This study aimed at enhancing the efficacy of curcumin (CR) by formulating and coating it with chitosan. In silico molecular docking studies revealed that CR exhibited almost similar and low binding energies when compared to artemisinin, indicating high stability at the target site. It can be confirmed that CR is effective in treating and reducing Plasmodium falciparum parasites. Fourier transform infrared studies confirmed that there was a shift and disappearance of some drug peaks in the formulation which revealed complexation with phospholipids. The F2EXT3-developed formulation exhibited greater solubility (24.31 ± 3.47 μg/mL) when compared to pure CR (7.99 ± 1.95 μg/mL). Proton nuclear magnetic resonance studies confirmed the formation of Curcumin-phospholipid hydrogen bonding in F2EXT3. The in vitro drug release studies revealed that the developed formulation F2EXT3 exhibited better drug release at 71.98% at 48 h; this might be due to the effective entrapment efficiency of the drug inside the phospholipid, presence of polyethylene glycol 4000 and chitosan further assisted in sustained release of the drug. Scanning electron microscopy studies revealed that optimized F2EXT3 CR nanophytosomes were nearly spherical with narrow size distribution and smooth surface. The zeta potential of the F2EXT3 showed -3.5 mV. Stability studies revealed that the formulation remained stable even after 6 months. It was observed from the hemin assay that CR and F2EXT3 exhibited (50 μg/mL curcumin) exhibited IC50 values of 47 ± 2.45 and 22 ± 1.58 μM, respectively. Further in vivo antimalarial activity on resistant and sensitive strains needs to be performed to evaluate the efficacy of the developed formulation.
{"title":"Development and Characterization of Novel Chitosan-Coated Curcumin Nanophytosomes for Treating Drug-Resistant Malaria.","authors":"Bhargav Eranti, Padmanabha Reddy Yiragamreddy, Koteshwara Kunnatur Balasundara","doi":"10.1089/adt.2023.064","DOIUrl":"10.1089/adt.2023.064","url":null,"abstract":"<p><p>This study aimed at enhancing the efficacy of curcumin (CR) by formulating and coating it with chitosan. <i>In silico</i> molecular docking studies revealed that CR exhibited almost similar and low binding energies when compared to artemisinin, indicating high stability at the target site. It can be confirmed that CR is effective in treating and reducing <i>Plasmodium falciparum</i> parasites. Fourier transform infrared studies confirmed that there was a shift and disappearance of some drug peaks in the formulation which revealed complexation with phospholipids. The F2EXT3-developed formulation exhibited greater solubility (24.31 ± 3.47 μg/mL) when compared to pure CR (7.99 ± 1.95 μg/mL). Proton nuclear magnetic resonance studies confirmed the formation of Curcumin-phospholipid hydrogen bonding in F2EXT3. The <i>in vitro</i> drug release studies revealed that the developed formulation F2EXT3 exhibited better drug release at 71.98% at 48 h; this might be due to the effective entrapment efficiency of the drug inside the phospholipid, presence of polyethylene glycol 4000 and chitosan further assisted in sustained release of the drug. Scanning electron microscopy studies revealed that optimized F2EXT3 CR nanophytosomes were nearly spherical with narrow size distribution and smooth surface. The zeta potential of the F2EXT3 showed -3.5 mV. Stability studies revealed that the formulation remained stable even after 6 months. It was observed from the hemin assay that CR and F2EXT3 exhibited (50 μg/mL curcumin) exhibited IC<sub>50</sub> values of 47 ± 2.45 and 22 ± 1.58 μM, respectively. Further <i>in vivo</i> antimalarial activity on resistant and sensitive strains needs to be performed to evaluate the efficacy of the developed formulation.</p>","PeriodicalId":8586,"journal":{"name":"Assay and drug development technologies","volume":" ","pages":"18-27"},"PeriodicalIF":1.8,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139048278","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-22DOI: 10.1089/adt.2023.29105.ack
{"title":"Acknowledgment of Reviewers 2023.","authors":"","doi":"10.1089/adt.2023.29105.ack","DOIUrl":"https://doi.org/10.1089/adt.2023.29105.ack","url":null,"abstract":"","PeriodicalId":8586,"journal":{"name":"Assay and drug development technologies","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138827961","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-20DOI: 10.1089/vio.2023.29036.ack
{"title":"Acknowledgment of Reviewers 2023.","authors":"","doi":"10.1089/vio.2023.29036.ack","DOIUrl":"https://doi.org/10.1089/vio.2023.29036.ack","url":null,"abstract":"","PeriodicalId":8586,"journal":{"name":"Assay and drug development technologies","volume":"82 2","pages":""},"PeriodicalIF":1.8,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138954483","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Liver fibrosis is mainly caused by excessive accumulation of extracellular matrix and structural changes in the liver, ultimately leading to cirrhosis if left untreated. Reducing hyaluronan synthesis by inhibiting hyaluronic acid deposition or regulating the expression of hyaluronic synthase can ameliorate liver fibrosis symptoms. In this study, we aimed to improve the bioavailability and liver-targeting capacity of hydroxymethyl coumarin (4-MU) using a newly developed phospholipid complex chitosan nanoparticle (4-MU PC/CNP) optimized using the Box-Behnken design. The composite nanocarrier delivery system was formulated using solvent evaporation technology, and formulation and process parameters were evaluated. Furthermore, 4-MU PC/CNPs and their pharmacokinetics were characterized. The established 4-MU PC/CNPs had an average particle size of 153.07 ± 0.29 nm, a polydispersity index value of 0.383, and a positive zeta potential of ∼35.4 mV. Compared with 4-MUs, 4-MU PC/CNPs exhibited significantly improved water solubility, faster plasma clearance and tissue distribution, and better liver targeting. Pharmacokinetic analysis showed that the oral bioavailability of 4-MU in 4-MU PC/CNPs was significantly higher than that of simple 4-MU. In conclusion, 4-MU PC improved drug lipid (oil-water distribution coefficient of 1.31 ± 0.03) and water solubilities (2.05 times the drug substance). 4-MU PC/CNPs significantly improved 4-MU oral bioavailability, representing a promising approach for enhancing drug solubility. This study demonstrates that the targeting parameters of 4-MU PC/CNPs in the liver were all greater than 1, indicating that they specifically targeted the liver, thereby potentially alleviating liver fibrosis.
{"title":"Liver-Targeting Composite Nanocarrier Delivery System Based on Chitosan Nanoparticles and Phospholipid Complexes.","authors":"Fanming Kong, Jingmeng Sun, Yue Hu, Wenkai Huo, Dongdong Li, Weiyu Zhang","doi":"10.1089/adt.2023.051","DOIUrl":"10.1089/adt.2023.051","url":null,"abstract":"<p><p><i>Liver fibrosis is mainly caused by excessive accumulation of extracellular matrix and structural changes in the liver, ultimately leading to cirrhosis if left untreated. Reducing hyaluronan synthesis by inhibiting hyaluronic acid deposition or regulating the expression of hyaluronic synthase can ameliorate liver fibrosis symptoms. In this study, we aimed to improve the bioavailability and liver-targeting capacity of hydroxymethyl coumarin (4-MU) using a newly developed phospholipid complex chitosan nanoparticle (4-MU PC/CNP) optimized using the Box-Behnken design. The composite nanocarrier delivery system was formulated using solvent evaporation technology, and formulation and process parameters were evaluated. Furthermore, 4-MU PC/CNPs and their pharmacokinetics were characterized. The established 4-MU PC/CNPs had an average particle size of 153.07 ± 0.29 nm, a polydispersity index value of 0.383, and a positive zeta potential of ∼35.4 mV. Compared with 4-MUs, 4-MU PC/CNPs exhibited significantly improved water solubility, faster plasma clearance and tissue distribution, and better liver targeting. Pharmacokinetic analysis showed that the oral bioavailability of 4-MU in 4-MU PC/CNPs was significantly higher than that of simple 4-MU. In conclusion, 4-MU PC improved drug lipid (oil-water distribution coefficient of 1.31 ± 0.03) and water solubilities (2.05 times the drug substance). 4-MU PC/CNPs significantly improved 4-MU oral bioavailability, representing a promising approach for enhancing drug solubility. This study demonstrates that the targeting parameters of 4-MU PC/CNPs in the liver were all greater than 1, indicating that they specifically targeted the liver, thereby potentially alleviating liver fibrosis</i>.</p>","PeriodicalId":8586,"journal":{"name":"Assay and drug development technologies","volume":"21 8","pages":"357-368"},"PeriodicalIF":1.8,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138795730","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-01Epub Date: 2023-11-21DOI: 10.1089/adt.2023.077
Dilpreet Singh, Sahil Arora, Vimal Arora
Effective drug delivery to target sites is critical for achieving desired therapeutic outcomes. However, the poor permeability of certain drugs poses significant challenges in achieving adequate drug concentrations at the desired locations. Biomimetic hydrogels have emerged as a promising approach to enhance the penetration of poorly permeable drugs. These hydrogels, designed to mimic natural biological systems, offer unique properties and functionalities that enable improved drug permeation. In this review, we provide a comprehensive appraisal of the role of biomimetic hydrogels in enhancing drug penetration. We discuss the design principles, properties, and mechanisms by which these hydrogels facilitate drug permeation. Specifically, we explore the applications and benefits of biomimetic hydrogels in controlled drug release, mimicking extracellular matrix microenvironments, promoting cell-mimetic interactions, and enabling targeted drug delivery. Through an examination of key studies and advancements, we highlight the potential of biomimetic hydrogels in enhancing drug penetration and their implications for therapeutic interventions. This review contributes to a deeper understanding of biomimetic hydrogels as a promising strategy for overcoming drug penetration challenges and advancing drug delivery systems, ultimately leading to improved therapeutic efficacy.
{"title":"A Short Appraisal of Biomimetic Hydrogels to Improve Penetration of Poorly Permeable Drugs.","authors":"Dilpreet Singh, Sahil Arora, Vimal Arora","doi":"10.1089/adt.2023.077","DOIUrl":"10.1089/adt.2023.077","url":null,"abstract":"<p><p><i>Effective drug delivery to target sites is critical for achieving desired therapeutic outcomes. However, the poor permeability of certain drugs poses significant challenges in achieving adequate drug concentrations at the desired locations. Biomimetic hydrogels have emerged as a promising approach to enhance the penetration of poorly permeable drugs. These hydrogels, designed to mimic natural biological systems, offer unique properties and functionalities that enable improved drug permeation. In this review, we provide a comprehensive appraisal of the role of biomimetic hydrogels in enhancing drug penetration. We discuss the design principles, properties, and mechanisms by which these hydrogels facilitate drug permeation. Specifically, we explore the applications and benefits of biomimetic hydrogels in controlled drug release, mimicking extracellular matrix microenvironments, promoting cell-mimetic interactions, and enabling targeted drug delivery. Through an examination of key studies and advancements, we highlight the potential of biomimetic hydrogels in enhancing drug penetration and their implications for therapeutic interventions. This review contributes to a deeper understanding of biomimetic hydrogels as a promising strategy for overcoming drug penetration challenges and advancing drug delivery systems, ultimately leading to improved therapeutic efficacy</i>.</p>","PeriodicalId":8586,"journal":{"name":"Assay and drug development technologies","volume":" ","pages":"374-384"},"PeriodicalIF":1.8,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138443614","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-01Epub Date: 2023-11-21DOI: 10.1089/adt.2023.067
Pallavi Sandal, Preeti Patel, Dilpreet Singh, Ghanshyam Das Gupta, Balak Das Kurmi
Present research work reports the development of doxorubicin (DOX) loaded α-tocopherol polyethylene glycol 1000 succinate (TPGS)-coated cationic liposomes. The developed formulation was evaluated for its anticancer potential and intracellular uptake against the MDA-MB-231 breast cancer cell line. Moreover, hemocompatibility studies were also done on human blood red blood cells for the determination of blood compatibility. The prepared doxorubicin-loaded TPGS liposomes (DOX-LIPO-TPGS) and doxorubicin-loaded cationic liposomes (DOX-LIPO+-TPGS) reveal vesicle size (177.5 ± 2.5 and 201.7 ± 2.3 nm), polydispersity index (0.189 ± 0.01 and 0.218 ± 0.02), zeta potential (-36.9 ± 0.7 and 42 ± 0.9 mv), and % entrapment efficiency (65.88% ± 3.7% and 74.5% ± 3.9%). Furthermore, in vitro, drug release kinetics of the drug alone and drug from formulation shows sustained release behavior of developed formulation with 99.98% in 12 h and 80.98% release of the drug in 72 h, respectively. In addition, cytotoxicity studies and cellular DOX uptake on the MDA-MB-231 breast cancer cell line depict higher cytotoxic and drug uptake potential with better hemocompatibility of DOX-LIPO+-TPGS with respect to DOX. The data from the study revealed that TPGS plays an important role in enhancing the formulation's quality attributes like stability, drug release, cytotoxicity, and hemocompatibility behavior. This may serve that TPGS-coated cationic liposome as a vital candidate for the treatment of cancer and drug delivery in case of breast cancer.
{"title":"α-Tocopherol Polyethylene Glycol 1000 Succinate-Based Cationic Liposome for the Intracellular Delivery of Doxorubicin in MDA-MB-231 Triple-Negative Breast Cancer Cell Line.","authors":"Pallavi Sandal, Preeti Patel, Dilpreet Singh, Ghanshyam Das Gupta, Balak Das Kurmi","doi":"10.1089/adt.2023.067","DOIUrl":"10.1089/adt.2023.067","url":null,"abstract":"<p><p><i>Present research work reports the development of doxorubicin (DOX) loaded α-tocopherol polyethylene glycol 1000 succinate (TPGS)-coated cationic liposomes. The developed formulation was evaluated for its anticancer potential and intracellular uptake against the MDA-MB-231 breast cancer cell line. Moreover, hemocompatibility studies were also done on human blood red blood cells for the determination of blood compatibility. The prepared doxorubicin-loaded TPGS liposomes (DOX-LIPO-TPGS) and doxorubicin-loaded cationic liposomes (DOX-LIPO<sup>+</sup>-TPGS) reveal vesicle size (177.5 ± 2.5 and 201.7 ± 2.3 nm), polydispersity index (0.189 ± 0.01 and 0.218 ± 0.02), zeta potential (-36.9 ± 0.7 and 42 ± 0.9 mv), and % entrapment efficiency (65.88% ± 3.7% and 74.5% ± 3.9%). Furthermore,</i> in vitro<i>, drug release kinetics of the drug alone and drug from formulation shows sustained release behavior of developed formulation with 99.98% in 12 h and 80.98% release of the drug in 72 h, respectively. In addition, cytotoxicity studies and cellular DOX uptake on the MDA-MB-231 breast cancer cell line depict higher cytotoxic and drug uptake potential with better hemocompatibility of DOX-LIPO<sup>+</sup>-TPGS with respect to DOX. The data from the study revealed that TPGS plays an important role in enhancing the formulation's quality attributes like stability, drug release, cytotoxicity, and hemocompatibility behavior. This may serve that TPGS-coated cationic liposome as a vital candidate for the treatment of cancer and drug delivery in case of breast cancer.</i></p>","PeriodicalId":8586,"journal":{"name":"Assay and drug development technologies","volume":" ","pages":"345-356"},"PeriodicalIF":1.8,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138443615","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"<i>Letter to the Editor:</i> Repurposing Tafenoquine as a Potential Inhibitor Against Severe Acute Respiratory Syndrome Coronavirus 2 Main Protease via a Fluorescence Polarization Assay.","authors":"Rui Zhang, Haohao Yan, Gangan Yan, Xiaoping Liu, Yunyu Chen","doi":"10.1089/adt.2023.103","DOIUrl":"10.1089/adt.2023.103","url":null,"abstract":"","PeriodicalId":8586,"journal":{"name":"Assay and drug development technologies","volume":" ","pages":"369-371"},"PeriodicalIF":1.8,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71477488","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-01Epub Date: 2023-11-15DOI: 10.1089/adt.2023.117
Rajendra Awasthi
{"title":"<i>Letter to the Editor:</i> Concerns Regarding Ethical Issues in Reviewer Recommendations for Citations.","authors":"Rajendra Awasthi","doi":"10.1089/adt.2023.117","DOIUrl":"10.1089/adt.2023.117","url":null,"abstract":"","PeriodicalId":8586,"journal":{"name":"Assay and drug development technologies","volume":" ","pages":"372-373"},"PeriodicalIF":1.8,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136395942","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-01Epub Date: 2023-11-10DOI: 10.1089/adt.2023.125
Hermann A M Mucke
{"title":"Drug Repurposing Patent Applications July-September 2023.","authors":"Hermann A M Mucke","doi":"10.1089/adt.2023.125","DOIUrl":"10.1089/adt.2023.125","url":null,"abstract":"","PeriodicalId":8586,"journal":{"name":"Assay and drug development technologies","volume":" ","pages":"385-391"},"PeriodicalIF":1.8,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72208128","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ABSTRACTThe purpose of this study was to apply the quality by design (QbD) approach in the development of a microbial and pH-triggered colon-targeted budesonide tablet. A retrospective research strategy was used to select various polysaccharide-based natural gums such as tamarind gum, gellan gum, karaya gum, gum ghutti, and khaya gum, which were then evaluated for their effectiveness in microbial degradation and targeting the colon. Viscosity profiles were generated in the presence of a prebiotic culture medium prepared by using the Velgut capsule that mimicked the impact of 4% rat cecal content and helpful in screening of natural polymer. Based on the cumulative drug release data of preliminary batches, carboxymethyl (CM) tamarind gum was identified as a superior and an excellent polymer over the tamarind gum for formulation development. The presence of water as a bridging agent in wet granulation also played an important role in the retardation of drug release. Tablets were supercoated with the enteric polymer, Eudragit S100. The Box-Behnken design was utilized, where the selected independent variables were the proportion of CM tamarind gum, % water proportion, and % weight gain of Eudragit S 100 to optimize the formulation. The optimized design space was generated with the criteria that a drug release should be of less than 5% within the first 2 h, less than 10% within the first 5 h, and more than 70% within the first 8 h, to achieve colon targeting. The optimized batch F3 was found stable as per International Council for Harmonisation guidelines. The roentgenography study for optimized formulation demonstrated that it remained intact for 5 h and, at 7 h, was disseminated completely. CM tamarind gum is efficient for colon targeting, and its proportion in 100 mg along with an enteric coating of 6% led to the optimized formulation.
{"title":"Quality by Design Approach for Optimization of Microbial and pH-Triggered Colon-Targeted Tablet Formulation Using Carboxymethyl Tamarind Gum.","authors":"Jaymin Patel, Kaushika Patel, Shreeraj Shah","doi":"10.1089/adt.2023.066","DOIUrl":"10.1089/adt.2023.066","url":null,"abstract":"<p><p><b>ABSTRACT</b> <i>The purpose of this study was to apply the quality by design (QbD) approach in the development of a microbial and pH-triggered colon-targeted budesonide tablet. A retrospective research strategy was used to select various polysaccharide-based natural gums such as tamarind gum, gellan gum, karaya gum, gum ghutti, and khaya gum, which were then evaluated for their effectiveness in microbial degradation and targeting the colon. Viscosity profiles were generated in the presence of a prebiotic culture medium prepared by using the Velgut capsule that mimicked the impact of 4% rat cecal content and helpful in screening of natural polymer. Based on the cumulative drug release data of preliminary batches, carboxymethyl (CM) tamarind gum was identified as a superior and an excellent polymer over the tamarind gum for formulation development. The presence of water as a bridging agent in wet granulation also played an important role in the retardation of drug release. Tablets were supercoated with the enteric polymer, Eudragit S100. The Box</i>-<i>Behnken design was utilized, where the selected independent variables were the proportion of CM tamarind gum, % water proportion, and % weight gain of Eudragit S 100 to optimize the formulation. The optimized design space was generated with the criteria that a drug release should be of less than 5% within the first 2 h, less than 10% within the first 5 h, and more than 70% within the first 8 h, to achieve colon targeting. The optimized batch F3 was found stable as per International Council for Harmonisation guidelines. The roentgenography study for optimized formulation demonstrated that it remained intact for 5 h and, at 7 h, was disseminated completely. CM tamarind gum is efficient for colon targeting, and its proportion in 100 mg along with an enteric coating of 6% led to the optimized formulation</i>.</p>","PeriodicalId":8586,"journal":{"name":"Assay and drug development technologies","volume":"21 7","pages":"297-308"},"PeriodicalIF":1.8,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41189561","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}