The same family four single-moment microphysics schemes (WSM3, WSM5, WSM6, and WSM7) were selected to simulate the tropical cyclone (TC) Mujigae in 2015 over the South China Sea using the Weather Research and Forecasting (WRF) model. The effect of the species number of hydrometeors (SNH) used in these schemes on the track, intensity, precipitation, and structure of the TC is investigated. SNH has a slight impact on the TC track, while a significant effect on the TC intensity. The WSM6 scheme has the best skill to reproduce the minimum sea level pressure (MSLP). The WSM3 scheme has the highest simulation score for the maximum surface wind (MSW) speed. In general, the simulated TC intensity is strengthened as SNH increased, while weakened with the addition of hail. SNH affects structure and thus the TC intensity. The TC simulated by WSM6 scheme, with the smallest eye area and the radius of maximum wind, the strongest cloud wall convection, warm core, convergence in the lower layer, and divergence in the upper layer, simulates the minimum MSLP, which is closest to the observation. The four schemes can well reproduce precipitation distribution. The relationship between the total hydrometeor content and the TC intensity is non-linear. The total hydrometeor content simulated by the WSM3 scheme is the most while that by the WSM6 scheme is the least. However, the cloud ice simulated by the WSM6 scheme is the most. The graupel simulated by the WSM6 scheme is more than that by the WSM7 scheme. SNH modifies the microphysical conversion process and latent heat efficiency, and further affects the structure and intensity of TC.