首页 > 最新文献

Asia-Pacific Journal of Atmospheric Sciences最新文献

英文 中文
Evaluation of Four Cloud Microphysical Schemes Simulating Arctic Low-Level Clouds Observed During the ACLOUD Experiment 对模拟 ACLOUD 试验期间观测到的北极低空云层的四种云微观物理方案的评估
IF 2.2 4区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES Pub Date : 2024-07-31 DOI: 10.1007/s13143-024-00378-0
Jihyun Nam, Yeonsoo Cho, Kyo-Sun Lim, Sang-Yoon Jun, Joo-Hong Kim, Sang-Jong Park, Sang-Woo Kim

We investigated the microphysical characteristics of low-level Arctic clouds using four cloud microphysics parameterization schemes (Morrison, WDM6, NSSL, and P3) implemented in the Polar-optimized Weather Research and Forecasting (PWRF) model. Our assessment was based on a comparison with data collected during the Arctic Cloud Observations Using Airborne Measurements during the Polar Day (ACLOUD) experiment, which occurred near Svalbard between May and June 2017. During the ACLOUD campaign, a substantial number of clouds were observed, primarily influenced by adiabatic motions and sensible/latent heat fluxes that led to air masses warming up by 4 °C as they traversed over the sea ice and ocean transition zone. Among the parameterization schemes tested, the Morrison and WDM6 schemes demonstrated superior performance overall, showing frequency bias (FB) values closer to 1 (1.07 and 1.13) and high log-odds ratios (0.50 and 0.48) in cloud occurrence predictions, indicating good agreement with observed data. In contrast, the NSSL and P3 schemes exhibited higher FB values (1.30 and 1.56) with lower log-odds ratios (0.17 and 0.16), indicating an overestimation of cloud occurrence. The WDM6 scheme produced higher ice-mixing ratios compared to Morrison and NSSL schemes, while the latter two tended to generate more snow and graupel. The NSSL scheme showed the least bias in simulating ice water content (IWC) in mixed-phase clouds; however, all schemes generally underestimated both liquid water content (LWC) and IWC. Notably, significant deviations in IWC were observed at an altitude of 1.2 km compared to observations, attributed to differences in temperature thresholds for ice formation. This study emphasizes the importance of developing cloud parameterization in the Arctic based on observations to improve the accuracy of estimating cloud impacts on Arctic climate under rapid Arctic warming trends.

我们使用极地优化天气研究和预报(PWRF)模型中实施的四种云微物理参数化方案(Morrison、WDM6、NSSL 和 P3)研究了北极低层云的微物理特征。我们的评估基于与 2017 年 5 月至 6 月期间在斯瓦尔巴群岛附近进行的 "极昼期间利用机载测量进行北极云观测(ACLOUD)"实验所收集数据的比较。在 ACLOUD 活动期间,观测到大量云层,主要是受绝热运动和显热/炽热通量的影响,导致气团在穿越海冰和海洋过渡带时升温 4 ℃。在测试的参数化方案中,Morrison 和 WDM6 方案总体性能优越,其频率偏差 (FB) 值接近 1(1.07 和 1.13),云发生预测的对数胜率较高(0.50 和 0.48),表明与观测数据吻合良好。相比之下,NSSL 和 P3 方案的 FB 值较高(1.30 和 1.56),对数比率较低(0.17 和 0.16),表明高估了云的发生率。与 Morrison 和 NSSL 方案相比,WDM6 方案产生了更高的混冰比率,而后两者则倾向于产生更多的积雪和碎石。NSSL 方案在模拟混合相云中的冰水含量(IWC)时偏差最小;但是,所有方案都普遍低估了液态水含量(LWC)和冰水含量(IWC)。值得注意的是,与观测结果相比,在 1.2 千米的高度观测到的冰水含量有明显偏差,这归因于冰形成的温度阈值不同。这项研究强调了根据观测结果制定北极云参数的重要性,以提高在北极快速变暖趋势下估计云对北极气候影响的准确性。
{"title":"Evaluation of Four Cloud Microphysical Schemes Simulating Arctic Low-Level Clouds Observed During the ACLOUD Experiment","authors":"Jihyun Nam,&nbsp;Yeonsoo Cho,&nbsp;Kyo-Sun Lim,&nbsp;Sang-Yoon Jun,&nbsp;Joo-Hong Kim,&nbsp;Sang-Jong Park,&nbsp;Sang-Woo Kim","doi":"10.1007/s13143-024-00378-0","DOIUrl":"10.1007/s13143-024-00378-0","url":null,"abstract":"<div><p>We investigated the microphysical characteristics of low-level Arctic clouds using four cloud microphysics parameterization schemes (Morrison, WDM6, NSSL, and P3) implemented in the Polar-optimized Weather Research and Forecasting (PWRF) model. Our assessment was based on a comparison with data collected during the Arctic Cloud Observations Using Airborne Measurements during the Polar Day (ACLOUD) experiment, which occurred near Svalbard between May and June 2017. During the ACLOUD campaign, a substantial number of clouds were observed, primarily influenced by adiabatic motions and sensible/latent heat fluxes that led to air masses warming up by 4 °C as they traversed over the sea ice and ocean transition zone. Among the parameterization schemes tested, the Morrison and WDM6 schemes demonstrated superior performance overall, showing frequency bias (FB) values closer to 1 (1.07 and 1.13) and high log-odds ratios (0.50 and 0.48) in cloud occurrence predictions, indicating good agreement with observed data. In contrast, the NSSL and P3 schemes exhibited higher FB values (1.30 and 1.56) with lower log-odds ratios (0.17 and 0.16), indicating an overestimation of cloud occurrence. The WDM6 scheme produced higher ice-mixing ratios compared to Morrison and NSSL schemes, while the latter two tended to generate more snow and graupel. The NSSL scheme showed the least bias in simulating ice water content (IWC) in mixed-phase clouds; however, all schemes generally underestimated both liquid water content (LWC) and IWC. Notably, significant deviations in IWC were observed at an altitude of 1.2 km compared to observations, attributed to differences in temperature thresholds for ice formation. This study emphasizes the importance of developing cloud parameterization in the Arctic based on observations to improve the accuracy of estimating cloud impacts on Arctic climate under rapid Arctic warming trends.</p></div>","PeriodicalId":8556,"journal":{"name":"Asia-Pacific Journal of Atmospheric Sciences","volume":"60 5","pages":"727 - 740"},"PeriodicalIF":2.2,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141870287","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Critical Evaluation and Future Projection of Extreme Precipitation Over South Korea in Observation-Based Products and a High-Resolution Model Simulation 基于观测的产品和高分辨率模型模拟对韩国极端降水的严格评估和未来预测
IF 2.2 4区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES Pub Date : 2024-07-29 DOI: 10.1007/s13143-024-00377-1
Christian L. E. Franzke, Lichao Yang, Jun-Hyeok Son, June-Yi Lee, Kyung-Ja Ha, Sun-Seon Lee

For climate risk assessments accurate gridded data sets are needed. An important aspect of such data sets is that they reliably represent the spatial and temporal characteristics of extreme events. This is particularly important for precipitation extreme events which are still not well represented in climate models. Here, we compare South Korean station data with two observation-based gridded data sets (APHRODITE and ERA5-Land) and data from global high-resolution Community Earth System Model (CESM) simulations with an atmospheric resolution of about 25km. We find that the two observation-based data sets have a lower level of the 99th percentile than the station data, but that CESM reproduces extreme events better. Our study provides evidence for an overall historical decrease in very large extreme events in the station data, which is not the case in the two gridded data sets. However, changes in extremes are locally dependent as shown by local quantile regression analysis; where local historical increases in precipitation extremes are statistically significant. The spatial dependence of extreme precipitation events is not well reproduced by the two gridded data sets but well by CESM. The temporal clustering of precipitation extremes is well reproduced by all data sets. Compared to the present day simulation, the CESM simulation of a warmer climate state shows an overall increase in mean precipitation and precipitation extremes and regionally dependent changes in temporal clustering. The model results also provide evidence for a change in spatial dependence in a warmer climate with spatially larger extreme precipitation systems possible. Our results highlight the need to produce better observation-based gridded data sets and also the need to adapt to more intense and frequent extreme precipitation events in the future in South Korea.

气候风险评估需要精确的网格数据集。这些数据集的一个重要方面是它们能可靠地反映极端事件的时空特征。这一点对于降水极端事件尤为重要,因为气候模式还不能很好地反映降水极端事件。在这里,我们将韩国的站点数据与两个基于观测的网格数据集(APHRODITE 和 ERA5-Land)以及大气分辨率约为 25km 的全球高分辨率群落地球系统模式(CESM)模拟数据进行了比较。我们发现,这两个基于观测的数据集的第 99 百分位数水平低于站点数据,但 CESM 对极端事件的再现效果更好。我们的研究提供的证据表明,在气象站数据中,超大型极端事件在历史上总体上有所减少,而在两套网格数据中却并非如此。然而,正如局部量值回归分析所显示的那样,极端事件的变化与局部地区有关;在局部地区,历史上极端降水量的增加具有显著的统计学意义。两个网格数据集不能很好地再现极端降水事件的空间依赖性,但 CESM 却能很好地再现。所有数据集都很好地再现了极端降水的时间聚类。与现在的模拟结果相比,CESM 对气候变暖状态的模拟结果表明,平均降水量和极端降水量总体上有所增加,时间聚类的变化也与区域有关。模型结果还证明,在气候变暖的情况下,空间依赖性也会发生变化,极端降水系统的空间范围可能会更大。我们的研究结果突出表明,需要制作更好的基于观测的网格数据集,也需要适应韩国未来更强烈、更频繁的极端降水事件。
{"title":"A Critical Evaluation and Future Projection of Extreme Precipitation Over South Korea in Observation-Based Products and a High-Resolution Model Simulation","authors":"Christian L. E. Franzke,&nbsp;Lichao Yang,&nbsp;Jun-Hyeok Son,&nbsp;June-Yi Lee,&nbsp;Kyung-Ja Ha,&nbsp;Sun-Seon Lee","doi":"10.1007/s13143-024-00377-1","DOIUrl":"10.1007/s13143-024-00377-1","url":null,"abstract":"<div><p>For climate risk assessments accurate gridded data sets are needed. An important aspect of such data sets is that they reliably represent the spatial and temporal characteristics of extreme events. This is particularly important for precipitation extreme events which are still not well represented in climate models. Here, we compare South Korean station data with two observation-based gridded data sets (APHRODITE and ERA5-Land) and data from global high-resolution Community Earth System Model (CESM) simulations with an atmospheric resolution of about 25km. We find that the two observation-based data sets have a lower level of the 99th percentile than the station data, but that CESM reproduces extreme events better. Our study provides evidence for an overall historical decrease in very large extreme events in the station data, which is not the case in the two gridded data sets. However, changes in extremes are locally dependent as shown by local quantile regression analysis; where local historical increases in precipitation extremes are statistically significant. The spatial dependence of extreme precipitation events is not well reproduced by the two gridded data sets but well by CESM. The temporal clustering of precipitation extremes is well reproduced by all data sets. Compared to the present day simulation, the CESM simulation of a warmer climate state shows an overall increase in mean precipitation and precipitation extremes and regionally dependent changes in temporal clustering. The model results also provide evidence for a change in spatial dependence in a warmer climate with spatially larger extreme precipitation systems possible. Our results highlight the need to produce better observation-based gridded data sets and also the need to adapt to more intense and frequent extreme precipitation events in the future in South Korea.</p></div>","PeriodicalId":8556,"journal":{"name":"Asia-Pacific Journal of Atmospheric Sciences","volume":"60 5","pages":"709 - 725"},"PeriodicalIF":2.2,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141870294","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of Rice Paddy Model Based on Noah LSM: Consistent Parameterization of Subcanopy Resistance from the Ponded Water to Dense Rice Canopy 基于诺亚 LSM 的水稻田模型开发:从积水到茂密稻冠的冠下阻力的一致参数化
IF 2.2 4区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES Pub Date : 2024-07-22 DOI: 10.1007/s13143-024-00375-3
Hee-Jeong Lim, Young-Hee Lee

We developed a rice paddy model based on Noah land surface model (LSM) considering the standing water layer during the irrigation periods. In the model, we adopted a consistent subcanopy process from thin to thick canopy conditions and considered a small scalar roughness length of the water surface in the rice paddy fields. We evaluated the performance of the model using observations from three rice paddy sites with different leaf area index and water depth in Japan during the growing season. Two simulations were performed in an offline mode: a Noah LSM simulation with saturated soil moisture in the top two soil layers (IRRI) and a rice paddy model simulation (RICE). The average root mean squared errors of ground, sensible, and latent heat fluxes, and first soil layer temperature decreased by 20%, 16%, 17%, and 31%, respectively in the RICE simulation, compared to the IRRI simulation. The better performance of the RICE simulation was attributed to the consideration of the heat storage of the standing water layer during the irrigation periods and the realistic energy partitioning by the single-canopy model during the non-irrigation periods. Two sensitivity tests were performed related to the roughness length of the water and the constant mean water depth. When the small roughness length of the water surface during the irrigation periods was not considered, the subcanopy resistance decreased, which resulted in a cold bias in the daily mean ground and soil temperature and an overestimation of the daily mean latent heat flux under low leaf area index conditions. The use of constant mean water depth in the model did not significantly change simulated surface fluxes and ground and first soil layer temperature, implying that detailed information on temporally changing water depth is less important in the simulation.

我们在诺亚地表模型(LSM)的基础上开发了一个考虑到灌溉期积水层的水稻田模型。在该模型中,我们采用了从稀疏冠层到厚冠层的一致的亚冠层过程,并考虑了稻田中水面的小标度粗糙度长度。我们利用日本三个不同叶面积指数和水深的稻田在生长季节的观测数据对模型的性能进行了评估。我们在离线模式下进行了两次模拟:Noah LSM 模拟(顶部两层土壤水分饱和)(IRRI)和水稻田模型模拟(RICE)。与 IRRI 模拟相比,RICE 模拟的地面、显热通量、潜热通量和第一土壤层温度的平均均方根误差分别降低了 20%、16%、17% 和 31%。RICE 模拟效果更好的原因是考虑了灌溉期间积水层的蓄热以及非灌溉期间单冠模型的实际能量分配。对水体的粗糙度长度和恒定的平均水深进行了两项敏感性测试。当不考虑灌溉期水面粗糙度长度较小时,树冠下阻力减小,从而导致日平均地温和土壤温度偏低,并高估了低叶面积指数条件下的日平均潜热通量。在模型中使用恒定的平均水深并没有显著改变模拟的地表通量以及地面和第一土壤层温度,这意味着水深随时间变化的详细信息在模拟中并不那么重要。
{"title":"Development of Rice Paddy Model Based on Noah LSM: Consistent Parameterization of Subcanopy Resistance from the Ponded Water to Dense Rice Canopy","authors":"Hee-Jeong Lim,&nbsp;Young-Hee Lee","doi":"10.1007/s13143-024-00375-3","DOIUrl":"10.1007/s13143-024-00375-3","url":null,"abstract":"<div><p>We developed a rice paddy model based on Noah land surface model (LSM) considering the standing water layer during the irrigation periods. In the model, we adopted a consistent subcanopy process from thin to thick canopy conditions and considered a small scalar roughness length of the water surface in the rice paddy fields. We evaluated the performance of the model using observations from three rice paddy sites with different leaf area index and water depth in Japan during the growing season. Two simulations were performed in an offline mode: a Noah LSM simulation with saturated soil moisture in the top two soil layers (IRRI) and a rice paddy model simulation (RICE). The average root mean squared errors of ground, sensible, and latent heat fluxes, and first soil layer temperature decreased by 20%, 16%, 17%, and 31%, respectively in the RICE simulation, compared to the IRRI simulation. The better performance of the RICE simulation was attributed to the consideration of the heat storage of the standing water layer during the irrigation periods and the realistic energy partitioning by the single-canopy model during the non-irrigation periods. Two sensitivity tests were performed related to the roughness length of the water and the constant mean water depth. When the small roughness length of the water surface during the irrigation periods was not considered, the subcanopy resistance decreased, which resulted in a cold bias in the daily mean ground and soil temperature and an overestimation of the daily mean latent heat flux under low leaf area index conditions. The use of constant mean water depth in the model did not significantly change simulated surface fluxes and ground and first soil layer temperature, implying that detailed information on temporally changing water depth is less important in the simulation.</p></div>","PeriodicalId":8556,"journal":{"name":"Asia-Pacific Journal of Atmospheric Sciences","volume":"60 5","pages":"693 - 707"},"PeriodicalIF":2.2,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141745198","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Potential Precursory Signals of Localized Torrential Rainfall From Geostationary Satellite and Radar Observations: A Case Study of the 2022 Seoul Flood 从地球静止卫星和雷达观测中获取局部暴雨的潜在前兆信号:2022 年首尔洪水案例研究
IF 2.2 4区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES Pub Date : 2024-07-18 DOI: 10.1007/s13143-024-00376-2
Gyuyeon Kim, Yong-Sang Choi, Junho Ho

The Korean Peninsula frequently experiences localized torrential rainfall (LTR) in the summer. However, on August 8, 2022, a peculiar LTR occurred by the continuous generation of convective clouds within a few hours, numerical weather prediction model was hard to forecast such a high intensity of LTR. This study explores the possibility of uncovering potential precursory signals using remote sensing techniques in both Geostationary Korea Multi-Purpose Satellite 2A (GK2A) and the operational RKSG (Camp Humphreys) Weather Surveillance Radar 88 Doppler (WSR-88D). Using cloud properties from GK2A, cloud top temperature showed a decrease and maintained low values below 220 K 1–1.5 h before the LTR events. However, discerning the exact onset of LTR in already mature stage clouds using only GK2A variables proved challenging. Instead, liquid water content from RKSG sharply increased before the LTR started. Our calculation of the LTR potential from a combination of GK2A and RKSG cloud properties shows a more accurate precursory signal of LTR than from GK2A cloud properties solely or RKSG either. This study highlights the synergistic benefits of combining geostationary satellite and radar observations to understand and predict early precursors of LTR events.

朝鲜半岛在夏季经常出现局部暴雨(LTR)。然而,在 2022 年 8 月 8 日,由于在几个小时内连续产生对流云,发生了一次奇特的局地暴雨,数值天气预报模式很难预报如此高强度的局地暴雨。本研究探讨了利用遥感技术揭示韩国静止多用途卫星 2A(GK2A)和 RKSG(汉弗莱斯营)88 多普勒气象监视雷达(WSR-88D)潜在前兆信号的可能性。利用 GK2A 的云属性,云顶温度在 LTR 事件发生前 1-1.5 小时出现下降,并维持在 220 K 以下的低值。然而,仅使用 GK2A 变量来辨别已经成熟阶段的云层中 LTR 的确切开始时间证明具有挑战性。相反,RKSG 的液态水含量在 LTR 开始前急剧增加。我们根据 GK2A 和 RKSG 云特性组合计算出的 LTR 潜势显示,LTR 的前兆信号比仅根据 GK2A 云特性或 RKSG 更准确。这项研究强调了结合静止卫星和雷达观测来了解和预测 LTR 事件早期前兆的协同效益。
{"title":"Potential Precursory Signals of Localized Torrential Rainfall From Geostationary Satellite and Radar Observations: A Case Study of the 2022 Seoul Flood","authors":"Gyuyeon Kim,&nbsp;Yong-Sang Choi,&nbsp;Junho Ho","doi":"10.1007/s13143-024-00376-2","DOIUrl":"10.1007/s13143-024-00376-2","url":null,"abstract":"<div><p>The Korean Peninsula frequently experiences localized torrential rainfall (LTR) in the summer. However, on August 8, 2022, a peculiar LTR occurred by the continuous generation of convective clouds within a few hours, numerical weather prediction model was hard to forecast such a high intensity of LTR. This study explores the possibility of uncovering potential precursory signals using remote sensing techniques in both Geostationary Korea Multi-Purpose Satellite 2A (GK2A) and the operational RKSG (Camp Humphreys) Weather Surveillance Radar 88 Doppler (WSR-88D). Using cloud properties from GK2A, cloud top temperature showed a decrease and maintained low values below 220 K 1–1.5 h before the LTR events. However, discerning the exact onset of LTR in already mature stage clouds using only GK2A variables proved challenging. Instead, liquid water content from RKSG sharply increased before the LTR started. Our calculation of the LTR potential from a combination of GK2A and RKSG cloud properties shows a more accurate precursory signal of LTR than from GK2A cloud properties solely or RKSG either. This study highlights the synergistic benefits of combining geostationary satellite and radar observations to understand and predict early precursors of LTR events.</p></div>","PeriodicalId":8556,"journal":{"name":"Asia-Pacific Journal of Atmospheric Sciences","volume":"60 5","pages":"679 - 692"},"PeriodicalIF":2.2,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13143-024-00376-2.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141745201","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Zonal Contrasts of the Tropical Pacific Climate Predicted by a Global Constraint 全球制约因素预测的热带太平洋气候的地带性对比
IF 2.2 4区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES Pub Date : 2024-07-12 DOI: 10.1007/s13143-024-00373-5
Sukyoung Lee, Peter R. Bannon, Mingyu Park, Joseph P. Clark

The zonal gradients in sea surface temperature and convective heating across the tropical Pacific play a pivotal role in setting the weather and climate patterns globally. Under global warming, the current generation of climate models predict that the zonal gradients will decrease, but the trajectory of the observed trends is the opposite. Theories supporting either of the two projections exist, but there are many relevant processes whose net effect is unclear. In this study, a global constraint – the maximum material entropy production (maxMEP) hypothesis—is considered to help close the gap. The climate system considered here is comprised of a one-layer atmosphere and surface in six regions that represent the western tropical Pacific, eastern tropical Pacific, northern and southern midlatitudes, and northern and southern polar regions. The model conserves energy but does not explicitly include dynamics. The model input is observation-based radiative parameters. The radiative effect of greenhouse gas (GHG) loading is mimicked by prescribing increases in the longwave absorptivity (epsilon). The model solutions predict that zonal contrasts in surface temperature, convective heat flux, and surface pressure increase with increasing (epsilon). While maxMEP solutions in general cannot provide a definite answer to the problem, these model results strengthen the possibility that the trajectory of the observed trend reflects the response to increasing GHG loading in the atmosphere.

热带太平洋海面温度和对流加热的地带梯度对全球天气和气候模式的形成起着关键作用。在全球变暖的情况下,新一代气候模型预测带状梯度将减小,但观测到的趋势轨迹却恰恰相反。支持这两种预测的理论都存在,但有许多相关过程的净影响尚不清楚。在本研究中,考虑了一个全球约束条件--最大物质熵产生(maxMEP)假说--以帮助缩小差距。本文所考虑的气候系统由六个区域的单层大气和地表组成,分别代表热带太平洋西部、热带太平洋东部、中纬度北部和南部以及极地北部和南部。模型保存能量,但不明确包含动力学。模式输入是基于观测的辐射参数。通过增加长波吸收率模拟温室气体(GHG)负荷的辐射效应。模式解预测,地表温度、对流热通量和地表气压的地带性对比会随着 ( ( )的增加而增加。虽然一般来说,maxMEP 的解法不能给出问题的明确答案,但这些模式结果加强了这样一种可能性,即观测到的趋势轨迹反映了大气中温室气体负荷增加的反应。
{"title":"Zonal Contrasts of the Tropical Pacific Climate Predicted by a Global Constraint","authors":"Sukyoung Lee,&nbsp;Peter R. Bannon,&nbsp;Mingyu Park,&nbsp;Joseph P. Clark","doi":"10.1007/s13143-024-00373-5","DOIUrl":"10.1007/s13143-024-00373-5","url":null,"abstract":"<div><p>The zonal gradients in sea surface temperature and convective heating across the tropical Pacific play a pivotal role in setting the weather and climate patterns globally. Under global warming, the current generation of climate models predict that the zonal gradients will decrease, but the trajectory of the observed trends is the opposite. Theories supporting either of the two projections exist, but there are many relevant processes whose net effect is unclear. In this study, a global constraint – the maximum material entropy production (maxMEP) hypothesis—is considered to help close the gap. The climate system considered here is comprised of a one-layer atmosphere and surface in six regions that represent the western tropical Pacific, eastern tropical Pacific, northern and southern midlatitudes, and northern and southern polar regions. The model conserves energy but does not explicitly include dynamics. The model input is observation-based radiative parameters. The radiative effect of greenhouse gas (GHG) loading is mimicked by prescribing increases in the longwave absorptivity <span>(epsilon)</span>. The model solutions predict that zonal contrasts in surface temperature, convective heat flux, and surface pressure increase with increasing <span>(epsilon)</span>. While maxMEP solutions in general cannot provide a definite answer to the problem, these model results strengthen the possibility that the trajectory of the observed trend reflects the response to increasing GHG loading in the atmosphere.</p></div>","PeriodicalId":8556,"journal":{"name":"Asia-Pacific Journal of Atmospheric Sciences","volume":"60 5","pages":"669 - 678"},"PeriodicalIF":2.2,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13143-024-00373-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141611647","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Primary Factors and Synoptic Pattern Classification of Mega Asian Dust Storms in Korea 韩国亚洲特大沙尘暴的主要因素和综合模式分类
IF 2.2 4区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES Pub Date : 2024-06-26 DOI: 10.1007/s13143-024-00374-4
Seungyeon Lee, Ji Won Yoon, Seon Ki Park

High concentration Asian Dust Storms (ADSs) significantly impact health and economic activities by increasing atmospheric particulate matter. This study aims to understand the mechanisms, migration paths, and activity patterns of ADSs, which are essential for issuing timely warnings and aiding in atmospheric environment research. Using unsupervised learning methods, including the principal component analysis (PCA) and K-means clustering, we analyzed the mega ADS events from 2002 to 2022 based on the ECMWF reanalysis (ERA5) data. We identified key meteorological factors, including geopotential height and temperature at lower levels (800–1000 hPa), and classified synoptic patterns associated to the mega ADSs during the origination stages in the source regions and the peak concentration stages in Korea. Findings highlight that, during the origination stage, enhanced troughs and high temperature at low levels are primary factors affecting atmospheric instability and consequently strong updrafts that lift dust particles, combined with high planetary boundary layer heights, ranging 1400─2950 m, and strong pressure gradients at the source regions. It is further noted that low-level temperature and specific humidity are critical during the peak stages in Korea, with contributions from higher atmospheric levels. Variability in atmospheric conditions among different patterns affects dust concentrations, with certain patterns experiencing sharp declines in humidity leading to peak dust events. Noting also that the mega ADSs occur under specific synoptic patterns classified at both the origination stages and the peak concentration stages in Korea, this comprehensive analysis provides crucial insights into the dynamics and prediction of mega ADSs in Korea.

高浓度亚洲沙尘暴(ADS)会增加大气中的颗粒物,从而严重影响健康和经济活动。本研究旨在了解亚洲沙尘暴的机制、迁移路径和活动模式,这对于及时发布预警和协助大气环境研究至关重要。利用无监督学习方法,包括主成分分析(PCA)和 K-means 聚类,我们基于 ECMWF 再分析(ERA5)数据分析了 2002 年至 2022 年的特大 ADS 事件。我们确定了关键的气象因素,包括低层(800-1000 hPa)的位势高度和温度,并划分了在源区的发源阶段和韩国的峰值聚集阶段与超大型 ADS 相关的天气模式。研究结果突出表明,在起始阶段,低槽增强和低层温度高是影响大气不稳定性的主要因素,因此会产生强大的上升气流,扬起尘埃粒子,再加上行星边界层高度高(1400-2950 米),以及源区压力梯度大。另据指出,在韩国的高峰阶段,低层温度和比湿度至关重要,而高层大气也有贡献。不同模式之间大气条件的变化会影响沙尘浓度,某些模式的湿度会急剧下降,导致沙尘事件达到峰值。这一综合分析还指出,在韩国,特大型 ADS 发生在特定的合流模式下,在起源阶段和峰值浓度阶段都有分类,这为韩国特大型 ADS 的动态和预测提供了重要见解。
{"title":"Primary Factors and Synoptic Pattern Classification of Mega Asian Dust Storms in Korea","authors":"Seungyeon Lee,&nbsp;Ji Won Yoon,&nbsp;Seon Ki Park","doi":"10.1007/s13143-024-00374-4","DOIUrl":"10.1007/s13143-024-00374-4","url":null,"abstract":"<div><p>High concentration Asian Dust Storms (ADSs) significantly impact health and economic activities by increasing atmospheric particulate matter. This study aims to understand the mechanisms, migration paths, and activity patterns of ADSs, which are essential for issuing timely warnings and aiding in atmospheric environment research. Using unsupervised learning methods, including the principal component analysis (PCA) and K-means clustering, we analyzed the mega ADS events from 2002 to 2022 based on the ECMWF reanalysis (ERA5) data. We identified key meteorological factors, including geopotential height and temperature at lower levels (800–1000 hPa), and classified synoptic patterns associated to the mega ADSs during the origination stages in the source regions and the peak concentration stages in Korea. Findings highlight that, during the origination stage, enhanced troughs and high temperature at low levels are primary factors affecting atmospheric instability and consequently strong updrafts that lift dust particles, combined with high planetary boundary layer heights, ranging 1400─2950 m, and strong pressure gradients at the source regions. It is further noted that low-level temperature and specific humidity are critical during the peak stages in Korea, with contributions from higher atmospheric levels. Variability in atmospheric conditions among different patterns affects dust concentrations, with certain patterns experiencing sharp declines in humidity leading to peak dust events. Noting also that the mega ADSs occur under specific synoptic patterns classified at both the origination stages and the peak concentration stages in Korea, this comprehensive analysis provides crucial insights into the dynamics and prediction of mega ADSs in Korea.</p></div>","PeriodicalId":8556,"journal":{"name":"Asia-Pacific Journal of Atmospheric Sciences","volume":"60 5","pages":"655 - 667"},"PeriodicalIF":2.2,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141500704","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impacts of Climate Change on Atmospheric Rivers over East Asia 气候变化对东亚上空大气河流的影响
IF 2.2 4区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES Pub Date : 2024-06-14 DOI: 10.1007/s13143-024-00372-6
Tae-Jun Kim, Jinwon Kim, Jin-Uk Kim, Chu-Yong Chung, Young-Hwa Byun

Atmospheric rivers (ARs) are closely associated with extreme precipitation and hydrological events in East Asia. Predicting the impacts of climate change on ARs is crucial for preventing the damage caused by extreme precipitation and ensuring the effective operation of water management facilities. We aimed to conduct future projections (2080–2099) of annual and seasonal changes based on the assessment of East Asian AR and AR-related precipitation, using the Coupled Model Intercomparison Project Phase 6 (CMIP6) Multi-model ensemble (MME). The annual average integrated vapor transport (IVT) in East Asia in 2080–2099 will increase by approximately 32.5% compared to 1995–2014. Meanwhile, the annual average AR frequency (FAR) will increase by approximately 111%. Examination of the water vapor and moist wind components of the IVT revealed that the future increase in the IVT was primarily from increases in water vapor. The increase in IVT is largely responsible for the increase in AR frequency. Changes in AR following global warming have also affected precipitation, increasing the total precipitation for East Asia. An examination of the changes in AR characteristics shows that the frequency of intense AR events will also increase owing to global warming. Increases in the frequency of strong AR events during the East Asian summer monsoon season are projected to occur. Projections regarding the frequency and intensity of AR events vary substantially by region, such as Korean Peninsula, Southern China and Western Japan.

东亚地区的大气河流(ARs)与极端降水和水文事件密切相关。预测气候变化对大气河流的影响对于防止极端降水造成的破坏和确保水管理设施的有效运行至关重要。我们的目标是利用耦合模式相互比较项目第六阶段(CMIP6)多模式集合(MME),在评估东亚区域降水和与区域降水相关的降水的基础上,对未来(2080-2099 年)的年变化和季节变化进行预测。与 1995-2014 年相比,2080-2099 年东亚的年平均综合水汽输送量(IVT)将增加约 32.5%。同时,年平均 AR 频率(FAR)将增加约 111%。对 IVT 的水汽和湿风成分的研究表明,未来 IVT 的增加主要来自水汽的增加。IVT 的增加在很大程度上导致了 AR 频率的增加。全球变暖后 AR 的变化也影响了降水,增加了东亚的总降水量。对 AR 特征变化的研究表明,由于全球变暖,强 AR 事件的频率也会增加。预计东亚夏季季风季节发生强 AR 事件的频率将增加。不同地区,如朝鲜半岛、中国南部和日本西部,对 AR 事件频率和强度的预测有很大差异。
{"title":"Impacts of Climate Change on Atmospheric Rivers over East Asia","authors":"Tae-Jun Kim,&nbsp;Jinwon Kim,&nbsp;Jin-Uk Kim,&nbsp;Chu-Yong Chung,&nbsp;Young-Hwa Byun","doi":"10.1007/s13143-024-00372-6","DOIUrl":"10.1007/s13143-024-00372-6","url":null,"abstract":"<div><p>Atmospheric rivers (ARs) are closely associated with extreme precipitation and hydrological events in East Asia. Predicting the impacts of climate change on ARs is crucial for preventing the damage caused by extreme precipitation and ensuring the effective operation of water management facilities. We aimed to conduct future projections (2080–2099) of annual and seasonal changes based on the assessment of East Asian AR and AR-related precipitation, using the Coupled Model Intercomparison Project Phase 6 (CMIP6) Multi-model ensemble (MME). The annual average integrated vapor transport (IVT) in East Asia in 2080–2099 will increase by approximately 32.5% compared to 1995–2014. Meanwhile, the annual average AR frequency (F<sub>AR</sub>) will increase by approximately 111%. Examination of the water vapor and moist wind components of the IVT revealed that the future increase in the IVT was primarily from increases in water vapor. The increase in IVT is largely responsible for the increase in AR frequency. Changes in AR following global warming have also affected precipitation, increasing the total precipitation for East Asia. An examination of the changes in AR characteristics shows that the frequency of intense AR events will also increase owing to global warming. Increases in the frequency of strong AR events during the East Asian summer monsoon season are projected to occur. Projections regarding the frequency and intensity of AR events vary substantially by region, such as Korean Peninsula, Southern China and Western Japan.</p></div>","PeriodicalId":8556,"journal":{"name":"Asia-Pacific Journal of Atmospheric Sciences","volume":"60 5","pages":"639 - 654"},"PeriodicalIF":2.2,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141342974","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Physicochemical Characteristics and Formation of PM2.5 in Yongin, Korea—A Suburban Metropolitan Area 韩国龙仁--大都市郊区 PM2.5 的物理化学特征和形成过程
IF 2.2 4区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES Pub Date : 2024-06-07 DOI: 10.1007/s13143-024-00371-7
Inseon Park, Seokwon Kang, Kyunghoon Kim, Jihee Ban, Jeongin Song, Chan-Soo Jeon, Taehyun Park, Taehyoung Lee

This study investigated the physicochemical properties of PM2.5, especially among secondary aerosols, based on the particulate matter and gaseous precursors in Yongin, Korea measured between February and June 2022. A comparative analysis of PM composition across two seasons highlighted the atmospheric characteristics of this suburban area. As observed, the average PM2.5 concentrations in February and March were higher than those in May and June, with NO3 being particularly predominant during the colder months when PM2.5 levels were elevated. During this period, the high levels of gaseous precursors such as NOX, HNO3, and NMHC likely contributed to secondary aerosol formation. The intermediate oxidation states of organic matter in Yongin indicate its suburban characteristic, which is intermediate between urban and rural areas. Inorganic aerosols were enriched with (NH4)2SO4 with sufficient NH3 availability, and then the formation of NH4NO3 was promoted through the reaction of the same phase (gas–gas) HNO3 with NH3. Additionally, the temperature variations influenced the PM2.5 composition, promoting the production of NH4NO3 in February–March. In Yongin, HNO3 acted as a limiting factor in NH4NO3 production. Thus, the management of precursor gases such as HNO3 and NO2 is crucial during periods of high PM2.5 in the colder seasons.

本研究根据 2022 年 2 月至 6 月期间在韩国龙仁测量的颗粒物和气体前体,研究了 PM2.5 的物理化学特性,尤其是二次气溶胶。对两个季节的可吸入颗粒物成分进行的对比分析凸显了这一郊区的大气特征。据观察,2 月和 3 月的 PM2.5 平均浓度高于 5 月和 6 月,尤其是在 PM2.5 浓度较高的寒冷月份,NO3- 占主导地位。在此期间,NOX、HNO3 和 NMHC 等气态前体物的高浓度可能促成了二次气溶胶的形成。永仁有机物的中间氧化态表明了其郊区特征,即介于城市和农村地区之间。在 NH3 充足的情况下,无机气溶胶中富含 (NH4)2SO4,然后通过同相(气-气)HNO3 与 NH3 的反应促进 NH4NO3 的形成。此外,温度的变化也影响了 PM2.5 的成分,促进了 2-3 月份 NH4NO3 的生成。在永仁,HNO3 是 NH4NO3 生成的限制因素。因此,在寒冷季节 PM2.5 高发期间,HNO3 和 NO2 等前体气体的管理至关重要。
{"title":"Physicochemical Characteristics and Formation of PM2.5 in Yongin, Korea—A Suburban Metropolitan Area","authors":"Inseon Park,&nbsp;Seokwon Kang,&nbsp;Kyunghoon Kim,&nbsp;Jihee Ban,&nbsp;Jeongin Song,&nbsp;Chan-Soo Jeon,&nbsp;Taehyun Park,&nbsp;Taehyoung Lee","doi":"10.1007/s13143-024-00371-7","DOIUrl":"10.1007/s13143-024-00371-7","url":null,"abstract":"<div><p>This study investigated the physicochemical properties of PM<sub>2.5</sub>, especially among secondary aerosols, based on the particulate matter and gaseous precursors in Yongin, Korea measured between February and June 2022. A comparative analysis of PM composition across two seasons highlighted the atmospheric characteristics of this suburban area. As observed, the average PM<sub>2.5</sub> concentrations in February and March were higher than those in May and June, with NO<sub>3</sub><sup>−</sup> being particularly predominant during the colder months when PM<sub>2.5</sub> levels were elevated. During this period, the high levels of gaseous precursors such as NO<sub>X</sub>, HNO<sub>3</sub>, and NMHC likely contributed to secondary aerosol formation. The intermediate oxidation states of organic matter in Yongin indicate its suburban characteristic, which is intermediate between urban and rural areas. Inorganic aerosols were enriched with (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub> with sufficient NH<sub>3</sub> availability, and then the formation of NH<sub>4</sub>NO<sub>3</sub> was promoted through the reaction of the same phase (gas–gas) HNO<sub>3</sub> with NH<sub>3</sub>. Additionally, the temperature variations influenced the PM<sub>2.5</sub> composition, promoting the production of NH<sub>4</sub>NO<sub>3</sub> in February–March. In Yongin, HNO<sub>3</sub> acted as a limiting factor in NH<sub>4</sub>NO<sub>3</sub> production. Thus, the management of precursor gases such as HNO<sub>3</sub> and NO<sub>2</sub> is crucial during periods of high PM<sub>2.5</sub> in the colder seasons.</p></div>","PeriodicalId":8556,"journal":{"name":"Asia-Pacific Journal of Atmospheric Sciences","volume":"60 5","pages":"625 - 638"},"PeriodicalIF":2.2,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141375742","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analysis of the Mesoscale Asymmetric Rainbands during the Slow Northward-Moving Period of Typhoon In-Fa (2021) 台风 "茵花"(2021 年)缓慢向北移动期间的中尺度不对称雨带分析
IF 2.2 4区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES Pub Date : 2024-06-07 DOI: 10.1007/s13143-024-00370-8
Shunan Yang, Yixiong Lu, Yi Hu, Boyu Chen, Zhenya Song, Min Chu

After making landfall, Typhoon In-Fa (2021) moved slowly, resulting in heavy rainfall and flooding across fourteen provinces in China. This extreme precipitation was primarily linked to the evolution of active mesoscale convective systems. This study analyzes the characteristics and causes of mesoscale rainbands during In-Fa’s slow northward-moving period, aiming to identify the key factors that influence the detailed evolution of typhoon rainbands and to enhance typhoon quantitative precipitation forecasting skill. In-Fa’s mesoscale asymmetric rainbands can be categorized into three types: mesoscale spiral rainbands, a convective rainband to the east of In-Fa, and a rainband to the north of In-Fa. Mesoscale low-level jets are a critical factor in the development of mesoscale spiral rainbands. The wind speed gradient near these jets, along with the convergence of wind directions between two jets, fosters low-level convergence and upward motion, triggering the evolution of several mesoscale rainbands. The convective rainband to the east of In-Fa flourishes under conditions of high humidity and energy, displaying distinct diurnal variations. This is due to the strengthening of low-level jets at night, which enhances both dynamic convergence and water vapor availability. The presence of moderate to strong convective available potential energy (600–1500 J kg−1), substantial whole-layer water vapor (relative humidity exceeding 90–95%), and a high 0 °C-layer favors the development of efficient warm-cloud convective precipitation, leading to intense hourly rainfall. The rainband to the north of In-Fa is primarily associated with cold air intrusion in the lower troposphere, although the interaction between typhoon and mid-latitude systems has not yet occurred. At the interface between cold and warm air, the colder air to the north side sinks while the warmer air to the south side rises, forming a secondary circulation that supports the development and persistence of precipitation on the north side of the typhoon. These findings offer a conceptual model for accurately predicting precipitation associated with typhoons that move slowly northward after landfall.

台风 "茵芙"(2021 年)登陆后移动缓慢,导致中国 14 个省遭受暴雨和洪涝灾害。这次极端降水主要与活跃的中尺度对流系统的演变有关。本研究分析了 "暹芭 "缓慢北移期间中尺度雨带的特征和成因,旨在找出影响台风雨带详细演变的关键因素,提高台风定量降水预报技能。英法 "的中尺度非对称雨带可分为三类:中尺度螺旋雨带、"英法 "以东的对流雨带和 "英法 "以北的雨带。中尺度低空喷流是形成中尺度螺旋雨带的关键因素。这些喷流附近的风速梯度,以及两个喷流之间的风向交汇,促进了低空辐合和上升运动,引发了多个中尺度雨带的演变。在高湿度和高能量条件下,In-Fa 东部的对流雨带蓬勃发展,显示出明显的昼夜变化。这是由于夜间低空喷流加强,增强了动态辐合和水汽供应。中到强对流可用势能(600-1500 焦耳/千克-1)、大量全层水汽(相对湿度超过 90-95%)和高 0 °C 层的存在有利于高效暖云对流降水的发展,从而导致每小时的强降雨。虽然台风和中纬度系统之间的相互作用尚未发生,但 "茵-法 "以北的雨带主要与对流层低层的冷空气入侵有关。在冷暖空气交界处,北侧的冷空气下沉,而南侧的暖空气上升,形成二次环流,支持台风北侧降水的发展和持续。这些发现为准确预测与登陆后缓慢北移的台风相关的降水提供了一个概念模型。
{"title":"Analysis of the Mesoscale Asymmetric Rainbands during the Slow Northward-Moving Period of Typhoon In-Fa (2021)","authors":"Shunan Yang,&nbsp;Yixiong Lu,&nbsp;Yi Hu,&nbsp;Boyu Chen,&nbsp;Zhenya Song,&nbsp;Min Chu","doi":"10.1007/s13143-024-00370-8","DOIUrl":"10.1007/s13143-024-00370-8","url":null,"abstract":"<div><p>After making landfall, Typhoon In-Fa (2021) moved slowly, resulting in heavy rainfall and flooding across fourteen provinces in China. This extreme precipitation was primarily linked to the evolution of active mesoscale convective systems. This study analyzes the characteristics and causes of mesoscale rainbands during In-Fa’s slow northward-moving period, aiming to identify the key factors that influence the detailed evolution of typhoon rainbands and to enhance typhoon quantitative precipitation forecasting skill. In-Fa’s mesoscale asymmetric rainbands can be categorized into three types: mesoscale spiral rainbands, a convective rainband to the east of In-Fa, and a rainband to the north of In-Fa. Mesoscale low-level jets are a critical factor in the development of mesoscale spiral rainbands. The wind speed gradient near these jets, along with the convergence of wind directions between two jets, fosters low-level convergence and upward motion, triggering the evolution of several mesoscale rainbands. The convective rainband to the east of In-Fa flourishes under conditions of high humidity and energy, displaying distinct diurnal variations. This is due to the strengthening of low-level jets at night, which enhances both dynamic convergence and water vapor availability. The presence of moderate to strong convective available potential energy (600–1500 J kg<sup>−1</sup>), substantial whole-layer water vapor (relative humidity exceeding 90–95%), and a high 0 °C-layer favors the development of efficient warm-cloud convective precipitation, leading to intense hourly rainfall. The rainband to the north of In-Fa is primarily associated with cold air intrusion in the lower troposphere, although the interaction between typhoon and mid-latitude systems has not yet occurred. At the interface between cold and warm air, the colder air to the north side sinks while the warmer air to the south side rises, forming a secondary circulation that supports the development and persistence of precipitation on the north side of the typhoon. These findings offer a conceptual model for accurately predicting precipitation associated with typhoons that move slowly northward after landfall.</p></div>","PeriodicalId":8556,"journal":{"name":"Asia-Pacific Journal of Atmospheric Sciences","volume":"60 5","pages":"609 - 624"},"PeriodicalIF":2.2,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13143-024-00370-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141372191","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Detection and Warning System for Sudden high Swells on the east Coast of the Korean Peninsula 朝鲜半岛东海岸突发大浪的探测和预警系统
IF 2.2 4区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES Pub Date : 2024-06-05 DOI: 10.1007/s13143-024-00368-2
Youjung Oh, Sang Myeong Oh, Pil-Hun Chang, Il-Ju Moon

Over the past few years, sudden high swells (SHSs) have often occurred on the east coast of the Korean Peninsula (KP), especially during the winter season, causing many casualties and considerable property damage. High waves can be generated suddenly even in the absence of strong winds, sweeping away unsuspecting people on breakwaters or causing damage to properties such as ports and fish farms located on coasts. In this study, we developed a detection and warning system for SHSs on the KP’s east coast. First, we developed a method for separating waves into the wind sea and swell components based on one-dimensional wave spectra, wind speed, wind direction, and mean wave direction data obtained from coastal buoys. Using the calculated significant wave height difference between swells and wind seas, as well as wind speed, we developed a SHS alert system with three levels: “Attention,” “Watch,” and “Warning.” This system successfully detected three recent swell events on the east coast of the KP. Applying this system to an operational wave prediction model, it successfully issued an alert 72 h before the SHS reached the coast. The proposed system can provide consistent quantitative forecast information that can greatly contribute to preventing casualties and property damage caused by SHSs.

在过去几年里,朝鲜半岛(KP)东海岸经常发生突发性海浪(SHS),尤其是在冬季,造成了许多人员伤亡和巨大的财产损失。即使在没有强风的情况下,也会突然产生大浪,将防波堤上毫无防备的人们卷走,或对位于海岸上的港口和养鱼场等财产造成损害。在这项研究中,我们开发了一套针对金沙萨东海岸 SHS 的探测和预警系统。首先,我们根据从沿岸浮标获得的一维波谱、风速、风向和平均波向数据,开发了一种将海浪分为风海和涌浪两部分的方法。利用计算出的海浪和风海之间的显著波高差以及风速,我们开发出了一套有三个级别的 SHS 警报系统:"注意"、"观察 "和 "警告"。该系统成功检测到了最近在金边群岛东海岸发生的三次海浪事件。将这一系统应用到波浪预测模型中,它成功地在 SHS 到达海岸前 72 小时发出了警报。所建议的系统可以提供一致的定量预报信息,这对预防 SHS 造成的人员伤亡和财产损失大有裨益。
{"title":"Detection and Warning System for Sudden high Swells on the east Coast of the Korean Peninsula","authors":"Youjung Oh,&nbsp;Sang Myeong Oh,&nbsp;Pil-Hun Chang,&nbsp;Il-Ju Moon","doi":"10.1007/s13143-024-00368-2","DOIUrl":"10.1007/s13143-024-00368-2","url":null,"abstract":"<div><p>Over the past few years, sudden high swells (SHSs) have often occurred on the east coast of the Korean Peninsula (KP), especially during the winter season, causing many casualties and considerable property damage. High waves can be generated suddenly even in the absence of strong winds, sweeping away unsuspecting people on breakwaters or causing damage to properties such as ports and fish farms located on coasts. In this study, we developed a detection and warning system for SHSs on the KP’s east coast. First, we developed a method for separating waves into the wind sea and swell components based on one-dimensional wave spectra, wind speed, wind direction, and mean wave direction data obtained from coastal buoys. Using the calculated significant wave height difference between swells and wind seas, as well as wind speed, we developed a SHS alert system with three levels: “Attention,” “Watch,” and “Warning.” This system successfully detected three recent swell events on the east coast of the KP. Applying this system to an operational wave prediction model, it successfully issued an alert 72 h before the SHS reached the coast. The proposed system can provide consistent quantitative forecast information that can greatly contribute to preventing casualties and property damage caused by SHSs.</p></div>","PeriodicalId":8556,"journal":{"name":"Asia-Pacific Journal of Atmospheric Sciences","volume":"60 4","pages":"555 - 572"},"PeriodicalIF":2.2,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141257960","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Asia-Pacific Journal of Atmospheric Sciences
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1