Many autonomous systems are safety-critical, making it essential to have a closed-loop control system that satisfies constraints arising from underlying physical limitations and safety aspects in a robust manner. However, this is often challenging to achieve for real-world systems. For example, autonomous ships at sea have nonlinear and uncertain dynamics and are subject to numerous time-varying environmental disturbances such as waves, currents, and wind. There is increasing interest in using machine learning-based approaches to adapt these systems to more complex scenarios, but there are few standard frameworks that guarantee the safety and stability of such systems. Recently, predictive safety filters (PSF) have emerged as a promising method to ensure constraint satisfaction in learning-based control, bypassing the need for explicit constraint handling in the learning algorithms themselves. The safety filter approach leads to a modular separation of the problem, allowing the use of arbitrary control policies in a task-agnostic way. The filter takes in a potentially unsafe control action from the main controller and solves an optimization problem to compute a minimal perturbation of the proposed action that adheres to both physical and safety constraints. In this work, we combine reinforcement learning (RL) with predictive safety filtering in the context of marine navigation and control. The RL agent is trained on path-following and safety adherence across a wide range of randomly generated environments, while the predictive safety filter continuously monitors the agents' proposed control actions and modifies them if necessary. The combined PSF/RL scheme is implemented on a simulated model of Cybership II, a miniature replica of a typical supply ship. Safety performance and learning rate are evaluated and compared with those of a standard, non-PSF, RL agent. It is demonstrated that the predictive safety filter is able to keep the vessel safe, while not prohibiting the learning rate and performance of the RL agent.