Pub Date : 2022-01-01DOI: 10.1177/17590914221136365
María C Sanchez, Gustavo A Chiabrando
Müller glial cells (MGCs), the main glial component of the retina, play an active role in retinal homeostasis during development and pathological processes. They strongly monitor retinal environment and, in response to retinal imbalance, activate neuroprotective mechanisms mainly characterized by the increase of glial fibrillary acidic protein (GFAP). Under these circumstances, if homeostasis is not reestablished, the retina can be severely injured and GFAP contributes to neuronal degeneration, as they occur in several proliferative retinopathies such as diabetic retinopathy, sickle cell retinopathy and retinopathy of prematurity. In addition, MGCs have an active participation in inflammatory responses releasing proinflammatory mediators and metalloproteinases to the extracellular space and vitreous cavity. MGCs are also involved in the retinal neovascularization and matrix extracellular remodeling during the proliferative stage of retinopathies. Interestingly, low-density lipoprotein receptor-related protein 1 (LRP1) and its ligand α2-macroglobulin (α2M) are highly expressed in MGCs and they have been established to participate in multiple cellular and molecular activities with relevance in retinopathies. However, the exact mechanism of regulation of retinal LRP1 in MGCs is still unclear. Thus, the active participation of MGCs and LRP1 in these diseases, strongly supports the potential interest of them for the design of novel therapeutic approaches. In this review, we discuss the role of LRP1 in the multiple MGCs activities involved in the development and progression of proliferative retinopathies, identifying opportunities in the field that beg further research in this topic area.Summary StatementMGCs and LRP1 are active players in injured retinas, participating in key features such as gliosis and neurotoxicity, neovascularization, inflammation, and glucose control homeostasis during the progression of ischemic diseases, such as proliferative retinopathies.
{"title":"Multitarget Activities of Müller Glial Cells and Low-Density Lipoprotein Receptor-Related Protein 1 in Proliferative Retinopathies.","authors":"María C Sanchez, Gustavo A Chiabrando","doi":"10.1177/17590914221136365","DOIUrl":"https://doi.org/10.1177/17590914221136365","url":null,"abstract":"<p><p>Müller glial cells (MGCs), the main glial component of the retina, play an active role in retinal homeostasis during development and pathological processes. They strongly monitor retinal environment and, in response to retinal imbalance, activate neuroprotective mechanisms mainly characterized by the increase of glial fibrillary acidic protein (GFAP). Under these circumstances, if homeostasis is not reestablished, the retina can be severely injured and GFAP contributes to neuronal degeneration, as they occur in several proliferative retinopathies such as diabetic retinopathy, sickle cell retinopathy and retinopathy of prematurity. In addition, MGCs have an active participation in inflammatory responses releasing proinflammatory mediators and metalloproteinases to the extracellular space and vitreous cavity. MGCs are also involved in the retinal neovascularization and matrix extracellular remodeling during the proliferative stage of retinopathies. Interestingly, low-density lipoprotein receptor-related protein 1 (LRP1) and its ligand α<sub>2</sub>-macroglobulin (α<sub>2</sub>M) are highly expressed in MGCs and they have been established to participate in multiple cellular and molecular activities with relevance in retinopathies. However, the exact mechanism of regulation of retinal LRP1 in MGCs is still unclear. Thus, the active participation of MGCs and LRP1 in these diseases, strongly supports the potential interest of them for the design of novel therapeutic approaches. In this review, we discuss the role of LRP1 in the multiple MGCs activities involved in the development and progression of proliferative retinopathies, identifying opportunities in the field that beg further research in this topic area.<b>Summary Statement</b>MGCs and LRP1 are active players in injured retinas, participating in key features such as gliosis and neurotoxicity, neovascularization, inflammation, and glucose control homeostasis during the progression of ischemic diseases, such as proliferative retinopathies.</p>","PeriodicalId":8616,"journal":{"name":"ASN NEURO","volume":" ","pages":"17590914221136365"},"PeriodicalIF":4.7,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/02/61/10.1177_17590914221136365.PMC9629547.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40659993","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Depression is a common psychiatric comorbidity in patients with epilepsy, especially those with temporal lobe epilepsy (TLE). The aim of this study was to assess changes in high mobility group box protein 1 (HMGB1) expression in epileptic patients with and without comorbid depression. Sixty patients with drug-resistant TLE who underwent anterior temporal lobectomy were enrolled. Anterior hippocampal samples were collected after surgery and analyzed by immunofluorescence (n = 7/group). We also evaluated the expression of HMGB1 in TLE patients with hippocampal sclerosis and measured the level of plasma HMGB1 by enzyme-linked immunosorbent assay. The results showed that 28.3% of the patients (17/60) had comorbid depression. HMGB1 was ubiquitously expressed in all subregions of the anterior hippocampus. The ratio of HMGB1-immunoreactive neurons and astrocytes was significantly increased in both TLE patients with hippocampal sclerosis and TLE patients with comorbid depression compared to patients with TLE only. The ratio of cytoplasmic to nuclear HMGB1-positive neurons in the hippocampus was higher in depressed patients with TLE than in nondepressed patients, which suggested that more HMGB1 translocated from the nucleus to the cytoplasm in the depressed group. There was no significant difference in the plasma level of HMGB1 among patients with TLE alone, TLE with hippocampal sclerosis, and TLE with comorbid depression. The results of the study revealed that the translocation of HMGB1 from the nucleus to the cytoplasm in hippocampal neurons may play a previously unrecognized role in the initiation and amplification of epilepsy and comorbid depression. The direct targeting of neural HMGB1 is a promising approach for anti-inflammatory therapy.
{"title":"Translocation of High Mobility Group Box 1 From the Nucleus to the Cytoplasm in Depressed Patients With Epilepsy.","authors":"Xiao-Li Li, Shu Wang, Chong-Yang Tang, Hao-Wei Ma, Zi-Zhang Cheng, Meng Zhao, Wei-Jin Sun, Xiong-Fei Wang, Meng-Yang Wang, Tian-Fu Li, Xue-Ling Qi, Jian Zhou, Guo-Ming Luan, Yu-Guang Guan","doi":"10.1177/17590914221136662","DOIUrl":"https://doi.org/10.1177/17590914221136662","url":null,"abstract":"<p><p>Depression is a common psychiatric comorbidity in patients with epilepsy, especially those with temporal lobe epilepsy (TLE). The aim of this study was to assess changes in high mobility group box protein 1 (HMGB1) expression in epileptic patients with and without comorbid depression. Sixty patients with drug-resistant TLE who underwent anterior temporal lobectomy were enrolled. Anterior hippocampal samples were collected after surgery and analyzed by immunofluorescence (<i>n</i> = 7/group). We also evaluated the expression of HMGB1 in TLE patients with hippocampal sclerosis and measured the level of plasma HMGB1 by enzyme-linked immunosorbent assay. The results showed that 28.3% of the patients (17/60) had comorbid depression. HMGB1 was ubiquitously expressed in all subregions of the anterior hippocampus. The ratio of HMGB1-immunoreactive neurons and astrocytes was significantly increased in both TLE patients with hippocampal sclerosis and TLE patients with comorbid depression compared to patients with TLE only. The ratio of cytoplasmic to nuclear HMGB1-positive neurons in the hippocampus was higher in depressed patients with TLE than in nondepressed patients, which suggested that more HMGB1 translocated from the nucleus to the cytoplasm in the depressed group. There was no significant difference in the plasma level of HMGB1 among patients with TLE alone, TLE with hippocampal sclerosis, and TLE with comorbid depression. The results of the study revealed that the translocation of HMGB1 from the nucleus to the cytoplasm in hippocampal neurons may play a previously unrecognized role in the initiation and amplification of epilepsy and comorbid depression. The direct targeting of neural HMGB1 is a promising approach for anti-inflammatory therapy.</p>","PeriodicalId":8616,"journal":{"name":"ASN NEURO","volume":" ","pages":"17590914221136662"},"PeriodicalIF":4.7,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/5b/d6/10.1177_17590914221136662.PMC9677174.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40688755","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-01-01DOI: 10.1177/17590914221133236
Shunfeng Liu, Xueyuan Gao, Shouhong Zhou
Microglia play an important role in maintaining central nervous system homeostasis and are the major immune cells in the brain. In response to internal or external inflammatory stimuli, microglia are activated and release numerous inflammatory factors, thus leading to neuroinflammation. Inflammation and microglia iron accumulation promote each other and jointly promote the progression of neuroinflammation. Inhibiting microglia iron accumulation prevents neuroinflammation. Ferroptosis is an iron-dependent phospholipid peroxidation-driven type of cell death regulation. Cell iron accumulation causes the peroxidation of cell membrane phospholipids and damages the cell membrane. Ultimately, this process leads to cell ferroptosis. Iron accumulation or phospholipid peroxidation in microglia releases a large number of inflammatory factors. Thus, inhibiting microglia ferroptosis may be a new target for the prevention and treatment of neuroinflammation.
{"title":"New Target for Prevention and Treatment of Neuroinflammation: Microglia Iron Accumulation and Ferroptosis","authors":"Shunfeng Liu, Xueyuan Gao, Shouhong Zhou","doi":"10.1177/17590914221133236","DOIUrl":"https://doi.org/10.1177/17590914221133236","url":null,"abstract":"Microglia play an important role in maintaining central nervous system homeostasis and are the major immune cells in the brain. In response to internal or external inflammatory stimuli, microglia are activated and release numerous inflammatory factors, thus leading to neuroinflammation. Inflammation and microglia iron accumulation promote each other and jointly promote the progression of neuroinflammation. Inhibiting microglia iron accumulation prevents neuroinflammation. Ferroptosis is an iron-dependent phospholipid peroxidation-driven type of cell death regulation. Cell iron accumulation causes the peroxidation of cell membrane phospholipids and damages the cell membrane. Ultimately, this process leads to cell ferroptosis. Iron accumulation or phospholipid peroxidation in microglia releases a large number of inflammatory factors. Thus, inhibiting microglia ferroptosis may be a new target for the prevention and treatment of neuroinflammation.","PeriodicalId":8616,"journal":{"name":"ASN NEURO","volume":" ","pages":""},"PeriodicalIF":4.7,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44965767","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-01-01DOI: 10.1177/17590914221118502
Jorge Correale, Maria Celica Ysrraelit
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS) leading to demyelination and neurodegeneration. Life expectancy and age of onset in MS patients have been rising over the last decades, and previous studies have shown that age affects disease progression. Therefore, age appears as one of the most important factors in accumulating disability in MS patients. Indeed, the degeneration of oligodendrocytes (OGDs) and OGD precursors (OPCs) increases with age, in association with increased inflammatory activity of astrocytes and microglia. Similarly, age-related neuronal changes such as mitochondrial alterations, an increase in oxidative stress, and disrupted paranodal junctions can impact myelin integrity. Conversely, once myelination is complete, the long-term integrity of axons depends on OGD supply of energy. These alterations determine pathological myelin changes consisting of myelin outfolding, splitting, and accumulation of multilamellar fragments. Overall, these data demonstrate that old mature OGDs lose their ability to produce and maintain healthy myelin over time, to induce de novo myelination, and to remodel pre-existing myelinated axons that contribute to neural plasticity in the CNS. Furthermore, as observed in other tissues, aging induces a general decline in regenerative processes and, not surprisingly, progressively hinders remyelination in MS. In this context, this review will provide an overview of the current knowledge of age-related changes occurring in cells of the oligodendroglial lineage and how they impact myelin synthesis, axonal degeneration, and remyelination efficiency.
{"title":"Multiple Sclerosis and Aging: The Dynamics of Demyelination and Remyelination.","authors":"Jorge Correale, Maria Celica Ysrraelit","doi":"10.1177/17590914221118502","DOIUrl":"https://doi.org/10.1177/17590914221118502","url":null,"abstract":"<p><p>Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS) leading to demyelination and neurodegeneration. Life expectancy and age of onset in MS patients have been rising over the last decades, and previous studies have shown that age affects disease progression. Therefore, age appears as one of the most important factors in accumulating disability in MS patients. Indeed, the degeneration of oligodendrocytes (OGDs) and OGD precursors (OPCs) increases with age, in association with increased inflammatory activity of astrocytes and microglia. Similarly, age-related neuronal changes such as mitochondrial alterations, an increase in oxidative stress, and disrupted paranodal junctions can impact myelin integrity. Conversely, once myelination is complete, the long-term integrity of axons depends on OGD supply of energy. These alterations determine pathological myelin changes consisting of myelin outfolding, splitting, and accumulation of multilamellar fragments. Overall, these data demonstrate that old mature OGDs lose their ability to produce and maintain healthy myelin over time, to induce <i>de novo</i> myelination, and to remodel pre-existing myelinated axons that contribute to neural plasticity in the CNS. Furthermore, as observed in other tissues, aging induces a general decline in regenerative processes and, not surprisingly, progressively hinders remyelination in MS. In this context, this review will provide an overview of the current knowledge of age-related changes occurring in cells of the oligodendroglial lineage and how they impact myelin synthesis, axonal degeneration, and remyelination efficiency.</p>","PeriodicalId":8616,"journal":{"name":"ASN NEURO","volume":" ","pages":"17590914221118502"},"PeriodicalIF":4.7,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/9a/b1/10.1177_17590914221118502.PMC9364177.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40591609","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-01-01DOI: 10.1177/17590914221076698
Natalia A Marchese, Maximiliano N Ríos, Mario E Guido
The retina of vertebrates is responsible for capturing light through visual (cones and rods) and non-visual photoreceptors (intrinsically photosensitive retinal ganglion cells and horizontal cells) triggering a number of essential activities associated to image- and non-image forming functions (photic entrainment of daily rhythms, pupillary light reflexes, pineal melatonin inhibition, among others). Although the retina contains diverse types of neuronal based-photoreceptors cells, originally classified as ciliary- or rhabdomeric-like types, in recent years, it has been shown that the major glial cell type of the retina, the Müller glial cells (MC), express blue photopigments as Opn3 (encephalopsin) and Opn5 (neuropsin) and display light responses associated to intracellular Ca2 + mobilization. These findings strongly propose MC as novel retinal photodetectors (Rios et al., 2019). Herein, we further investigated the intrinsic light responses of primary cultures of MC from embryonic chicken retinas specially focused on Ca2 + mobilization by fluorescence imaging and the identity of the internal Ca2 + stores responsible for blue light responses. Results clearly demonstrated that light responses were specific to blue light of long time exposure, and that the main Ca2 + reservoir to trigger downstream responses came from intracellular stores localized in the endoplasmic reticulum These observations bring more complexity to the intrinsic photosensitivity of retinal cells, particularly with regard to the detection of light in the blue range of visible spectra, and add novel functions to glial cells cooperating with other photoreceptors to detect and integrate ambient light in the retinal circuit and participate in cell to cell communication.Summary statement:Non-neuronal cells in the vertebrate retina, Muller glial cells, express non-canonical photopigments and sense blue light causing calcium release from intracellular stores strongly suggesting a novel intrinsic photosensitivity and new regulatory events mediating light-driven processes with yet unknown physiological implications.
脊椎动物的视网膜负责通过视觉(视锥细胞和视杆细胞)和非视觉光感受器(本质上是光敏的视网膜神经节细胞和水平细胞)捕获光,触发一些与图像和非图像形成功能相关的基本活动(日常节律的光带、瞳孔光反射、松果体褪黑素抑制等)。虽然视网膜含有不同类型的神经元基光感受器细胞,最初被分类为睫状体或横纹肌样类型,但近年来,研究表明视网膜的主要胶质细胞类型,神经胶质细胞(MC),表达蓝色光色素Opn3(脑视素)和Opn5(神经视素),并表现出与细胞内Ca2 +动员相关的光反应。这些发现有力地证明了MC是一种新型的视网膜光电探测器(Rios et al., 2019)。在此,我们进一步研究了胚胎鸡视网膜MC原代培养物的内在光响应,特别是通过荧光成像研究Ca2 +动员,以及负责蓝光响应的内部Ca2 +储存的身份。结果清楚地表明,光响应是特定的蓝光长时间暴露,Ca2 +的主要水库触发下游反应来自于内质网定位的细胞内储存。这些观察带来了更多的复杂性,视网膜细胞的内在光敏性,特别是在可见光光谱的蓝色范围内的光检测。并为神经胶质细胞添加新的功能,与其他光感受器合作,在视网膜回路中检测和整合环境光,并参与细胞间的交流。摘要:脊椎动物视网膜中的非神经元细胞穆勒神经胶质细胞表达非规范光色素并感知蓝光,导致细胞内储存的钙释放,这强烈表明一种新的内在光敏性和新的调节事件介导了光驱动过程,其生理意义尚不清楚。
{"title":"The Intrinsic Blue Light Responses of Avian Müller Glial Cells Imply Calcium Release from Internal Stores.","authors":"Natalia A Marchese, Maximiliano N Ríos, Mario E Guido","doi":"10.1177/17590914221076698","DOIUrl":"https://doi.org/10.1177/17590914221076698","url":null,"abstract":"<p><p>The retina of vertebrates is responsible for capturing light through visual (cones and rods) and non-visual photoreceptors (intrinsically photosensitive retinal ganglion cells and horizontal cells) triggering a number of essential activities associated to image- and non-image forming functions (photic entrainment of daily rhythms, pupillary light reflexes, pineal melatonin inhibition, among others). Although the retina contains diverse types of neuronal based-photoreceptors cells, originally classified as ciliary- or rhabdomeric-like types, in recent years, it has been shown that the major glial cell type of the retina, the Müller glial cells (MC), express blue photopigments as Opn3 (encephalopsin) and Opn5 (neuropsin) and display light responses associated to intracellular Ca2 + mobilization. These findings strongly propose MC as novel retinal photodetectors (Rios et al., 2019). Herein, we further investigated the intrinsic light responses of primary cultures of MC from embryonic chicken retinas specially focused on Ca2 + mobilization by fluorescence imaging and the identity of the internal Ca2 + stores responsible for blue light responses. Results clearly demonstrated that light responses were specific to blue light of long time exposure, and that the main Ca2 + reservoir to trigger downstream responses came from intracellular stores localized in the endoplasmic reticulum These observations bring more complexity to the intrinsic photosensitivity of retinal cells, particularly with regard to the detection of light in the blue range of visible spectra, and add novel functions to glial cells cooperating with other photoreceptors to detect and integrate ambient light in the retinal circuit and participate in cell to cell communication.<b>Summary statement:</b>Non-neuronal cells in the vertebrate retina, Muller glial cells, express non-canonical photopigments and sense blue light causing calcium release from intracellular stores strongly suggesting a novel intrinsic photosensitivity and new regulatory events mediating light-driven processes with yet unknown physiological implications.</p>","PeriodicalId":8616,"journal":{"name":"ASN NEURO","volume":" ","pages":"17590914221076698"},"PeriodicalIF":4.7,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/c2/c5/10.1177_17590914221076698.PMC8814826.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39877904","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-01-01DOI: 10.1177/17590914221123138
Philip A Adeniyi, Katie-Anne Fopiano, Fatima Banine, Mariel Garcia, Xi Gong, C Dirk Keene, Larry S Sherman, Zsolt Bagi, Stephen A Back
A major limitation of mechanistic studies in aging brains is the lack of routine methods to robustly visualize and discriminate the cellular distribution of tissue antigens using fluorescent immunohistochemical multi-labeling techniques. Although such approaches are routine in non-aging brains, they are not consistently feasible in the aging brain due to the progressive accumulation of autofluorescent pigments, particularly lipofuscin, which strongly excite and emit over a broad spectral range. Consequently, aging research has relied upon colorimetric antibody techniques, where discrimination of tissue antigens is often challenging. We report the application of a simple, reproducible, and affordable protocol using multispectral light-emitting diodes (mLEDs) exposure for the reduction/elimination of lipofuscin autofluorescence (LAF) in aging brain tissue from humans, non-human primates, and mice. The mLEDs lamp has a broad spectral range that spans from the UV to infrared range and includes spectra in the violet/blue and orange/red. After photo quenching, the LAF level was markedly reduced when the tissue background fluorescence before and after mLEDs exposure was compared (p < 0.0001) across the spectral range. LAF elimination was estimated at 95 ± 1%. This approach permitted robust specific fluorescent immunohistochemical co-visualization of commonly studied antigens in aging brains. We also successfully applied this method to specifically visualize CD44 variant expression in aging human cerebral white matter using RNAscope fluorescent in-situ hybridization. Photo quenching provides an attractive means to accelerate progress in aging research by increasing the number of molecules that can be topologically discriminated by fluorescence detection in brain tissue from normative or pathological aging.
{"title":"Multispectral LEDs Eliminate Lipofuscin-Associated Autofluorescence for Immunohistochemistry and CD44 Variant Detection by in Situ Hybridization in Aging Human, non-Human Primate, and Murine Brain.","authors":"Philip A Adeniyi, Katie-Anne Fopiano, Fatima Banine, Mariel Garcia, Xi Gong, C Dirk Keene, Larry S Sherman, Zsolt Bagi, Stephen A Back","doi":"10.1177/17590914221123138","DOIUrl":"10.1177/17590914221123138","url":null,"abstract":"<p><p>A major limitation of mechanistic studies in aging brains is the lack of routine methods to robustly visualize and discriminate the cellular distribution of tissue antigens using fluorescent immunohistochemical multi-labeling techniques. Although such approaches are routine in non-aging brains, they are not consistently feasible in the aging brain due to the progressive accumulation of autofluorescent pigments, particularly lipofuscin, which strongly excite and emit over a broad spectral range. Consequently, aging research has relied upon colorimetric antibody techniques, where discrimination of tissue antigens is often challenging. We report the application of a simple, reproducible, and affordable protocol using multispectral light-emitting diodes (mLEDs) exposure for the reduction/elimination of lipofuscin autofluorescence (LAF) in aging brain tissue from humans, non-human primates, and mice. The mLEDs lamp has a broad spectral range that spans from the UV to infrared range and includes spectra in the violet/blue and orange/red. After photo quenching, the LAF level was markedly reduced when the tissue background fluorescence before and after mLEDs exposure was compared (p < 0.0001) across the spectral range. LAF elimination was estimated at 95 ± 1%. This approach permitted robust specific fluorescent immunohistochemical co-visualization of commonly studied antigens in aging brains. We also successfully applied this method to specifically visualize CD44 variant expression in aging human cerebral white matter using RNAscope fluorescent in-situ hybridization. Photo quenching provides an attractive means to accelerate progress in aging research by increasing the number of molecules that can be topologically discriminated by fluorescence detection in brain tissue from normative or pathological aging.</p>","PeriodicalId":8616,"journal":{"name":"ASN NEURO","volume":"14 ","pages":"17590914221123138"},"PeriodicalIF":3.9,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/ae/82/10.1177_17590914221123138.PMC9520168.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10820881","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-01-01DOI: 10.1177/17590914221103188
Maya Xia, Benjamin Owen, Jeremy Chiang, Alyssa Levitt, Katherine Preisinger, Wen Wei Yan, Ragan Huffman, William P Nobis
Sudden unexpected death in epilepsy (SUDEP) is the leading cause of death in refractory epilepsy patients. Accumulating evidence from recent human studies and animal models suggests that seizure-related respiratory arrest may be important for initiating cardiorespiratory arrest and death. Prior evidence suggests that apnea onset can coincide with seizure spread to the amygdala and that stimulation of the amygdala can reliably induce apneas in epilepsy patients, potentially implicating amygdalar regions in seizure-related respiratory arrest and subsequent postictal hypoventilation and cardiorespiratory death. This study aimed to determine if an extended amygdalar structure, the dorsal bed nucleus of the stria terminalis (dBNST), is involved in seizure-induced respiratory arrest (S-IRA) and death using DBA/1 mice, a mouse strain which has audiogenic seizures (AGS) and a high incidence of postictal respiratory arrest and death. The presence of S-IRA significantly increased c-Fos expression in the dBNST of DBA/1 mice. Furthermore, disruption of synaptic output from the dBNST via viral-induced tetanus neurotoxin (TeNT) significantly improved survival following S-IRA in DBA/1 mice without affecting baseline breathing or hypercapnic (HCVR) and hypoxic ventilatory response (HVR). This disruption in the dBNST resulted in changes to the balance of excitatory/inhibitory (E/I) synaptic events in the downstream brainstem regions of the lateral parabrachial nucleus (PBN) and the periaqueductal gray (PAG). These findings suggest that the dBNST is a potential subcortical forebrain site necessary for the mediation of S-IRA, potentially through its outputs to brainstem respiratory regions.
{"title":"Disruption of Synaptic Transmission in the Bed Nucleus of the Stria Terminalis Reduces Seizure-Induced Death in DBA/1 Mice and Alters Brainstem E/I Balance.","authors":"Maya Xia, Benjamin Owen, Jeremy Chiang, Alyssa Levitt, Katherine Preisinger, Wen Wei Yan, Ragan Huffman, William P Nobis","doi":"10.1177/17590914221103188","DOIUrl":"https://doi.org/10.1177/17590914221103188","url":null,"abstract":"<p><p>Sudden unexpected death in epilepsy (SUDEP) is the leading cause of death in refractory epilepsy patients. Accumulating evidence from recent human studies and animal models suggests that seizure-related respiratory arrest may be important for initiating cardiorespiratory arrest and death. Prior evidence suggests that apnea onset can coincide with seizure spread to the amygdala and that stimulation of the amygdala can reliably induce apneas in epilepsy patients, potentially implicating amygdalar regions in seizure-related respiratory arrest and subsequent postictal hypoventilation and cardiorespiratory death. This study aimed to determine if an extended amygdalar structure, the dorsal bed nucleus of the stria terminalis (dBNST), is involved in seizure-induced respiratory arrest (S-IRA) and death using DBA/1 mice, a mouse strain which has audiogenic seizures (AGS) and a high incidence of postictal respiratory arrest and death. The presence of S-IRA significantly increased c-Fos expression in the dBNST of DBA/1 mice. Furthermore, disruption of synaptic output from the dBNST via viral-induced tetanus neurotoxin (TeNT) significantly improved survival following S-IRA in DBA/1 mice without affecting baseline breathing or hypercapnic (HCVR) and hypoxic ventilatory response (HVR). This disruption in the dBNST resulted in changes to the balance of excitatory/inhibitory (E/I) synaptic events in the downstream brainstem regions of the lateral parabrachial nucleus (PBN) and the periaqueductal gray (PAG). These findings suggest that the dBNST is a potential subcortical forebrain site necessary for the mediation of S-IRA, potentially through its outputs to brainstem respiratory regions.</p>","PeriodicalId":8616,"journal":{"name":"ASN NEURO","volume":"14 ","pages":"17590914221103188"},"PeriodicalIF":4.7,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/b0/65/10.1177_17590914221103188.PMC9136462.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10694884","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-01-01DOI: 10.1177/17590914221131446
Borna Sarker, Sandra M Cardona, Kaira A Church, Difernando Vanegas, Priscila Velazquez, Colin Rorex, Derek Rodriguez, Andrew S Mendiola, Timothy S Kern, Nadia D Domingo, Robin Stephens, Isabel A Muzzio, Astrid E Cardona
Summary statement: Diabetic human and murine retinas revealed pronounced microglial morphological activation and vascular abnormalities associated with inflammation. Pharmacological fibrinogen depletion using ancrod dampened microglial morphology alterations, resolved fibrinogen accumulation, rescued axonal integrity, and reduced inflammation in the diabetic murine retina.
{"title":"Defibrinogenation Ameliorates Retinal Microgliosis and Inflammation in A CX3CR1-Independent Manner.","authors":"Borna Sarker, Sandra M Cardona, Kaira A Church, Difernando Vanegas, Priscila Velazquez, Colin Rorex, Derek Rodriguez, Andrew S Mendiola, Timothy S Kern, Nadia D Domingo, Robin Stephens, Isabel A Muzzio, Astrid E Cardona","doi":"10.1177/17590914221131446","DOIUrl":"10.1177/17590914221131446","url":null,"abstract":"<p><strong>Summary statement: </strong>Diabetic human and murine retinas revealed pronounced microglial morphological activation and vascular abnormalities associated with inflammation. Pharmacological fibrinogen depletion using ancrod dampened microglial morphology alterations, resolved fibrinogen accumulation, rescued axonal integrity, and reduced inflammation in the diabetic murine retina.</p>","PeriodicalId":8616,"journal":{"name":"ASN NEURO","volume":"14 ","pages":"17590914221131446"},"PeriodicalIF":3.9,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/65/d0/10.1177_17590914221131446.PMC9557863.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9109783","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-01-01DOI: 10.1177/17590914221120190
Mythily Srinivasan, Chandler Walker
Inflammation including neuroinflammation is considered a protective response and is directed to repair, regenerate, and restore damaged tissues in the central nervous system. Persistent inflammation due to chronic stress, age related accrual of free radicals, subclinical infections or other factors lead to reduced survival and increased neuronal death. Circadian abnormalities secondary to altered sleep/wake cycles is one of the earliest signs of neurodegenerative diseases. Brain specific or global deficiency of core circadian trans-activator brain and muscle ARNT (Arylhydrocarbon Receptor Nuclear Translocator)-like protein 1 (BMAL1) or that of the transrepressor REV-ERBα, impaired neural function and cognitive performance in rodents. Consistently, transcripts of inflammatory cytokines and host immune responses have been shown to exhibit diurnal variation, in parallel with the disruption of the circadian rhythm. Glucocorticoids that exhibit both a circadian rhythm similar to that of the core clock transactivator BMAL1 and tissue specific ultradian rhythm are critical in the control of neuroinflammation and re-establishment of homeostasis. It is widely accepted that the glucocorticoids suppress nuclear factor-kappa B (NF-κB) mediated transactivation and suppress inflammation. Recent mechanistic elucidations suggest that the core clock components also modulate NF-κB mediated transactivation in the brain and peripheral tissues. In this review we discuss evidence for interactions between the circadian clock components, glucocorticoids and NF-κB signaling responses in the brain and propose glucocorticoid induced leucine zipper (GILZ) encoded by Tsc22d3, as a molecular link that connect all three pathways in the maintenance of CNS homeostasis as well as in the pathogenesis of neuroinflammation-neurodegeneration.
{"title":"Circadian Clock, Glucocorticoids and NF-κB Signaling in Neuroinflammation- Implicating Glucocorticoid Induced Leucine Zipper as a Molecular Link.","authors":"Mythily Srinivasan, Chandler Walker","doi":"10.1177/17590914221120190","DOIUrl":"https://doi.org/10.1177/17590914221120190","url":null,"abstract":"<p><p>Inflammation including neuroinflammation is considered a protective response and is directed to repair, regenerate, and restore damaged tissues in the central nervous system. Persistent inflammation due to chronic stress, age related accrual of free radicals, subclinical infections or other factors lead to reduced survival and increased neuronal death. Circadian abnormalities secondary to altered sleep/wake cycles is one of the earliest signs of neurodegenerative diseases. Brain specific or global deficiency of core circadian trans-activator brain and muscle ARNT (Arylhydrocarbon Receptor Nuclear Translocator)-like protein 1 (BMAL1) or that of the transrepressor REV-ERBα, impaired neural function and cognitive performance in rodents. Consistently, transcripts of inflammatory cytokines and host immune responses have been shown to exhibit diurnal variation, in parallel with the disruption of the circadian rhythm. Glucocorticoids that exhibit both a circadian rhythm similar to that of the core clock transactivator BMAL1 and tissue specific ultradian rhythm are critical in the control of neuroinflammation and re-establishment of homeostasis. It is widely accepted that the glucocorticoids suppress nuclear factor-kappa B (NF-κB) mediated transactivation and suppress inflammation. Recent mechanistic elucidations suggest that the core clock components also modulate NF-κB mediated transactivation in the brain and peripheral tissues. In this review we discuss evidence for interactions between the circadian clock components, glucocorticoids and NF-κB signaling responses in the brain and propose glucocorticoid induced leucine zipper (GILZ) encoded by Tsc22d3, as a molecular link that connect all three pathways in the maintenance of CNS homeostasis as well as in the pathogenesis of neuroinflammation-neurodegeneration.</p>","PeriodicalId":8616,"journal":{"name":"ASN NEURO","volume":" ","pages":"17590914221120190"},"PeriodicalIF":4.7,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/0d/6a/10.1177_17590914221120190.PMC9629546.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40460474","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-01-01DOI: 10.1177/17590914221104566
A. M. Rodríguez, J. Rodríguez, G. Giambartolomei
Microglia are the resident tissue macrophages of the central nervous system (CNS). Recent findings point out that in the steady state the major role of microglia, is to instruct and regulate the correct function of the neuronal networks and different components of the neurovascular unit in the adult CNS, while providing immune surveillance. Paradoxically, during CNS infection immune activation of microglia generates an inflammatory milieu that contributes to the clearance of the pathogen but can, in the process, harm nearby cells of CNS. Most of the knowledge about the harmful effects of activated microglia on CNS has arisen from studies on neurodegenerative diseases. In this review we will focus on the beneficial role and detrimental functions of microglial cells on the neighboring cells of the CNS upon infection.
{"title":"Microglia at the Crossroads of Pathogen-Induced Neuroinflammation","authors":"A. M. Rodríguez, J. Rodríguez, G. Giambartolomei","doi":"10.1177/17590914221104566","DOIUrl":"https://doi.org/10.1177/17590914221104566","url":null,"abstract":"Microglia are the resident tissue macrophages of the central nervous system (CNS). Recent findings point out that in the steady state the major role of microglia, is to instruct and regulate the correct function of the neuronal networks and different components of the neurovascular unit in the adult CNS, while providing immune surveillance. Paradoxically, during CNS infection immune activation of microglia generates an inflammatory milieu that contributes to the clearance of the pathogen but can, in the process, harm nearby cells of CNS. Most of the knowledge about the harmful effects of activated microglia on CNS has arisen from studies on neurodegenerative diseases. In this review we will focus on the beneficial role and detrimental functions of microglial cells on the neighboring cells of the CNS upon infection.","PeriodicalId":8616,"journal":{"name":"ASN NEURO","volume":" ","pages":""},"PeriodicalIF":4.7,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49394011","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}