Pub Date : 2022-03-30DOI: 10.1089/adt.2022.29100.bjm
B. Melancon
{"title":"Forging Ahead with ASSAY.","authors":"B. Melancon","doi":"10.1089/adt.2022.29100.bjm","DOIUrl":"https://doi.org/10.1089/adt.2022.29100.bjm","url":null,"abstract":"","PeriodicalId":8586,"journal":{"name":"Assay and drug development technologies","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2022-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48452876","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Drug Repurposing Patent Applications October: December 2021.","authors":"H. Mucke","doi":"10.1089/adt.2022.002","DOIUrl":"https://doi.org/10.1089/adt.2022.002","url":null,"abstract":"","PeriodicalId":8586,"journal":{"name":"Assay and drug development technologies","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2022-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44281107","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Migration is a key property of live cells and critical for normal development, immune response, and disease processes such as cancer metastasis and inflammation. Methods to examine cell migration are especially useful and important for a wide range of biomedical research such as cancer biology, immunology, vascular biology, cell biology, and developmental biology. In vitro assays are excellent approaches to extrapolate to in vivo situations and study live cells behavior. The aim of this article is to discuss the existing methods for transwell migration/invasion studies, the problems associated with this assay, and proposed modifications to this methodological approach that makes it simple to perform and improve the assay accuracy. Results of our studies demonstrated that the count of cells that had grown on top of the membrane is important to accurately evaluate the percentage of migrated/invaded cells. The results also showed that the transparent transwell insert with 4',6-diamidino-2-phenylindole (DAPI) stained cells is the best approach to ease the analysis of cell numbers on top of the membranes. In addition, the overlay of bright light (representing membrane pores) and DAPI images can further improve the accuracy of cell count. All these modifications in combination simplify the assay performance and improve the accuracy of the transwell migration assay method.
{"title":"Modifications to the Transwell Migration/Invasion Assay Method That Eases Assay Performance and Improves the Accuracy.","authors":"Heidi Marie Stoellinger, Arshak R Alexanian","doi":"10.1089/adt.2021.140","DOIUrl":"https://doi.org/10.1089/adt.2021.140","url":null,"abstract":"<p><p>Migration is a key property of live cells and critical for normal development, immune response, and disease processes such as cancer metastasis and inflammation. Methods to examine cell migration are especially useful and important for a wide range of biomedical research such as cancer biology, immunology, vascular biology, cell biology, and developmental biology. <i>In vitro</i> assays are excellent approaches to extrapolate to <i>in vivo</i> situations and study live cells behavior. The aim of this article is to discuss the existing methods for transwell migration/invasion studies, the problems associated with this assay, and proposed modifications to this methodological approach that makes it simple to perform and improve the assay accuracy. Results of our studies demonstrated that the count of cells that had grown on top of the membrane is important to accurately evaluate the percentage of migrated/invaded cells. The results also showed that the transparent transwell insert with 4',6-diamidino-2-phenylindole (DAPI) stained cells is the best approach to ease the analysis of cell numbers on top of the membranes. In addition, the overlay of bright light (representing membrane pores) and DAPI images can further improve the accuracy of cell count. All these modifications in combination simplify the assay performance and improve the accuracy of the transwell migration assay method.</p>","PeriodicalId":8586,"journal":{"name":"Assay and drug development technologies","volume":"20 2","pages":"75-82"},"PeriodicalIF":1.8,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8968842/pdf/adt.2021.140.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10819806","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study focuses on the development of topical formulation of methoxsalen using Babchi oil as formulation component that can be applied at body surfaces providing sustained delivery and enhanced penetration of methoxsalen leading to significant epidermal localization and better anti-psoriatic activity. The combination of psoralens, that is, methoxsalen (synthetic) and Babchi oil (natural) has been developed into nanoemulgel formulations. A total of four nanoemulsion formulations was developed using Babchi oil as oil phase and Tween 80 as surfactant by high-pressure homogenization method. The prepared nanoemulsions were characterized for entrapment efficiency, mean droplet size, and zeta potential. Based on characterization results, the optimized nanoemulsion formulation(s) were incorporated into the carbopol gel base to make a nanoemulgel. The prepared nanoemulgel formulations were analyzed for pH, drug content determination, spreadability, viscosity, ex vivo skin permeation, and in vivo studies. The nanoemulsions showed droplet size between 51.3 and 146.7 nm, entrapment efficiency of 92.76%-98.10%, and zeta potential of -28.1 to -54.89 mev. The nanoemulsions showed varied in vitro drug release. In ex vivo skin permeation, nanoemulgel (NG2) showed increased penetration and localized accumulation of methoxsalen across the skin compared with plain gel. Ex vivo results were substantiated by in vivo results showing significant amelioration of hyperproliferative skin symptoms. The promising results suggested that nanoemulgel system is a suitable carrier for the topical delivery of methoxsalen-Babchi oil.
{"title":"Development of Topical Nanoemulgel Using Combined Therapy for Treating Psoriasis.","authors":"Snigdha Bhardwaj, Praveen Kumar Gaur, Ashutosh Tiwari","doi":"10.1089/adt.2021.112","DOIUrl":"https://doi.org/10.1089/adt.2021.112","url":null,"abstract":"<p><p>This study focuses on the development of topical formulation of methoxsalen using Babchi oil as formulation component that can be applied at body surfaces providing sustained delivery and enhanced penetration of methoxsalen leading to significant epidermal localization and better anti-psoriatic activity. The combination of psoralens, that is, methoxsalen (synthetic) and Babchi oil (natural) has been developed into nanoemulgel formulations. A total of four nanoemulsion formulations was developed using Babchi oil as oil phase and Tween 80 as surfactant by high-pressure homogenization method. The prepared nanoemulsions were characterized for entrapment efficiency, mean droplet size, and zeta potential. Based on characterization results, the optimized nanoemulsion formulation(s) were incorporated into the carbopol gel base to make a nanoemulgel. The prepared nanoemulgel formulations were analyzed for pH, drug content determination, spreadability, viscosity, <i>ex vivo</i> skin permeation, and <i>in vivo</i> studies. The nanoemulsions showed droplet size between 51.3 and 146.7 nm, entrapment efficiency of 92.76%-98.10%, and zeta potential of -28.1 to -54.89 mev. The nanoemulsions showed varied in vitro drug release. In <i>ex vivo</i> skin permeation, nanoemulgel (NG2) showed increased penetration and localized accumulation of methoxsalen across the skin compared with plain gel. <i>Ex vivo</i> results were substantiated by <i>in vivo</i> results showing significant amelioration of hyperproliferative skin symptoms. The promising results suggested that nanoemulgel system is a suitable carrier for the topical delivery of methoxsalen-Babchi oil.</p>","PeriodicalId":8586,"journal":{"name":"Assay and drug development technologies","volume":"20 1","pages":"42-54"},"PeriodicalIF":1.8,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39705403","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
<p><p>Mesalamine is the first-line choice of drug for ulcerative colitis management. However, due to the nontargeted delivery of mesalamine, it shows side effects. The possible impact of mesalamine can be improved by coated microparticles in combination with <i>S. boulardii</i> for targeted delivery to the colon with the prevention of unwanted side effects. In this work, pectin-based mesalamine and <i>S. boulardii</i> loaded microparticles were prepared by dehydration technique and coated by an oil-in-oil solvent evaporation method and characterized by Scanning electron microscopy (SEM), X-ray diffraction, and zeta analysis. 2, 4, 6-Trinitrobenzenesulfonic acid was used for the induction of colitis. The anti-inflammatory effects of coated microparticles on Caco-2 cells were assessed by the determination of interleukin (IL)-8 concentration. In addition, the impact of coated microparticles on the concentration of colonic enzymes, including myeloperoxidase (MPO), lipid peroxides, and glutathione (GSH), were also evaluated. Moreover, hematological parameters, including white blood cell (WBC), erythrocyte sedimentation rate (ESR), and C-reactive protein (CRP), were assessed. SEM data revealed that all the prepared coated microparticles had an almost spherical shape. The X-ray powder diffraction analysis of uncoated and coated microparticles showed maximum stability without any interaction. The particle size of uncoated and coated microparticles was 9.14 and 15.61 μm, respectively. The zeta potential of uncoated and coated microparticles was observed to be -26.78 and -29.36 mV, respectively. The prepared coated microparticles decreased the levels of lipid peroxides, MPO, and GSH significantly in colitis. In the Caco-2 cell culture model, the concentration of IL-8 is decreased significantly. The hematological observations confirmed that the prepared formulation showed a promising decrease in the levels of WBC, CRP, and ESR in diseased animals. Animal experiments revealed that cellulose acetate phthalate coated microparticles of mesalamine and <i>S. boulardii</i> significantly improved the colitis disease conditions of Wistar rats. Hence, cellulose acetate phthalate-coated microparticles of mesalamine and <i>S. boulardii</i> could be recommended as adjuvant therapy to achieve a synergistic effect in the management of UC. Lay summary Mesalamine is the drug of choice for the management of ulcerative colitis (UC), which inhibits mediators responsible for inflammation. We investigated the <i>in vivo</i> effects of cellulose acetate phthalate-coated microparticles of mesalamine with <i>Saccharomyces boulardii</i> (probiotic) for their efficacy against UC. Our findings evidenced that the combination of mesalamine with <i>S. boulardii</i> showed a synergistic effect in the 2,4,6- trinitrobenzene sulfonic acid-induced colitis model by reducing the inflammation and maintains the macroscopic features. From the observed results, it can be concluded that <i>S. boula
{"title":"Development and <i>In Vivo</i> Evaluation of Pectin Based Enteric Coated Microparticles Loaded with Mesalamine and <i>Saccharomyces boulardii</i> for Management of Ulcerative Colitis.","authors":"Amandeep Singh, Uttam Kumar Mandal, Raj Kumar Narang","doi":"10.1089/adt.2021.052","DOIUrl":"https://doi.org/10.1089/adt.2021.052","url":null,"abstract":"<p><p>Mesalamine is the first-line choice of drug for ulcerative colitis management. However, due to the nontargeted delivery of mesalamine, it shows side effects. The possible impact of mesalamine can be improved by coated microparticles in combination with <i>S. boulardii</i> for targeted delivery to the colon with the prevention of unwanted side effects. In this work, pectin-based mesalamine and <i>S. boulardii</i> loaded microparticles were prepared by dehydration technique and coated by an oil-in-oil solvent evaporation method and characterized by Scanning electron microscopy (SEM), X-ray diffraction, and zeta analysis. 2, 4, 6-Trinitrobenzenesulfonic acid was used for the induction of colitis. The anti-inflammatory effects of coated microparticles on Caco-2 cells were assessed by the determination of interleukin (IL)-8 concentration. In addition, the impact of coated microparticles on the concentration of colonic enzymes, including myeloperoxidase (MPO), lipid peroxides, and glutathione (GSH), were also evaluated. Moreover, hematological parameters, including white blood cell (WBC), erythrocyte sedimentation rate (ESR), and C-reactive protein (CRP), were assessed. SEM data revealed that all the prepared coated microparticles had an almost spherical shape. The X-ray powder diffraction analysis of uncoated and coated microparticles showed maximum stability without any interaction. The particle size of uncoated and coated microparticles was 9.14 and 15.61 μm, respectively. The zeta potential of uncoated and coated microparticles was observed to be -26.78 and -29.36 mV, respectively. The prepared coated microparticles decreased the levels of lipid peroxides, MPO, and GSH significantly in colitis. In the Caco-2 cell culture model, the concentration of IL-8 is decreased significantly. The hematological observations confirmed that the prepared formulation showed a promising decrease in the levels of WBC, CRP, and ESR in diseased animals. Animal experiments revealed that cellulose acetate phthalate coated microparticles of mesalamine and <i>S. boulardii</i> significantly improved the colitis disease conditions of Wistar rats. Hence, cellulose acetate phthalate-coated microparticles of mesalamine and <i>S. boulardii</i> could be recommended as adjuvant therapy to achieve a synergistic effect in the management of UC. Lay summary Mesalamine is the drug of choice for the management of ulcerative colitis (UC), which inhibits mediators responsible for inflammation. We investigated the <i>in vivo</i> effects of cellulose acetate phthalate-coated microparticles of mesalamine with <i>Saccharomyces boulardii</i> (probiotic) for their efficacy against UC. Our findings evidenced that the combination of mesalamine with <i>S. boulardii</i> showed a synergistic effect in the 2,4,6- trinitrobenzene sulfonic acid-induced colitis model by reducing the inflammation and maintains the macroscopic features. From the observed results, it can be concluded that <i>S. boula","PeriodicalId":8586,"journal":{"name":"Assay and drug development technologies","volume":"20 1","pages":"22-34"},"PeriodicalIF":1.8,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39893030","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-01-01Epub Date: 2022-01-05DOI: 10.1089/adt.2021.035.correx
{"title":"Correction to: <i>Novel Insight into Potential Leishmanicidal Activities of Transdermal Patches of</i> Nigella Sativa: <i>Formulation Development, Physical Characterizations, and</i> In vitro/In vivo <i>Assays</i> by Kahn <i>et al. Assay Drug Dev Technol</i>. 2021;19:339-349. DOI: 10.1089/adt.2021.035.","authors":"","doi":"10.1089/adt.2021.035.correx","DOIUrl":"https://doi.org/10.1089/adt.2021.035.correx","url":null,"abstract":"","PeriodicalId":8586,"journal":{"name":"Assay and drug development technologies","volume":"20 1","pages":"64-65"},"PeriodicalIF":1.8,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8787698/pdf/adt.2021.035.correx.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39875937","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-01-01Epub Date: 2021-12-31DOI: 10.1089/adt.2021.084
Dheeraj Kataria, Ameeduzzafar Zafar, Javed Ali, Karishma Khatoon, Saba Khan, Syed Sarim Imam, Mohd Yasir, Asgar Ali
The present research work was aimed to develop and optimize the nanostructured lipid carrier (NLCs) of the antihypertensive drug lacidipine (LAC) for the improvement of oral bioavailability and antihypertensive activity. LAC-NLCs were successfully developed by the preemulsion probe sonication technique. The formulations were optimized by Box-Behnken design and assessed for particle size (PS), polydispersity index (PDI), entrapment efficiency (EE), drug loading (DL), drug release, ex vivo permeation, and in vivo study. The optimized LAC-NLCs showed nanometric PS (191.0 ± 5.89 nm), high EE (90% ± 3.69%) and DL (9.26% ± 1.89%), negative zeta potential (-28.9 ± 0.99 mV), and narrow size distribution (PDI of 0.074 ± 0.013) with spherical morphology. The drug release study revealed that a significantly (p < 0.05) higher LAC release (88.49% ± 3.01%) was achieved from the optimized LAC-NLCs compared to LAC-dispersion (34.27% ± 3.01%). Moreover, the optimized LAC-NLCs showed significantly (p < 0.05) higher intestinal permeation (692.04 ± 19.76 μg) than LAC-dispersion (23.83 ± 5.08 μg). After oral administration of a single dose of LAC, the optimized LAC-NLCs exhibited 3.45-fold higher relative oral bioavailability as well as a more prominent antihypertensive effect than LAC-dispersion. This might be due to the high penetration and absorption of the drug. Hence, NLCs might provide an efficient nano delivery for the management of hypertension and promising drug delivery systems for the bioavailability enhancement of LAC.
{"title":"Formulation of Lipid-Based Nanocarriers of Lacidipine for Improvement of Oral Delivery: Box-Behnken Design Optimization, <i>In Vitro</i>, <i>Ex Vivo</i>, and Preclinical Assessment.","authors":"Dheeraj Kataria, Ameeduzzafar Zafar, Javed Ali, Karishma Khatoon, Saba Khan, Syed Sarim Imam, Mohd Yasir, Asgar Ali","doi":"10.1089/adt.2021.084","DOIUrl":"https://doi.org/10.1089/adt.2021.084","url":null,"abstract":"<p><p>The present research work was aimed to develop and optimize the nanostructured lipid carrier (NLCs) of the antihypertensive drug lacidipine (LAC) for the improvement of oral bioavailability and antihypertensive activity. LAC-NLCs were successfully developed by the preemulsion probe sonication technique. The formulations were optimized by Box-Behnken design and assessed for particle size (PS), polydispersity index (PDI), entrapment efficiency (EE), drug loading (DL), drug release, <i>ex vivo</i> permeation, and <i>in vivo</i> study. The optimized LAC-NLCs showed nanometric PS (191.0 ± 5.89 nm), high EE (90% ± 3.69%) and DL (9.26% ± 1.89%), negative zeta potential (-28.9 ± 0.99 mV), and narrow size distribution (PDI of 0.074 ± 0.013) with spherical morphology. The drug release study revealed that a significantly (<i>p</i> < 0.05) higher LAC release (88.49% ± 3.01%) was achieved from the optimized LAC-NLCs compared to LAC-dispersion (34.27% ± 3.01%). Moreover, the optimized LAC-NLCs showed significantly (<i>p</i> < 0.05) higher intestinal permeation (692.04 ± 19.76 μg) than LAC-dispersion (23.83 ± 5.08 μg). After oral administration of a single dose of LAC, the optimized LAC-NLCs exhibited 3.45-fold higher relative oral bioavailability as well as a more prominent antihypertensive effect than LAC-dispersion. This might be due to the high penetration and absorption of the drug. Hence, NLCs might provide an efficient nano delivery for the management of hypertension and promising drug delivery systems for the bioavailability enhancement of LAC.</p>","PeriodicalId":8586,"journal":{"name":"Assay and drug development technologies","volume":"20 1","pages":"5-21"},"PeriodicalIF":1.8,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39781172","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-01-01Epub Date: 2022-01-06DOI: 10.1089/adt.2021.090
Moayed Ben Moftah, Asma Eswayah
Cytokine release syndrome, a prominent mechanism of morbidity and mortality in patients with coronavirus disease 2019 (COVID-19), can cause multiple bodily reactions, including excessive release of proinflammatory mediators, with tumor necrosis factor-α (TNF-α) being the most prevalent cytokine combined with persistently elevated D-dimer levels that are indicative of potential thrombotic events, low levels of endogenous nitric oxide (NO) generation, and progressive decrease in hemoglobin production. In our argument, the conceptual repurposing of hydroxyurea (HU) for managing COVID-19 can provide a promising therapeutic option originating from a rich history of investigational antiviral activity. HU as a proposed supportive therapeutic agent for treating COVID-19 can exemplify a successful remedial choice through its anti-inflammatory activity along with an intrinsic propensity to control the circulatory levels of key cytokines including TNF-α. HU has the ability to undergo in vivo NO conversion acting as NO donor together with being a prominent inducer of fetal hemoglobin (HbF) production. The combination of the mentioned two properties allows HU to possess evident capability of protecting against thrombotic events by controlling D-dimer levels. The implication of our hypothetical argument sheds light on the curative potential of HU, which can be strategically harnessed against COVID-19.
{"title":"Repurposing of Hydroxyurea Against COVID-19: A Promising Immunomodulatory Role.","authors":"Moayed Ben Moftah, Asma Eswayah","doi":"10.1089/adt.2021.090","DOIUrl":"https://doi.org/10.1089/adt.2021.090","url":null,"abstract":"<p><p><i>Cytokine release syndrome, a prominent mechanism of morbidity and mortality in patients with coronavirus disease 2019 (COVID-19), can cause multiple bodily reactions, including excessive release of proinflammatory mediators, with tumor necrosis factor-α (TNF-α) being the most prevalent cytokine combined with persistently elevated D-dimer levels that are indicative of potential thrombotic events, low levels of endogenous nitric oxide (NO) generation, and progressive decrease in hemoglobin production. In our argument, the conceptual repurposing of hydroxyurea (HU) for managing COVID-19 can provide a promising therapeutic option originating from a rich history of investigational antiviral activity. HU as a proposed supportive therapeutic agent for treating COVID-19 can exemplify a successful remedial choice through its anti-inflammatory activity along with an intrinsic propensity to control the circulatory levels of key cytokines including TNF-α. HU has the ability to undergo</i> in vivo <i>NO conversion acting as NO donor together with being a prominent inducer of fetal hemoglobin (HbF) production. The combination of the mentioned two properties allows HU to possess evident capability of protecting against thrombotic events by controlling D-dimer levels. The implication of our hypothetical argument sheds light on the curative potential of HU, which can be strategically harnessed against COVID-19.</i></p>","PeriodicalId":8586,"journal":{"name":"Assay and drug development technologies","volume":"20 1","pages":"55-62"},"PeriodicalIF":1.8,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39790117","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-12-29DOI: 10.1089/adt.2020.29096.cfp4
M. Kostic, B. Melancon
{"title":"Call for Special Issue Papers: Chemical Probes and Pharmacological Tools for Kinase Signaling.","authors":"M. Kostic, B. Melancon","doi":"10.1089/adt.2020.29096.cfp4","DOIUrl":"https://doi.org/10.1089/adt.2020.29096.cfp4","url":null,"abstract":"","PeriodicalId":8586,"journal":{"name":"Assay and drug development technologies","volume":"1 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2021-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42216934","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-12-29DOI: 10.1089/adt.2020.29095.cfp4
M. Kostic, B. Melancon
{"title":"Call for Special Issue Papers: Special Issue on High-throughput Technologies for the Discovery and Development of Chemical Probes and Pharmacological Tools.","authors":"M. Kostic, B. Melancon","doi":"10.1089/adt.2020.29095.cfp4","DOIUrl":"https://doi.org/10.1089/adt.2020.29095.cfp4","url":null,"abstract":"","PeriodicalId":8586,"journal":{"name":"Assay and drug development technologies","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2021-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43471781","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}