Pub Date : 2023-05-01Epub Date: 2023-04-20DOI: 10.1089/adt.2022.102
Pallavi Sandal, Lakshmi Kumari, Preeti Patel, Amrinder Singh, Dilpreet Singh, Ghanshyam Das Gupta, Balak Das Kurmi
Continuous drug delivery modification is the scientific approach and is a basic need for the efficient therapeutic efficacy of active drug molecules. Polymer-drug conjugates have long been a hallmark of the drug delivery sector, with various conjugates on the market or in clinical trials. Improved drug solubilization, extended blood circulation, decreased immunogenicity, controlled release behavior, and increased safety are the advantages of conjugating drugs to the polymeric carrier like polyethylene glycol (PEG). Polymer therapies have evolved over the last decade, resulting in polymer-drug conjugates with diverse topologies and chemical properties. Traditional nondegradable polymeric carriers like PEG and hydroxy propyl methacrylate have been clinically employed to fabricate polymer-drug conjugates. Still, functionalized polymer-drug conjugates are increasingly being used to increase localized drug delivery and ease of removal. Researchers have developed multifunctional carriers that can "see and treat" patients using medicinal and diagnostic chemicals. This review focused on the various conjugation approaches for attaching the doxorubicin to different polymers to achieve enhanced therapeutic efficacy, that is, increased bioavailability and reduced adverse effects.
{"title":"Doxorubicin Conjugates: An Efficient Approach for Enhanced Therapeutic Efficacy with Reduced Side Effects.","authors":"Pallavi Sandal, Lakshmi Kumari, Preeti Patel, Amrinder Singh, Dilpreet Singh, Ghanshyam Das Gupta, Balak Das Kurmi","doi":"10.1089/adt.2022.102","DOIUrl":"10.1089/adt.2022.102","url":null,"abstract":"<p><p>Continuous drug delivery modification is the scientific approach and is a basic need for the efficient therapeutic efficacy of active drug molecules. Polymer-drug conjugates have long been a hallmark of the drug delivery sector, with various conjugates on the market or in clinical trials. Improved drug solubilization, extended blood circulation, decreased immunogenicity, controlled release behavior, and increased safety are the advantages of conjugating drugs to the polymeric carrier like polyethylene glycol (PEG). Polymer therapies have evolved over the last decade, resulting in polymer-drug conjugates with diverse topologies and chemical properties. Traditional nondegradable polymeric carriers like PEG and hydroxy propyl methacrylate have been clinically employed to fabricate polymer-drug conjugates. Still, functionalized polymer-drug conjugates are increasingly being used to increase localized drug delivery and ease of removal. Researchers have developed multifunctional carriers that can \"see and treat\" patients using medicinal and diagnostic chemicals. This review focused on the various conjugation approaches for attaching the doxorubicin to different polymers to achieve enhanced therapeutic efficacy, that is, increased bioavailability and reduced adverse effects.</p>","PeriodicalId":8586,"journal":{"name":"Assay and drug development technologies","volume":"21 4","pages":"137-156"},"PeriodicalIF":1.8,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10022334","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A highly selective, sensitive, rugged, and rapid ultra high-performance liquid chromatography-tandem mass spectrometry method (UPLC-MS/MS) is optimized and validated for reliable quantification of atorvastatin (ATR) and its active metabolites, 2-hydroxy atorvastatin (2-ATR) and 4-hydroxy atorvastatin (4-ATR) in human plasma using atorvastatin-D5 (ATR-D5), 2-hydroxy atorvastatin-D5 (2-ATR-D5), and 4-hydroxy atorvastatin-D5 (4-ATR-D5) as deuterium-labeled internal standards (ISTDs), respectively. Isocratic mode chromatographic separation was used with a reverse-phase C18 Symmetry Shield (150 × 4.6 mm, 5.0 μm) column and a mobile phase of acetonitrile:2 mM ammonium formate (pH-3.0) [65:35%v/v] at a flow rate of 0.7 mL/min. Electrospray ionization technique with positive ion mode polarity was applied to achieve the best signal intensity and stable response. Solid-phase extraction by direct elution method was applied to extract the drugs from the plasma sample. The calibration curve range was validated from a concentration range of 0.500-250 ng/mL for ATR and 2-ATR and 0.200-20 ng/mL for 4-ATR. The within-batch and between-batch precision and accuracy were found to be consistent and reproducible for all the analytes across the validation. Extraction recoveries were >80% for all analytes and ISTDs. All peaks of analytes and the respective ISTDs were eluted within 5.2 min. In this validated method, selective multivariate analytical approaches were utilized such as best fit linearity range for different strength formulations, preventive measures for in vivo and ex vivo autodegradation of metabolites, and shorter analysis time. This validated method can be useful for challenging quantification of ATR and its active metabolites for therapeutic drug monitoring and in high-throughput clinical study sample analysis.
{"title":"High-Throughput Ultra Performance Liquid Chromatography-Tandem Mass Spectrometry Method Validation for the Estimation of Atorvastatin and Active Metabolites in Human Plasma.","authors":"Nikhil Agrawal, Amit Mittal","doi":"10.1089/adt.2022.113","DOIUrl":"https://doi.org/10.1089/adt.2022.113","url":null,"abstract":"<p><p>A highly selective, sensitive, rugged, and rapid ultra high-performance liquid chromatography-tandem mass spectrometry method (UPLC-MS/MS) is optimized and validated for reliable quantification of atorvastatin (ATR) and its active metabolites, 2-hydroxy atorvastatin (2-ATR) and 4-hydroxy atorvastatin (4-ATR) in human plasma using atorvastatin-D5 (ATR-D5), 2-hydroxy atorvastatin-D5 (2-ATR-D5), and 4-hydroxy atorvastatin-D5 (4-ATR-D5) as deuterium-labeled internal standards (ISTDs), respectively. Isocratic mode chromatographic separation was used with a reverse-phase C<sub>18</sub> Symmetry Shield (150 × 4.6 mm, 5.0 μm) column and a mobile phase of acetonitrile:2 mM ammonium formate (pH-3.0) [65:35%v/v] at a flow rate of 0.7 mL/min. Electrospray ionization technique with positive ion mode polarity was applied to achieve the best signal intensity and stable response. Solid-phase extraction by direct elution method was applied to extract the drugs from the plasma sample. The calibration curve range was validated from a concentration range of 0.500-250 ng/mL for ATR and 2-ATR and 0.200-20 ng/mL for 4-ATR. The within-batch and between-batch precision and accuracy were found to be consistent and reproducible for all the analytes across the validation. Extraction recoveries were >80% for all analytes and ISTDs. All peaks of analytes and the respective ISTDs were eluted within 5.2 min. In this validated method, selective multivariate analytical approaches were utilized such as best fit linearity range for different strength formulations, preventive measures for <i>in vivo</i> and <i>ex vivo</i> autodegradation of metabolites, and shorter analysis time. This validated method can be useful for challenging quantification of ATR and its active metabolites for therapeutic drug monitoring and in high-throughput clinical study sample analysis.</p>","PeriodicalId":8586,"journal":{"name":"Assay and drug development technologies","volume":"21 3","pages":"110-125"},"PeriodicalIF":1.8,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9515874","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The current pharmaceutical manufacturing scenario involves different techniques for the processing of materials. For example, the extraction unit is one of the essential aspects of plant-based pharmaceuticals. Recently, various kinds of extraction techniques have been used for analytical and preparative scales; among them, a supercritical fluid extractor (SCFE) is the most widely used technique for extraction. It is used for an extensive range of crude drugs and can be possible with the help of SCFE by varying temperature/pressure. Notably, it uses carbon dioxide (CO2) for extraction instead of other solvents. Simultaneously, lyophilization is an important technique used at different processing steps along with other methods. In lyophilization, CO2 is used as a cooling agent in the shelves of lyophilized equipment. It behaves as a supercritical fluid at critical pressure (Pc) of 72.7 atm and critical temperature (Tc) of 31°C. Considering the criteria mentioned earlier, there is a possibility that liquid CO2 or supercritical carbon dioxide (SC-CO2) can be used as a cooling agent in a lyophilizer and extraction solvent in SCFE. This review presents a brief outline for the possible validation parameters of the proposed novel processor; that is, SCFE/Dryer combo instrument containing Design Qualification, Installation Qualification, Operational Qualification, and Performance Qualification.
{"title":"Validation of a Novel Supercritical Fluid Extractor/Dryer Combo Instrument.","authors":"Mritunjay Kumar, Yash Sharma, Kanak Chahar, Lakshmi Kumari, Lopamudra Mishra, Preeti Patel, Dilpreet Singh, Balak Das Kurmi","doi":"10.1089/adt.2023.005","DOIUrl":"https://doi.org/10.1089/adt.2023.005","url":null,"abstract":"<p><p>The current pharmaceutical manufacturing scenario involves different techniques for the processing of materials. For example, the extraction unit is one of the essential aspects of plant-based pharmaceuticals. Recently, various kinds of extraction techniques have been used for analytical and preparative scales; among them, a supercritical fluid extractor (SCFE) is the most widely used technique for extraction. It is used for an extensive range of crude drugs and can be possible with the help of SCFE by varying temperature/pressure. Notably, it uses carbon dioxide (CO<sub>2</sub>) for extraction instead of other solvents. Simultaneously, lyophilization is an important technique used at different processing steps along with other methods. In lyophilization, CO<sub>2</sub> is used as a cooling agent in the shelves of lyophilized equipment. It behaves as a supercritical fluid at critical pressure (Pc) of 72.7 atm and critical temperature (Tc) of 31<i>°</i>C. Considering the criteria mentioned earlier, there is a possibility that liquid CO<sub>2</sub> or supercritical carbon dioxide (SC-CO<sub>2</sub>) can be used as a cooling agent in a lyophilizer and extraction solvent in SCFE. This review presents a brief outline for the possible validation parameters of the proposed novel processor; that is, SCFE/Dryer combo instrument containing Design Qualification, Installation Qualification, Operational Qualification, and Performance Qualification.</p>","PeriodicalId":8586,"journal":{"name":"Assay and drug development technologies","volume":"21 3","pages":"126-136"},"PeriodicalIF":1.8,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9566772","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The research work was aimed to formulate and evaluate gastroretentive mucoadhesive film of calcium channel blocker, Lacidipine for treatment of gastroparesis. Box-Behnken design was used for preparation of optimized formulation using solvent casting method. In this design, different concentrations of mucoadhesive polymers HPMC E15, Eudragit RL100, and Eudragit RS100 were considered as independent variables and its effect on responses like percent drug release, swelling index at 12 h, and folding endurance of the film were examined. Drug and polymer compatibility studies were performed using Fourier transform infrared spectroscopy and differential scanning calorimetry. Optimized formulation was evaluated for organoleptic properties, weight variation, thickness, swelling index, folding endurance, drug content, tensile strength, percent elongation, drug release, and percent moisture loss. The results revealed that the film possessed considerable flexibility and smoothness, and in vitro drug release was found to be 95.22% ± 0.93% at the end of 12 h. Scanning electron microscopy imaging of film displayed smooth, uniform, and porous surface texture. The dissolution followed Higuchi's model and Hixson Crowell model displayed non-Fickian drug release mechanism. Furthermore, the film was incorporated in capsule and the presence of capsule showed no effect on the drug release profile. In addition, no change was observed in the appearance, drug content, swelling index, folding endurance, and drug release upon storage at 25°C ± 2°C and 60% ± 5% relative humidity for 3 months. Collectively, the study revealed that gastroretentive mucoadhesive film of Lacidipine could serve as an effective and alternate site-specific targeted delivery in the management of gastroparesis.
{"title":"Oral Gastroretentive Film of Lacidipine for the Treatment of Gastroparesis.","authors":"Mrunali Navin Kantak, Lalit Kumar, Prashant Jivaji Bhide, Rupesh Kalidas Shirodkar","doi":"10.1089/adt.2022.091","DOIUrl":"https://doi.org/10.1089/adt.2022.091","url":null,"abstract":"<p><p>The research work was aimed to formulate and evaluate gastroretentive mucoadhesive film of calcium channel blocker, Lacidipine for treatment of gastroparesis. Box-Behnken design was used for preparation of optimized formulation using solvent casting method. In this design, different concentrations of mucoadhesive polymers HPMC E15, Eudragit RL100, and Eudragit RS100 were considered as independent variables and its effect on responses like percent drug release, swelling index at 12 h, and folding endurance of the film were examined. Drug and polymer compatibility studies were performed using Fourier transform infrared spectroscopy and differential scanning calorimetry. Optimized formulation was evaluated for organoleptic properties, weight variation, thickness, swelling index, folding endurance, drug content, tensile strength, percent elongation, drug release, and percent moisture loss. The results revealed that the film possessed considerable flexibility and smoothness, and in vitro drug release was found to be 95.22% ± 0.93% at the end of 12 h. Scanning electron microscopy imaging of film displayed smooth, uniform, and porous surface texture. The dissolution followed Higuchi's model and Hixson Crowell model displayed non-Fickian drug release mechanism. Furthermore, the film was incorporated in capsule and the presence of capsule showed no effect on the drug release profile. In addition, no change was observed in the appearance, drug content, swelling index, folding endurance, and drug release upon storage at 25°C ± 2°C and 60% ± 5% relative humidity for 3 months. Collectively, the study revealed that gastroretentive mucoadhesive film of Lacidipine could serve as an effective and alternate site-specific targeted delivery in the management of gastroparesis.</p>","PeriodicalId":8586,"journal":{"name":"Assay and drug development technologies","volume":"21 3","pages":"97-109"},"PeriodicalIF":1.8,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9566760","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-01Epub Date: 2023-03-17DOI: 10.1089/adt.2022.116
Aaron M Bender, Michael S Valentine, Joshua A Bauer, Emily Days, Craig W Lindsley, W David Merryman
Antagonists of the serotonin receptor 2B (5-HT2B) have shown great promise as therapeutics for the treatment of pulmonary arterial hypertension, valvular heart disease, and related cardiopathies. Herein, we describe a high-throughput screen campaign that led to the identification of highly potent and selective 5-HT2B antagonists. Furthermore, selected compounds were profiled for their predicted ability to cross the blood-brain barrier. Two exemplary compounds, VU0530244 and VU0631019, were predicted to have very limited potential for brain penetration in human subjects, a critical profile for the development of 5-HT2B antagonists devoid of centrally-mediated adverse effects.
{"title":"Identification of Potent, Selective, and Peripherally Restricted Serotonin Receptor 2B Antagonists from a High-Throughput Screen.","authors":"Aaron M Bender, Michael S Valentine, Joshua A Bauer, Emily Days, Craig W Lindsley, W David Merryman","doi":"10.1089/adt.2022.116","DOIUrl":"10.1089/adt.2022.116","url":null,"abstract":"<p><p>Antagonists of the serotonin receptor 2B (5-HT<sub>2B</sub>) have shown great promise as therapeutics for the treatment of pulmonary arterial hypertension, valvular heart disease, and related cardiopathies. Herein, we describe a high-throughput screen campaign that led to the identification of highly potent and selective 5-HT<sub>2B</sub> antagonists. Furthermore, selected compounds were profiled for their predicted ability to cross the blood-brain barrier. Two exemplary compounds, VU0530244 and VU0631019, were predicted to have very limited potential for brain penetration in human subjects, a critical profile for the development of 5-HT<sub>2B</sub> antagonists devoid of centrally-mediated adverse effects.</p>","PeriodicalId":8586,"journal":{"name":"Assay and drug development technologies","volume":"21 3","pages":"89-96"},"PeriodicalIF":1.8,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10122230/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9515345","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}