首页 > 最新文献

Assay and drug development technologies最新文献

英文 中文
Polyherbal Antiacne Gel: In Vitro Antibacterial Activity and Efficacy Evaluation Against Cutibacterium acnes. 多草本祛痘凝胶:针对痤疮杆菌的体外抗菌活性和功效评估
IF 1.8 4区 医学 Q4 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-09-10 DOI: 10.1089/adt.2024.031
Praveen Kumar Gaur,Rosaline Mishra,Rahul Kaushik,Krishan Kumar Verma,Nitin Kumar,Kank Lata
Acne is a common skin condition that affects people of all ages and can lead to significant physical and psychological distress. The first line of action against acne is topical products, though the most effective are topical antibiotics. In such a scenario, the development of effective and safe herbal formulations for the treatment of acne is of great importance. Rubia cordifolia, Aloe barbadensis, and Allium cepa extracts are rich sources of bioactive metabolites and are safe compared with antibiotics, in addition to being cost effective, sustainable, and eco-friendly. Also, their combination has not been studied for treating acne, and their potential benefits need to be investigated. The present study aimed to develop an effective polyherbal gel formulation of R. cordifolia, A. barbadensis, and A. cepa combined extract for treating acne and validate its effect with reference to conventional antibiotics. Plant materials were extracted in water by the reflux method, and phytochemical analysis was done for flavonoid, anthraquinone, and phenolic contents. The combined extract (R. cordifolia, A. barbadensis, and A. cepa extracts) was formulated in gel. The selected polyherbal gel was evaluated for in vitro antibacterial activity using agar well diffusion against Cutibacterium acnes (P. acnes) culture. Phytochemical analysis of the composite extract revealed the rich presence of flavonoids, phenolics, and anthraquinones. The polyherbal gels showed good physicochemical properties; however, FCEG-4 was selected for further studies. It was found to be effective against C. acnes (MTCC 1951) in agar well diffusion, as it showed a similar zone of inhibition as that of standard. Also, during in vivo studies, FCEG-4 showed comparable efficacy with clindamycin gel. It was concluded from the study that composite extracts incorporated in an aqueous-based gel system were effective in topical therapy of mild acne vulgaris, showing similar efficacy to that of clindamycin cream.
痤疮是一种常见的皮肤病,影响着各个年龄段的人,并可能导致严重的生理和心理困扰。治疗痤疮的第一线是外用产品,但最有效的是外用抗生素。在这种情况下,开发有效、安全的草药配方来治疗痤疮就显得尤为重要。茜草、芦荟和薤白提取物含有丰富的生物活性代谢物,与抗生素相比安全,而且具有成本效益、可持续性和生态友好性。此外,还没有研究过将它们结合起来治疗痤疮的方法,因此需要对它们的潜在益处进行研究。本研究旨在开发一种有效的多草本凝胶配方,将 R. cordifolia、A. barbadensis 和 A. cepa 联合提取用于治疗痤疮,并参照传统抗生素验证其效果。采用回流法对植物材料进行水提取,并对黄酮、蒽醌和酚含量进行植物化学分析。将混合提取物(R. cordifolia、A. barbadensis 和 A. cepa 提取物)配制成凝胶。采用琼脂井扩散法对所选的多草本凝胶进行了体外抗菌活性评估,以对抗痤疮棒状杆菌(P. acnes)培养物。复合提取物的植物化学分析显示,其中含有丰富的类黄酮、酚类和蒽醌类化合物。多草本凝胶显示出良好的理化特性;然而,FCEG-4 被选为进一步研究的对象。在琼脂井扩散试验中发现,FCEG-4 对痤疮丙酸杆菌(MTCC 1951)有效,其抑制区与标准品相似。此外,在体内研究中,FCEG-4 也显示出与克林霉素凝胶相当的功效。研究得出的结论是,水基凝胶系统中的复合提取物对轻度寻常痤疮的局部治疗有效,显示出与克林霉素乳膏相似的疗效。
{"title":"Polyherbal Antiacne Gel: In Vitro Antibacterial Activity and Efficacy Evaluation Against Cutibacterium acnes.","authors":"Praveen Kumar Gaur,Rosaline Mishra,Rahul Kaushik,Krishan Kumar Verma,Nitin Kumar,Kank Lata","doi":"10.1089/adt.2024.031","DOIUrl":"https://doi.org/10.1089/adt.2024.031","url":null,"abstract":"Acne is a common skin condition that affects people of all ages and can lead to significant physical and psychological distress. The first line of action against acne is topical products, though the most effective are topical antibiotics. In such a scenario, the development of effective and safe herbal formulations for the treatment of acne is of great importance. Rubia cordifolia, Aloe barbadensis, and Allium cepa extracts are rich sources of bioactive metabolites and are safe compared with antibiotics, in addition to being cost effective, sustainable, and eco-friendly. Also, their combination has not been studied for treating acne, and their potential benefits need to be investigated. The present study aimed to develop an effective polyherbal gel formulation of R. cordifolia, A. barbadensis, and A. cepa combined extract for treating acne and validate its effect with reference to conventional antibiotics. Plant materials were extracted in water by the reflux method, and phytochemical analysis was done for flavonoid, anthraquinone, and phenolic contents. The combined extract (R. cordifolia, A. barbadensis, and A. cepa extracts) was formulated in gel. The selected polyherbal gel was evaluated for in vitro antibacterial activity using agar well diffusion against Cutibacterium acnes (P. acnes) culture. Phytochemical analysis of the composite extract revealed the rich presence of flavonoids, phenolics, and anthraquinones. The polyherbal gels showed good physicochemical properties; however, FCEG-4 was selected for further studies. It was found to be effective against C. acnes (MTCC 1951) in agar well diffusion, as it showed a similar zone of inhibition as that of standard. Also, during in vivo studies, FCEG-4 showed comparable efficacy with clindamycin gel. It was concluded from the study that composite extracts incorporated in an aqueous-based gel system were effective in topical therapy of mild acne vulgaris, showing similar efficacy to that of clindamycin cream.","PeriodicalId":8586,"journal":{"name":"Assay and drug development technologies","volume":"1 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142202113","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Latest Delivery Advancements of Lipid Nanoparticles for Cancer Treatment. 脂质纳米粒子用于癌症治疗的最新进展。
IF 1.6 4区 医学 Q4 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-08-01 Epub Date: 2024-07-05 DOI: 10.1089/adt.2024.019
Somia Chauhan, Kalpana Nagpal

As one of the primary causes of illness and death globally, cancer demands novel and potent treatment approaches, which is why lipid nanoparticles (LNPs) have gained attention as a promising delivery system for anticancer drugs with precision and efficacy. The article discusses the salient characteristics of LNPs, such as the lipid components, particle size, polydispersity index, and encapsulation efficiency, followed by strategies that enhance their remarkable drug delivery capabilities. The articles explore LNPs ability to improve the solubility, stability, and bioavailability of various chemotherapeutics, nucleic acids, and immunotherapeutic modalities. It also highlights the recent advancement in surface modification of LNPs, which is essential to improve their effectiveness. Tailored coatings of LNPs improve targeting precision, stability, and biocompatibility; enhancing their transport to boost therapeutic efficacy for cancer targeting. The review summarizes the recent advancements made in using LNPs to treat different forms of cancer and focuses on the most recent clinical studies. Overall, the review highlights that the LNPs can target and treat cancer in a tailored manner through gene therapy, RNA interference, and immunotherapy.

癌症是全球疾病和死亡的主要原因之一,需要新颖而有效的治疗方法,这就是为什么脂质纳米粒子(LNPs)作为一种有前景的精准有效的抗癌药物递送系统受到关注的原因。文章讨论了 LNPs 的突出特点,如脂质成分、粒度、多分散指数和包封效率,随后介绍了增强其卓越药物输送能力的策略。文章探讨了 LNPs 提高各种化疗药物、核酸和免疫疗法的溶解度、稳定性和生物利用度的能力。文章还重点介绍了 LNPs 表面改性方面的最新进展,这对提高 LNPs 的有效性至关重要。量身定制的 LNPs 涂层可提高靶向精度、稳定性和生物相容性;增强其运输能力,从而提高癌症靶向治疗的疗效。综述总结了利用 LNPs 治疗不同形式癌症的最新进展,并重点介绍了最新的临床研究。总之,综述强调了 LNPs 可以通过基因疗法、RNA 干扰和免疫疗法,以量身定制的方式靶向治疗癌症。
{"title":"Latest Delivery Advancements of Lipid Nanoparticles for Cancer Treatment.","authors":"Somia Chauhan, Kalpana Nagpal","doi":"10.1089/adt.2024.019","DOIUrl":"10.1089/adt.2024.019","url":null,"abstract":"<p><p>\u0000 <i>As one of the primary causes of illness and death globally, cancer demands novel and potent treatment approaches, which is why lipid nanoparticles (LNPs) have gained attention as a promising delivery system for anticancer drugs with precision and efficacy. The article discusses the salient characteristics of LNPs, such as the lipid components, particle size, polydispersity index, and encapsulation efficiency, followed by strategies that enhance their remarkable drug delivery capabilities. The articles explore LNPs ability to improve the solubility, stability, and bioavailability of various chemotherapeutics, nucleic acids, and immunotherapeutic modalities. It also highlights the recent advancement in surface modification of LNPs, which is essential to improve their effectiveness. Tailored coatings of LNPs improve targeting precision, stability, and biocompatibility; enhancing their transport to boost therapeutic efficacy for cancer targeting. The review summarizes the recent advancements made in using LNPs to treat different forms of cancer and focuses on the most recent clinical studies. Overall, the review highlights that the LNPs can target and treat cancer in a tailored manner through gene therapy, RNA interference, and immunotherapy.</i>\u0000 </p>","PeriodicalId":8586,"journal":{"name":"Assay and drug development technologies","volume":" ","pages":"340-360"},"PeriodicalIF":1.6,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141537447","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Novel In Situ Gelling System of Quercetin/Sulfobutyl-Ether-β-Cyclodextrin Complex-Loaded Chitosan Nanoparticles for the Treatment of Vulvovaginitis. 用于治疗外阴阴道炎的槲皮素/磺丁基醚-β-环糊精复合物壳聚糖纳米粒子的新型原位胶凝系统
IF 1.6 4区 医学 Q4 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-08-01 Epub Date: 2024-07-19 DOI: 10.1089/adt.2024.042
Amala Maxwell, Prachi Modi, Karishma Sequeira, Masuma Punja, Shaila Lewis
{"title":"A Novel <i>In Situ</i> Gelling System of Quercetin/Sulfobutyl-Ether-β-Cyclodextrin Complex-Loaded Chitosan Nanoparticles for the Treatment of Vulvovaginitis.","authors":"Amala Maxwell, Prachi Modi, Karishma Sequeira, Masuma Punja, Shaila Lewis","doi":"10.1089/adt.2024.042","DOIUrl":"10.1089/adt.2024.042","url":null,"abstract":"","PeriodicalId":8586,"journal":{"name":"Assay and drug development technologies","volume":" ","pages":"308-324"},"PeriodicalIF":1.6,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141726814","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthesis, Antimicrobial Evaluation, and In Silico Studies of 2-Substituted-Phenyl-3-(5-Aryl/Heteroaryl Substituted Thiazol-2-yl) Thiazolidin-4-One Derivatives. 2-取代苯基-3-(5-芳基/杂芳基取代噻唑-2-基)噻唑烷-4-酮衍生物的合成、抗菌评估和硅学研究。
IF 1.6 4区 医学 Q4 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-08-01 Epub Date: 2024-07-24 DOI: 10.1089/adt.2024.027
Swati Pawar, Ram Karan, Srija Hazarika, Mohan Lal, Ravindra K Rawal, Praveen Kumar Gupta
{"title":"Synthesis, Antimicrobial Evaluation, and <i>In Silico</i> Studies of 2-Substituted-Phenyl-3-(5-Aryl/Heteroaryl Substituted Thiazol-2-yl) Thiazolidin-4-One Derivatives.","authors":"Swati Pawar, Ram Karan, Srija Hazarika, Mohan Lal, Ravindra K Rawal, Praveen Kumar Gupta","doi":"10.1089/adt.2024.027","DOIUrl":"10.1089/adt.2024.027","url":null,"abstract":"","PeriodicalId":8586,"journal":{"name":"Assay and drug development technologies","volume":" ","pages":"325-339"},"PeriodicalIF":1.6,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141756831","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthesis of Novel Acrylamide Graft Copolymer of Acacia nilotica Gum for the Stabilization of Melatonin Nanoparticles for Improved Therapeutic Effect: Optimization Using (3)2 Factorial Design. 合成新型刺槐胶丙烯酰胺接枝共聚物,用于稳定褪黑素纳米颗粒以提高治疗效果:使用 (3)2 因式设计进行优化。
IF 1.6 4区 医学 Q4 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-08-01 Epub Date: 2024-07-04 DOI: 10.1089/adt.2024.013
Sonali Sundram, Neerupma Dhiman, Rishabha Malviya, Rajendra Awasthi

The objective of the present study was to optimize the microwave-assisted synthesis of the acrylamide graft copolymer of Acacia nilotica gum (AM-co-ANG). Furthermore, graft copolymer was used for the formulation of a nanoparticulate system using a novel top to bottom solvent antisolvent technique for the delivery of melatonin. Grafting of ANG was optimized by using 32 factorial design, where concentrations of polymer and monomer (acrylamide) were used as independent variables and swelling index in acidic (0.1 N HCl) and basic (1 N NaOH) pH. Grafted polymers were further used to develop and optimize nanoparticulate system using concentration of the graft copolymer and concentration of drug as independent variables. The size of the nanoformulation and entrapment efficiency were selected as dependent variables. Difference in infrared spectrum and absorbance maxima in the ultraviolet region confirm that grafting has taken place. Porous structure and a higher contact angle confirmed hydrophobic nature of AM-co-ANG as compared with the native polymer. Acrylamide graft copolymers show more swelling in 1 N NaOH as compared with 0.1 N HCl. In vitro toxicity studies in hepatic (HepG2 cell line), brain (SHSY5Y cell line), and skin (HaCaT cell line) cells easily predict that synthesized polymer have no cytotoxicity. The entrapment efficiency ranged from 55.24 ± 1.35% to 73.21 ± 1.83%. A nonlinear correlation was observed between independent and dependent variables, as confirmed by multivariate analysis of variance, surface regression, and the correlation report. The prepared formulations were able to release drug up to 12 h. The regression coefficient easily predicted that most of the formulations followed Baker-Lonsdale drug release kinetics.

本研究旨在优化微波辅助合成金合欢胶丙烯酰胺接枝共聚物(AM-co-AG)。此外,接枝共聚物还被用于配制纳米颗粒系统,该系统采用了一种新型的从上到下的溶剂抗溶剂技术,用于褪黑素的递送。通过 32 个因子设计对 ANG 的接枝进行了优化,其中聚合物和单体(丙烯酰胺)的浓度被用作自变量,溶胀指数被用作酸性(0.1 N HCl)和碱性(1 N NaOH)pH 值。以接枝共聚物浓度和药物浓度为自变量,进一步利用接枝聚合物开发和优化纳米颗粒系统。纳米制剂的尺寸和包埋效率被选为因变量。红外光谱和紫外区最大吸光度的差异证实了接枝作用已经发生。与原生聚合物相比,多孔结构和更高的接触角证实了 AM-co-ANG 的疏水性。与 0.1 N HCl 相比,丙烯酰胺接枝共聚物在 1 N NaOH 中的溶胀程度更高。在肝细胞(HepG2 细胞系)、脑细胞(SHSY5Y 细胞系)和皮肤细胞(HaCaT 细胞系)中进行的体外毒性研究表明,合成聚合物没有细胞毒性。截留效率范围为 55.24 ± 1.35% 到 73.21 ± 1.83%。经多元方差分析、表面回归和相关报告证实,自变量和因变量之间存在非线性相关性。回归系数很容易预测出大多数制剂遵循贝克-朗斯代尔药物释放动力学。
{"title":"Synthesis of Novel Acrylamide Graft Copolymer of <i>Acacia nilotica</i> Gum for the Stabilization of Melatonin Nanoparticles for Improved Therapeutic Effect: Optimization Using (3)<sup>2</sup> Factorial Design.","authors":"Sonali Sundram, Neerupma Dhiman, Rishabha Malviya, Rajendra Awasthi","doi":"10.1089/adt.2024.013","DOIUrl":"10.1089/adt.2024.013","url":null,"abstract":"<p><p>\u0000 <i>The objective of the present study was to optimize the microwave-assisted synthesis of the acrylamide graft copolymer of <i>Acacia nilotica</i> gum (AM-co-ANG). Furthermore, graft copolymer was used for the formulation of a nanoparticulate system using a novel top to bottom solvent antisolvent technique for the delivery of melatonin. Grafting of ANG was optimized by using 3<sup>2</sup> factorial design, where concentrations of polymer and monomer (acrylamide) were used as independent variables and swelling index in acidic (0.1 N HCl) and basic (1 N NaOH) pH. Grafted polymers were further used to develop and optimize nanoparticulate system using concentration of the graft copolymer and concentration of drug as independent variables. The size of the nanoformulation and entrapment efficiency were selected as dependent variables. Difference in infrared spectrum and absorbance maxima in the ultraviolet region confirm that grafting has taken place. Porous structure and a higher contact angle confirmed hydrophobic nature of AM-co-ANG as compared with the native polymer. Acrylamide graft copolymers show more swelling in 1 N NaOH as compared with 0.1 N HCl. <i>In vitro</i> toxicity studies in hepatic (HepG2 cell line), brain (SHSY5Y cell line), and skin (HaCaT cell line) cells easily predict that synthesized polymer have no cytotoxicity. The entrapment efficiency ranged from 55.24 ± 1.35% to 73.21 ± 1.83%. A nonlinear correlation was observed between independent and dependent variables, as confirmed by multivariate analysis of variance, surface regression, and the correlation report. The prepared formulations were able to release drug up to 12 h. The regression coefficient easily predicted that most of the formulations followed Baker-Lonsdale drug release kinetics.</i>\u0000 </p>","PeriodicalId":8586,"journal":{"name":"Assay and drug development technologies","volume":" ","pages":"278-307"},"PeriodicalIF":1.6,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141496958","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MiR-22-3p Inhibits 5-Fluorouracil Resistance in Cholangiocarcinoma Cells Through PTEN/PI3K/AKT Axis. MiR-22-3p 通过 PTEN/PI3K/AKT 轴抑制胆管癌细胞的 5-氟尿嘧啶抗性
IF 1.6 4区 医学 Q4 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-07-01 Epub Date: 2024-07-05 DOI: 10.1089/adt.2024.007
Ningrong Zhang, Li Zang

Cholangiocarcinoma (CCA) is a prevalent and highly lethal form of cancer globally. Although microRNAs (miRNAs) have been implicated in the advancement of CCA, their potential influence on 5-fluorouracil (5-Fu) resistance in CCA remains to be fully elucidated. Here, in this study, we investigated the impact of miR-22-3p on CCA resistance. Our investigation involved bioinformatics analysis, which revealed an association between miR-22-3p and the progression, diagnosis, and patient survival of CCA. Furthermore, we validated a notable downregulation of miR-22-3p expression in CCA cell lines. Elevated levels of miR-22-3p inhibit the activity and proliferation of 5-Fu-resistant CCA cell lines. In addition, we confirmed that phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a target gene of miR-22-3p, and its expression correlates with the survival of CCA patients. Reduced PTEN expression enhances apoptosis in 5-Fu-resistant CCA cells. Meanwhile, we verified the existence of the miR-22-3p/PTEN/phosphatidylinositol-3 kinase (PI3K)/Protein kinase B (AKT) regulatory networks in CCA, influencing the sensitivity of CCA cells to 5-Fu. In conclusion, our findings suggest that miR-22-3p acts as a tumor suppressor. Its overexpression inhibits the PTEN/PI3K/AKT axis, promoting cell apoptosis and enhancing CCA sensitivity to 5-Fu.

胆管癌(CCA)是一种全球流行且致死率极高的癌症。尽管微小RNA(miRNA)与CCA的发展有关联,但它们对CCA的5-氟尿嘧啶(5-Fu)耐药性的潜在影响仍有待全面阐明。在本研究中,我们探讨了 miR-22-3p 对 CCA 耐药性的影响。通过生物信息学分析,我们发现 miR-22-3p 与 CCA 的进展、诊断和患者生存之间存在关联。此外,我们还验证了 miR-22-3p 在 CCA 细胞系中的表达明显下调。miR-22-3p水平的升高抑制了对5-Fu耐药的CCA细胞株的活性和增殖。此外,我们还证实了 10 号染色体上缺失的磷酸酶和天丝同源物(PTEN)是 miR-22-3p 的靶基因,其表达与 CCA 患者的存活率相关。PTEN 表达的降低会增强对 5-Fu 抗性的 CCA 细胞的凋亡。同时,我们验证了 miR-22-3p/PTEN/ 磷脂酰肌醇-3 激酶(PI3K)/蛋白激酶 B(AKT)调控网络在 CCA 中的存在,从而影响了 CCA 细胞对 5-Fu 的敏感性。总之,我们的研究结果表明,miR-22-3p 是一种肿瘤抑制因子。它的过表达可抑制 PTEN/PI3K/AKT 轴,促进细胞凋亡,提高 CCA 对 5-Fu 的敏感性。
{"title":"MiR-22-3p Inhibits 5-Fluorouracil Resistance in Cholangiocarcinoma Cells Through PTEN/PI3K/AKT Axis.","authors":"Ningrong Zhang, Li Zang","doi":"10.1089/adt.2024.007","DOIUrl":"10.1089/adt.2024.007","url":null,"abstract":"<p><p>\u0000 <i>Cholangiocarcinoma (CCA) is a prevalent and highly lethal form of cancer globally. Although microRNAs (miRNAs) have been implicated in the advancement of CCA, their potential influence on 5-fluorouracil (5-Fu) resistance in CCA remains to be fully elucidated. Here, in this study, we investigated the impact of miR-22-3p on CCA resistance. Our investigation involved bioinformatics analysis, which revealed an association between miR-22-3p and the progression, diagnosis, and patient survival of CCA. Furthermore, we validated a notable downregulation of miR-22-3p expression in CCA cell lines. Elevated levels of miR-22-3p inhibit the activity and proliferation of 5-Fu-resistant CCA cell lines. In addition, we confirmed that phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a target gene of miR-22-3p, and its expression correlates with the survival of CCA patients. Reduced PTEN expression enhances apoptosis in 5-Fu-resistant CCA cells. Meanwhile, we verified the existence of the miR-22-3p/PTEN/phosphatidylinositol-3 kinase (PI3K)/Protein kinase B (AKT) regulatory networks in CCA, influencing the sensitivity of CCA cells to 5-Fu. In conclusion, our findings suggest that miR-22-3p acts as a tumor suppressor. Its overexpression inhibits the PTEN/PI3K/AKT axis, promoting cell apoptosis and enhancing CCA sensitivity to 5-Fu.</i>\u0000 </p>","PeriodicalId":8586,"journal":{"name":"Assay and drug development technologies","volume":" ","pages":"217-228"},"PeriodicalIF":1.6,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141533505","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Drug Repurposing Patent Applications January-March 2024. 2024 年 1-3 月的药物再利用专利申请。
IF 1.6 4区 医学 Q4 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-07-01 Epub Date: 2024-06-11 DOI: 10.1089/adt.2024.047
Hermann A M Mucke
{"title":"Drug Repurposing Patent Applications January-March 2024.","authors":"Hermann A M Mucke","doi":"10.1089/adt.2024.047","DOIUrl":"https://doi.org/10.1089/adt.2024.047","url":null,"abstract":"","PeriodicalId":8586,"journal":{"name":"Assay and drug development technologies","volume":"22 5","pages":"265-275"},"PeriodicalIF":1.6,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141722918","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Concise Review on Effect of PEGylation on the Properties of Lipid-Based Nanoparticles. PEG 化对脂基纳米粒子特性影响的简明综述。
IF 1.6 4区 医学 Q4 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-07-01 Epub Date: 2024-06-03 DOI: 10.1089/adt.2024.015
Janesha Krishnan, Praveena Poomalai, Ashwin Ravichandran, Aishwarya Reddy, Raman Sureshkumar

Nanoparticle-based drug delivery systems have emerged as promising platforms for enhancing therapeutic efficacy while minimizing off-target effects. Among various strategies employed to optimize these systems, polyethylene glycol (PEG) modification, known as PEGylation-the covalent attachment of PEG to nanoparticles, has gained considerable attention for its ability to impart stealth properties to nanoparticles while also extending circulation time and improving biocompatibility. PEGylation extends to different drug delivery systems, in specific, nanoparticles for targeting cancer cells, where the concentration of drug in the cancer cells is improved by virtue of PEGylation. The primary challenge linked to PEGylation lies in its confirmation. Numerous research findings provide comprehensive insights into selecting PEG for various PEGylation methods. In this review, we have endeavored to consolidate the outcomes concerning the choice of PEG and diverse PEGylation techniques.

以纳米颗粒为基础的给药系统已成为既能提高疗效又能最大限度减少脱靶效应的理想平台。在优化这些系统所采用的各种策略中,聚乙二醇(PEG)修饰(即 PEG 化--PEG 与纳米颗粒的共价连接)因其能够赋予纳米颗粒隐形特性,同时延长流通时间并改善生物相容性而备受关注。PEG 乙基化可扩展到不同的给药系统,特别是用于靶向癌细胞的纳米颗粒,通过 PEG 乙基化可提高癌细胞中的药物浓度。与 PEG 化相关的主要挑战在于其确认。大量研究成果为各种 PEG 化方法选择 PEG 提供了全面的见解。在本综述中,我们将努力整合有关 PEG 选择和各种 PEG 化技术的成果。
{"title":"A Concise Review on Effect of PEGylation on the Properties of Lipid-Based Nanoparticles.","authors":"Janesha Krishnan, Praveena Poomalai, Ashwin Ravichandran, Aishwarya Reddy, Raman Sureshkumar","doi":"10.1089/adt.2024.015","DOIUrl":"10.1089/adt.2024.015","url":null,"abstract":"<p><p>\u0000 <i>Nanoparticle-based drug delivery systems have emerged as promising platforms for enhancing therapeutic efficacy while minimizing off-target effects. Among various strategies employed to optimize these systems, polyethylene glycol (PEG) modification, known as PEGylation-the covalent attachment of PEG to nanoparticles, has gained considerable attention for its ability to impart stealth properties to nanoparticles while also extending circulation time and improving biocompatibility. PEGylation extends to different drug delivery systems, in specific, nanoparticles for targeting cancer cells, where the concentration of drug in the cancer cells is improved by virtue of PEGylation. The primary challenge linked to PEGylation lies in its confirmation. Numerous research findings provide comprehensive insights into selecting PEG for various PEGylation methods. In this review, we have endeavored to consolidate the outcomes concerning the choice of PEG and diverse PEGylation techniques.</i>\u0000 </p>","PeriodicalId":8586,"journal":{"name":"Assay and drug development technologies","volume":" ","pages":"246-264"},"PeriodicalIF":1.6,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141199454","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Drug Repurposing Patent Applications January-March 2024. 2024 年 1-3 月的药物再利用专利申请。
IF 1.8 4区 医学 Q4 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-06-11 DOI: 10.1089/adt.2024.047
Hermann A M Mucke
{"title":"Drug Repurposing Patent Applications January-March 2024.","authors":"Hermann A M Mucke","doi":"10.1089/adt.2024.047","DOIUrl":"https://doi.org/10.1089/adt.2024.047","url":null,"abstract":"","PeriodicalId":8586,"journal":{"name":"Assay and drug development technologies","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141299900","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Beyond the Maze: Recent Advancements in Molecular and Cellular Tethered Drug Delivery Systems. 超越迷宫:分子和细胞系留给药系统的最新进展。
IF 1.6 4区 医学 Q4 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-05-01 Epub Date: 2024-05-08 DOI: 10.1089/adt.2024.025
Dilpreet Singh

The relentless pursuit of precision medicine has catalyzed the development of molecular and cellular tethered drug delivery systems, a burgeoning field that stands to redefine the paradigms of therapeutic delivery. This review encapsulates the cutting-edge advancements within this domain, emphasizing the engineering of molecular tethers and cellular vectors designed to ferry therapeutics directly to their target sites with unparalleled specificity and efficiency. By exploiting the unique biochemical signatures of disease states, these systems promise a substantial reduction in off-target effects and an enhancement in drug bioavailability, thereby mitigating the systemic side effects that are often associated with conventional drug therapies. Through a synthesis of recent research findings, this review highlights the innovative approaches being explored in the design and application of these tethered systems, ranging from nanotechnology-based solutions to genetically engineered cellular carriers. The potential of these systems to provide targeted therapy for a wide array of diseases, including cancer, autoimmune disorders, and neurological conditions, is thoroughly examined. This abstract aims to provide a succinct overview of the current state and future prospects of molecular and cellular tethered drug delivery systems in advancing the frontiers of precision medicine.

对精准医疗的不懈追求催化了分子和细胞系留给药系统的发展,这一新兴领域将重新定义治疗给药模式。这篇综述概括了这一领域的前沿进展,强调了分子系留和细胞载体的工程设计,旨在以无与伦比的特异性和效率将治疗药物直接输送到靶点。通过利用疾病状态的独特生化特征,这些系统有望大大降低脱靶效应,提高药物的生物利用度,从而减轻传统药物疗法经常产生的全身副作用。通过对最新研究成果的综述,本综述重点介绍了在这些系留系统的设计和应用方面正在探索的创新方法,包括基于纳米技术的解决方案和基因工程细胞载体。文章深入探讨了这些系统为癌症、自身免疫性疾病和神经系统疾病等多种疾病提供靶向治疗的潜力。本摘要旨在简明扼要地概述分子和细胞系留给药系统在推动精准医疗前沿发展方面的现状和未来前景。
{"title":"Beyond the Maze: Recent Advancements in Molecular and Cellular Tethered Drug Delivery Systems.","authors":"Dilpreet Singh","doi":"10.1089/adt.2024.025","DOIUrl":"10.1089/adt.2024.025","url":null,"abstract":"<p><p>\u0000 <i>The relentless pursuit of precision medicine has catalyzed the development of molecular and cellular tethered drug delivery systems, a burgeoning field that stands to redefine the paradigms of therapeutic delivery. This review encapsulates the cutting-edge advancements within this domain, emphasizing the engineering of molecular tethers and cellular vectors designed to ferry therapeutics directly to their target sites with unparalleled specificity and efficiency. By exploiting the unique biochemical signatures of disease states, these systems promise a substantial reduction in off-target effects and an enhancement in drug bioavailability, thereby mitigating the systemic side effects that are often associated with conventional drug therapies. Through a synthesis of recent research findings, this review highlights the innovative approaches being explored in the design and application of these tethered systems, ranging from nanotechnology-based solutions to genetically engineered cellular carriers. The potential of these systems to provide targeted therapy for a wide array of diseases, including cancer, autoimmune disorders, and neurological conditions, is thoroughly examined. This abstract aims to provide a succinct overview of the current state and future prospects of molecular and cellular tethered drug delivery systems in advancing the frontiers of precision medicine.</i>\u0000 </p>","PeriodicalId":8586,"journal":{"name":"Assay and drug development technologies","volume":" ","pages":"203-215"},"PeriodicalIF":1.6,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140875718","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Assay and drug development technologies
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1