then show that heavy tails generically emerge in such a model, and we provide a theoretical derivation of the resulting functional form, which can become a power law with exponents that depend on the strength of the fluctuations. Finally, we provide direct support for the generality of our findings by testing them in a C. elegans mutant where adaptation is suppressed and heavy tails thus disappear, and recordings of larval zebrafish swimming behavior where heavy tails are again prevalent.

我们考虑在存在非遍历模式的情况下第一次通过时间事件的分布,这些非遍历模式在潜在景观上驱动遍历动力学。我们发现,在足够慢和足够大的波动极限下,第一次通过时间事件f(t)的分布表现出由指数为f(t)~t-2的幂律支配的重尾,以及取决于波动强度和性质的校正。我们通过示例中的直接数值模拟来支持我们的理论发现。
{"title":"Fluctuating landscapes and heavy tails in animal behavior.","authors":"Antonio Carlos Costa, Gautam Sridhar, Claire Wyart, Massimo Vergassola","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Animal behavior is shaped by a myriad of mechanisms acting on a wide range of scales, which hampers quantitative reasoning and the identification of general principles. Here, we combine data analysis and theory to investigate the relationship between behavioral plasticity and heavy-tailed statistics often observed in animal behavior. Specifically, we first leverage high-resolution recordings of <i>C. elegans</i> locomotion to show that stochastic transitions among long-lived behaviors exhibit heavy-tailed first passage time distributions and correlation functions. Such heavy tails can be explained by slow adaptation of behavior over time. This particular result motivates our second step of introducing a general model where we separate fast dynamics on a quasi-stationary multi-well potential, from non-ergodic, slowly varying modes. We then show that heavy tails generically emerge in such a model, and we provide a theoretical derivation of the resulting functional form, which can become a power law with exponents that depend on the strength of the fluctuations. Finally, we provide direct support for the generality of our findings by testing them in a <i>C. elegans</i> mutant where adaptation is suppressed and heavy tails thus disappear, and recordings of larval zebrafish swimming behavior where heavy tails are again prevalent.</p>","PeriodicalId":8425,"journal":{"name":"ArXiv","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9900967/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10702979","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rapid, antibiotic incubation-free determination of tuberculosis drug resistance using machine learning and Raman spectroscopy. 用机器学习辅助拉曼光谱预测结核病耐药性。
Pub Date : 2024-04-09
Babatunde Ogunlade, Loza F Tadesse, Hongquan Li, Nhat Vu, Niaz Banaei, Amy K Barczak, Amr A E Saleh, Manu Prakash, Jennifer A Dionne

Tuberculosis (TB) is the world's deadliest infectious disease, with over 1.5 million deaths annually and 10 million new cases reported each year1. The causative organism, Mycobacterium tuberculosis (Mtb) can take nearly 40 days to culture2,3, a required step to determine the pathogen's antibiotic susceptibility. Both rapid identification of Mtb and rapid antibiotic susceptibility testing (AST) are essential for effective patient treatment and combating antimicrobial resistance. Here, we demonstrate a rapid, culture-free, and antibiotic incubation-free drug susceptibility test for TB using Raman spectroscopy and machine learning. We collect few-to-single-cell Raman spectra from over 25,000 cells of the MtB complex strain Bacillus Calmette-Guérin (BCG) resistant to one of the four mainstay anti-TB drugs, isoniazid, rifampicin, moxifloxacin and amikacin, as well as a pan-susceptible wildtype strain. By training a neural network on this data, we classify the antibiotic resistance profile of each strain, both on dried samples and in patient sputum samples. On dried samples, we achieve >98% resistant versus susceptible classification accuracy across all 5 BCG strains. In patient sputum samples, we achieve ~79% average classification accuracy. We develop a feature recognition algorithm in order to verify that our machine learning model is using biologically relevant spectral features to assess the resistance profiles of our mycobacterial strains. Finally, we demonstrate how this approach can be deployed in resource-limited settings by developing a low-cost, portable Raman microscope that costs <$5000. We show how this instrument and our machine learning model enables combined microscopy and spectroscopy for accurate few-to-single-cell drug susceptibility testing of BCG.

结核病是世界上最致命的传染病,每年有150万人死亡,50万人感染。快速结核病诊断和抗生素敏感性检测(AST)对于改善患者治疗和减少新耐药性的上升至关重要。在这里,我们开发了一种快速、无标记的方法来鉴定结核分枝杆菌(Mtb)菌株和抗生素耐药性突变体。我们从对四种主要抗结核药物之一(异烟肼、利福平、莫西沙星和阿米卡星)具有耐药性的同基因分枝杆菌菌株中收集了20000多个单细胞拉曼光谱,并在这些光谱上训练了一个机器学习模型。在干燥的结核病样本上,我们实现了>98%的抗生素耐药性分类准确率,而不需要抗生素共孵育;在干燥的患者痰中,我们实现了约79%的平均分类准确率。我们还开发了一种低成本的便携式拉曼显微镜,适用于结核病流行地区的现场部署。
{"title":"Rapid, antibiotic incubation-free determination of tuberculosis drug resistance using machine learning and Raman spectroscopy.","authors":"Babatunde Ogunlade, Loza F Tadesse, Hongquan Li, Nhat Vu, Niaz Banaei, Amy K Barczak, Amr A E Saleh, Manu Prakash, Jennifer A Dionne","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Tuberculosis (TB) is the world's deadliest infectious disease, with over 1.5 million deaths annually and 10 million new cases reported each year<sup>1</sup>. The causative organism, <i>Mycobacterium tuberculosis</i> (Mtb) can take nearly 40 days to culture<sup>2,3</sup>, a required step to determine the pathogen's antibiotic susceptibility. Both rapid identification of Mtb and rapid antibiotic susceptibility testing (AST) are essential for effective patient treatment and combating antimicrobial resistance. Here, we demonstrate a rapid, culture-free, and antibiotic incubation-free drug susceptibility test for TB using Raman spectroscopy and machine learning. We collect few-to-single-cell Raman spectra from over 25,000 cells of the MtB complex strain Bacillus Calmette-Guérin (BCG) resistant to one of the four mainstay anti-TB drugs, isoniazid, rifampicin, moxifloxacin and amikacin, as well as a pan-susceptible wildtype strain. By training a neural network on this data, we classify the antibiotic resistance profile of each strain, both on dried samples and in patient sputum samples. On dried samples, we achieve >98% resistant versus susceptible classification accuracy across all 5 BCG strains. In patient sputum samples, we achieve ~79% average classification accuracy. We develop a feature recognition algorithm in order to verify that our machine learning model is using biologically relevant spectral features to assess the resistance profiles of our mycobacterial strains. Finally, we demonstrate how this approach can be deployed in resource-limited settings by developing a low-cost, portable Raman microscope that costs <$5000. We show how this instrument and our machine learning model enables combined microscopy and spectroscopy for accurate few-to-single-cell drug susceptibility testing of BCG.</p>","PeriodicalId":8425,"journal":{"name":"ArXiv","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10274949/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10065724","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unconstrained quantitative magnetization transfer imaging: disentangling T1 of the free and semi-solid spin pools. 关于脑组织中的多路径纵向自旋弛豫。
Pub Date : 2024-04-01
Jakob Assländer, Andrew Mao, Elisa Marchetto, Erin S Beck, Francesco La Rosa, Robert W Charlson, Timothy M Shepherd, Sebastian Flassbeck

Since the inception of magnetization transfer (MT) imaging, it has been widely assumed that Henkelman's two spin pools have similar longitudinal relaxation times, which motivated many researchers to constrain them to each other. However, several recent publications reported a T1s of the semi-solid spin pool that is much shorter than T1f of the free pool. While these studies tailored experiments for robust proofs-of-concept, we here aim to quantify the disentangled relaxation processes on a voxel-by-voxel basis in a clinical imaging setting, i.e., with an effective resolution of 1.24mm isotropic and full brain coverage in 12min. To this end, we optimized a hybrid-state pulse sequence for mapping the parameters of an unconstrained MT model. We scanned four people with relapsing-remitting multiple sclerosis (MS) and four healthy controls with this pulse sequence and estimated T1f1.84s and T1s0.34s in healthy white matter. Our results confirm the reports that T1sT1f and we argue that this finding identifies MT as an inherent driver of longitudinal relaxation in brain tissue. Moreover, we estimated a fractional size of the semi-solid spin pool of m0s0.212, which is larger than previously assumed. An analysis of T1f in normal-appearing white matter revealed statistically significant differences between individuals with MS and controls.

本文的目的是通过断言自由和半固体自旋池的T1弛豫时间之间的显著差异,证实先前的报告将磁化转移(MT)确定为脑组织纵向弛豫的内在驱动因素。此外,我们旨在确定一种在临床成像环境中逐体素量化这些弛豫过程的途径,即标称分辨率为1mm各向同性,12分钟内全脑覆盖。为此,我们优化了一个混合状态脉冲序列,用于映射无约束MT模型的参数。我们用这种脉冲序列扫描了4名复发-缓解型多发性硬化症(MS)患者和4名健康对照者,估计了健康WM的自由和半固体自旋池的T1f≈1.90s和T1s≈0.327s,证实了以前的报道,并质疑了常用的假设T1s=T1f或T1s=1s。此外,我们估计了半固态自旋池的分数大小为m0s≈0.202,这比之前假设的要大。对正常白质T1f的分析显示,MS患者和对照组之间存在统计学上的显著差异。总之,我们证实脑组织中的纵向自旋弛豫由MT主导,并且混合状态促进了无约束MT模型的体素拟合,这使得能够分析细微的神经退行性变。
{"title":"Unconstrained quantitative magnetization transfer imaging: disentangling <i>T</i><sub>1</sub> of the free and semi-solid spin pools.","authors":"Jakob Assländer, Andrew Mao, Elisa Marchetto, Erin S Beck, Francesco La Rosa, Robert W Charlson, Timothy M Shepherd, Sebastian Flassbeck","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Since the inception of magnetization transfer (MT) imaging, it has been widely assumed that Henkelman's two spin pools have similar longitudinal relaxation times, which motivated many researchers to constrain them to each other. However, several recent publications reported a <math><msubsup><mrow><mi>T</mi></mrow><mrow><mn>1</mn></mrow><mrow><mi>s</mi></mrow></msubsup></math> of the <i>semi-solid spin pool</i> that is much shorter than <math><msubsup><mrow><mi>T</mi></mrow><mrow><mn>1</mn></mrow><mrow><mi>f</mi></mrow></msubsup></math> of the <i>free pool</i>. While these studies tailored experiments for robust proofs-of-concept, we here aim to quantify the disentangled relaxation processes on a voxel-by-voxel basis in a clinical imaging setting, i.e., with an effective resolution of 1.24mm isotropic and full brain coverage in 12min. To this end, we optimized a <i>hybrid-state</i> pulse sequence for mapping the parameters of an unconstrained MT model. We scanned four people with relapsing-remitting multiple sclerosis (MS) and four healthy controls with this pulse sequence and estimated <math><msubsup><mrow><mi>T</mi></mrow><mrow><mn>1</mn></mrow><mrow><mi>f</mi></mrow></msubsup><mo>≈</mo><mn>1.84</mn><mi>s</mi></math> and <math><msubsup><mrow><mi>T</mi></mrow><mrow><mn>1</mn></mrow><mrow><mi>s</mi></mrow></msubsup><mo>≈</mo><mn>0.34</mn><mi>s</mi></math> in healthy white matter. Our results confirm the reports that <math><msubsup><mrow><mi>T</mi></mrow><mrow><mn>1</mn></mrow><mrow><mi>s</mi></mrow></msubsup><mo>≪</mo><msubsup><mrow><mi>T</mi></mrow><mrow><mn>1</mn></mrow><mrow><mi>f</mi></mrow></msubsup></math> and we argue that this finding identifies MT as an inherent driver of longitudinal relaxation in brain tissue. Moreover, we estimated a fractional size of the semi-solid spin pool of <math><msubsup><mrow><mi>m</mi></mrow><mrow><mn>0</mn></mrow><mrow><mi>s</mi></mrow></msubsup><mo>≈</mo><mn>0.212</mn></math>, which is larger than previously assumed. An analysis of <math><msubsup><mrow><mi>T</mi></mrow><mrow><mn>1</mn></mrow><mrow><mi>f</mi></mrow></msubsup></math> in normal-appearing white matter revealed statistically significant differences between individuals with MS and controls.</p>","PeriodicalId":8425,"journal":{"name":"ArXiv","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9882584/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9457572","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
ArXiv
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1