首页 > 最新文献

ASN NEURO最新文献

英文 中文
Optimization of Long-Term Human iPSC-Derived Spinal Motor Neuron Culture Using a Dendritic Polyglycerol Amine-Based Substrate. 使用树枝状聚甘油胺基底优化人类 iPSC 衍生脊髓运动神经元的长期培养
IF 4.7 4区 医学 Q2 Medicine Pub Date : 2022-01-01 DOI: 10.1177/17590914211073381
Louise Thiry, Jean-Pierre Clément, Rainer Haag, Timothy E Kennedy, Stefano Stifani

Human induced pluripotent stem cells (hiPSCs) derived from healthy and diseased individuals can give rise to many cell types, facilitating the study of mechanisms of development, human disease modeling, and early drug target validation. In this context, experimental model systems based on hiPSC-derived motor neurons (MNs) have been used to study MN diseases such as spinal muscular atrophy and amyotrophic lateral sclerosis. Modeling MN disease using hiPSC-based approaches requires culture conditions that can recapitulate in a dish the events underlying differentiation, maturation, aging, and death of MNs. Current hiPSC-derived MN-based applications are often hampered by limitations in our ability to monitor MN morphology, survival, and other functional properties over a prolonged timeframe, underscoring the need for improved long-term culture conditions. Here we describe a cytocompatible dendritic polyglycerol amine (dPGA) substrate-based method for prolonged culture of hiPSC-derived MNs. We provide evidence that MNs cultured on dPGA-coated dishes are more amenable to long-term study of cell viability, molecular identity, and spontaneous network electrophysiological activity. The present study has the potential to improve hiPSC-based studies of human MN biology and disease.We describe the use of a new coating substrate providing improved conditions for long-term cultures of human iPSC-derived motor neurons, thus allowing evaluation of cell viability, molecular identity, spontaneous network electrophysiological activity, and single-cell RNA sequencing of mature motor neurons.

来源于健康和患病个体的人类诱导多能干细胞(hiPSCs)可产生多种细胞类型,有助于研究发育机制、人类疾病建模和早期药物靶点验证。在这方面,基于 hiPSC 衍生的运动神经元(MN)的实验模型系统已被用于研究脊髓性肌萎缩症和肌萎缩侧索硬化症等 MN 疾病。使用基于 hiPSC 的方法模拟运动神经元疾病要求培养条件能在盘中重现运动神经元的分化、成熟、衰老和死亡过程。目前基于 hiPSC 衍生 MN 的应用往往受到我们在长时间内监测 MN 形态、存活和其他功能特性的能力的限制,这突出表明我们需要改善长期培养条件。在这里,我们描述了一种基于细胞相容性树枝状聚甘油胺(dPGA)基底的方法,用于长期培养 hiPSC 衍生的 MN。我们提供的证据表明,在涂有 dPGA 的培养皿上培养的 MNs 更适于对细胞活力、分子特征和自发网络电生理活动进行长期研究。我们描述了一种新型涂层基底的使用情况,它为长期培养人 iPSC 衍生的运动神经元提供了更好的条件,从而可以评估成熟运动神经元的细胞活力、分子特征、自发网络电生理活动和单细胞 RNA 测序。
{"title":"Optimization of Long-Term Human iPSC-Derived Spinal Motor Neuron Culture Using a Dendritic Polyglycerol Amine-Based Substrate.","authors":"Louise Thiry, Jean-Pierre Clément, Rainer Haag, Timothy E Kennedy, Stefano Stifani","doi":"10.1177/17590914211073381","DOIUrl":"10.1177/17590914211073381","url":null,"abstract":"<p><p>Human induced pluripotent stem cells (hiPSCs) derived from healthy and diseased individuals can give rise to many cell types, facilitating the study of mechanisms of development, human disease modeling, and early drug target validation. In this context, experimental model systems based on hiPSC-derived motor neurons (MNs) have been used to study MN diseases such as spinal muscular atrophy and amyotrophic lateral sclerosis. Modeling MN disease using hiPSC-based approaches requires culture conditions that can recapitulate in a dish the events underlying differentiation, maturation, aging, and death of MNs. Current hiPSC-derived MN-based applications are often hampered by limitations in our ability to monitor MN morphology, survival, and other functional properties over a prolonged timeframe, underscoring the need for improved long-term culture conditions. Here we describe a cytocompatible dendritic polyglycerol amine (dPGA) substrate-based method for prolonged culture of hiPSC-derived MNs. We provide evidence that MNs cultured on dPGA-coated dishes are more amenable to long-term study of cell viability, molecular identity, and spontaneous network electrophysiological activity. The present study has the potential to improve hiPSC-based studies of human MN biology and disease.We describe the use of a new coating substrate providing improved conditions for long-term cultures of human iPSC-derived motor neurons, thus allowing evaluation of cell viability, molecular identity, spontaneous network electrophysiological activity, and single-cell RNA sequencing of mature motor neurons.</p>","PeriodicalId":8616,"journal":{"name":"ASN NEURO","volume":null,"pages":null},"PeriodicalIF":4.7,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/db/18/10.1177_17590914211073381.PMC8784909.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39818153","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multiple Sclerosis and Aging: The Dynamics of Demyelination and Remyelination. 多发性硬化症和衰老:脱髓鞘和再生的动态。
IF 4.7 4区 医学 Q2 Medicine Pub Date : 2022-01-01 DOI: 10.1177/17590914221118502
Jorge Correale, Maria Celica Ysrraelit

Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS) leading to demyelination and neurodegeneration. Life expectancy and age of onset in MS patients have been rising over the last decades, and previous studies have shown that age affects disease progression. Therefore, age appears as one of the most important factors in accumulating disability in MS patients. Indeed, the degeneration of oligodendrocytes (OGDs) and OGD precursors (OPCs) increases with age, in association with increased inflammatory activity of astrocytes and microglia. Similarly, age-related neuronal changes such as mitochondrial alterations, an increase in oxidative stress, and disrupted paranodal junctions can impact myelin integrity. Conversely, once myelination is complete, the long-term integrity of axons depends on OGD supply of energy. These alterations determine pathological myelin changes consisting of myelin outfolding, splitting, and accumulation of multilamellar fragments. Overall, these data demonstrate that old mature OGDs lose their ability to produce and maintain healthy myelin over time, to induce de novo myelination, and to remodel pre-existing myelinated axons that contribute to neural plasticity in the CNS. Furthermore, as observed in other tissues, aging induces a general decline in regenerative processes and, not surprisingly, progressively hinders remyelination in MS. In this context, this review will provide an overview of the current knowledge of age-related changes occurring in cells of the oligodendroglial lineage and how they impact myelin synthesis, axonal degeneration, and remyelination efficiency.

多发性硬化症(MS)是中枢神经系统(CNS)的慢性炎症性疾病,导致脱髓鞘和神经变性。在过去的几十年里,多发性硬化症患者的预期寿命和发病年龄一直在上升,以前的研究表明年龄影响疾病的进展。因此,年龄是MS患者残疾积累的最重要因素之一。事实上,少突胶质细胞(OGDs)和OGD前体(OPCs)的退化随着年龄的增长而增加,与星形胶质细胞和小胶质细胞的炎症活性增加有关。同样,与年龄相关的神经元变化,如线粒体改变、氧化应激增加和旁神经连接破坏,也会影响髓磷脂的完整性。相反,一旦髓鞘形成完成,轴突的长期完整性依赖于OGD的能量供应。这些改变决定了髓磷脂的病理改变,包括髓磷脂外折叠、分裂和多层碎片的积累。总的来说,这些数据表明,随着时间的推移,年老的成熟ogd失去了产生和维持健康髓磷脂的能力,从而诱导新生髓鞘形成,并重塑先前存在的髓鞘轴突,从而促进中枢神经系统的神经可塑性。此外,正如在其他组织中观察到的那样,衰老会导致再生过程的普遍下降,并逐渐阻碍ms的髓鞘再生,这并不奇怪。在此背景下,本综述将概述当前对少突胶质细胞谱系中发生的年龄相关变化的了解,以及它们如何影响髓鞘合成、轴突变性和髓鞘再生效率。
{"title":"Multiple Sclerosis and Aging: The Dynamics of Demyelination and Remyelination.","authors":"Jorge Correale,&nbsp;Maria Celica Ysrraelit","doi":"10.1177/17590914221118502","DOIUrl":"https://doi.org/10.1177/17590914221118502","url":null,"abstract":"<p><p>Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS) leading to demyelination and neurodegeneration. Life expectancy and age of onset in MS patients have been rising over the last decades, and previous studies have shown that age affects disease progression. Therefore, age appears as one of the most important factors in accumulating disability in MS patients. Indeed, the degeneration of oligodendrocytes (OGDs) and OGD precursors (OPCs) increases with age, in association with increased inflammatory activity of astrocytes and microglia. Similarly, age-related neuronal changes such as mitochondrial alterations, an increase in oxidative stress, and disrupted paranodal junctions can impact myelin integrity. Conversely, once myelination is complete, the long-term integrity of axons depends on OGD supply of energy. These alterations determine pathological myelin changes consisting of myelin outfolding, splitting, and accumulation of multilamellar fragments. Overall, these data demonstrate that old mature OGDs lose their ability to produce and maintain healthy myelin over time, to induce <i>de novo</i> myelination, and to remodel pre-existing myelinated axons that contribute to neural plasticity in the CNS. Furthermore, as observed in other tissues, aging induces a general decline in regenerative processes and, not surprisingly, progressively hinders remyelination in MS. In this context, this review will provide an overview of the current knowledge of age-related changes occurring in cells of the oligodendroglial lineage and how they impact myelin synthesis, axonal degeneration, and remyelination efficiency.</p>","PeriodicalId":8616,"journal":{"name":"ASN NEURO","volume":null,"pages":null},"PeriodicalIF":4.7,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/9a/b1/10.1177_17590914221118502.PMC9364177.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40591609","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
New Target for Prevention and Treatment of Neuroinflammation: Microglia Iron Accumulation and Ferroptosis 预防和治疗神经炎症的新靶点:小胶质细胞铁积累和铁下垂
IF 4.7 4区 医学 Q2 Medicine Pub Date : 2022-01-01 DOI: 10.1177/17590914221133236
Shunfeng Liu, Xueyuan Gao, Shouhong Zhou
Microglia play an important role in maintaining central nervous system homeostasis and are the major immune cells in the brain. In response to internal or external inflammatory stimuli, microglia are activated and release numerous inflammatory factors, thus leading to neuroinflammation. Inflammation and microglia iron accumulation promote each other and jointly promote the progression of neuroinflammation. Inhibiting microglia iron accumulation prevents neuroinflammation. Ferroptosis is an iron-dependent phospholipid peroxidation-driven type of cell death regulation. Cell iron accumulation causes the peroxidation of cell membrane phospholipids and damages the cell membrane. Ultimately, this process leads to cell ferroptosis. Iron accumulation or phospholipid peroxidation in microglia releases a large number of inflammatory factors. Thus, inhibiting microglia ferroptosis may be a new target for the prevention and treatment of neuroinflammation.
小胶质细胞在维持中枢神经系统稳态中起着重要作用,是大脑中主要的免疫细胞。在受到内外炎症刺激时,小胶质细胞被激活并释放大量炎症因子,从而导致神经炎症。炎症与小胶质细胞铁积累相互促进,共同促进神经炎症的进展。抑制小胶质细胞铁积聚可预防神经炎症。铁死亡是一种铁依赖性磷脂过氧化驱动型细胞死亡调控。细胞铁积累引起细胞膜磷脂过氧化,破坏细胞膜。最终,这一过程导致细胞铁下垂。小胶质细胞中的铁积累或磷脂过氧化释放大量炎症因子。因此,抑制小胶质细胞铁下垂可能是预防和治疗神经炎症的新靶点。
{"title":"New Target for Prevention and Treatment of Neuroinflammation: Microglia Iron Accumulation and Ferroptosis","authors":"Shunfeng Liu, Xueyuan Gao, Shouhong Zhou","doi":"10.1177/17590914221133236","DOIUrl":"https://doi.org/10.1177/17590914221133236","url":null,"abstract":"Microglia play an important role in maintaining central nervous system homeostasis and are the major immune cells in the brain. In response to internal or external inflammatory stimuli, microglia are activated and release numerous inflammatory factors, thus leading to neuroinflammation. Inflammation and microglia iron accumulation promote each other and jointly promote the progression of neuroinflammation. Inhibiting microglia iron accumulation prevents neuroinflammation. Ferroptosis is an iron-dependent phospholipid peroxidation-driven type of cell death regulation. Cell iron accumulation causes the peroxidation of cell membrane phospholipids and damages the cell membrane. Ultimately, this process leads to cell ferroptosis. Iron accumulation or phospholipid peroxidation in microglia releases a large number of inflammatory factors. Thus, inhibiting microglia ferroptosis may be a new target for the prevention and treatment of neuroinflammation.","PeriodicalId":8616,"journal":{"name":"ASN NEURO","volume":null,"pages":null},"PeriodicalIF":4.7,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44965767","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
The Intrinsic Blue Light Responses of Avian Müller Glial Cells Imply Calcium Release from Internal Stores. 禽类<s:1>神经胶质细胞的内在蓝光响应暗示钙从内部储存释放。
IF 4.7 4区 医学 Q2 Medicine Pub Date : 2022-01-01 DOI: 10.1177/17590914221076698
Natalia A Marchese, Maximiliano N Ríos, Mario E Guido

The retina of vertebrates is responsible for capturing light through visual (cones and rods) and non-visual photoreceptors (intrinsically photosensitive retinal ganglion cells and horizontal cells) triggering a number of essential activities associated to image- and non-image forming functions (photic entrainment of daily rhythms, pupillary light reflexes, pineal melatonin inhibition, among others). Although the retina contains diverse types of neuronal based-photoreceptors cells, originally classified as ciliary- or rhabdomeric-like types, in recent years, it has been shown that the major glial cell type of the retina, the Müller glial cells (MC), express blue photopigments as Opn3 (encephalopsin) and Opn5 (neuropsin) and display light responses associated to intracellular Ca2 + mobilization. These findings strongly propose MC as novel retinal photodetectors (Rios et al., 2019). Herein, we further investigated the intrinsic light responses of primary cultures of MC from embryonic chicken retinas specially focused on Ca2 + mobilization by fluorescence imaging and the identity of the internal Ca2 + stores responsible for blue light responses. Results clearly demonstrated that light responses were specific to blue light of long time exposure, and that the main Ca2 + reservoir to trigger downstream responses came from intracellular stores localized in the endoplasmic reticulum These observations bring more complexity to the intrinsic photosensitivity of retinal cells, particularly with regard to the detection of light in the blue range of visible spectra, and add novel functions to glial cells cooperating with other photoreceptors to detect and integrate ambient light in the retinal circuit and participate in cell to cell communication.Summary statement:Non-neuronal cells in the vertebrate retina, Muller glial cells, express non-canonical photopigments and sense blue light causing calcium release from intracellular stores strongly suggesting a novel intrinsic photosensitivity and new regulatory events mediating light-driven processes with yet unknown physiological implications.

脊椎动物的视网膜负责通过视觉(视锥细胞和视杆细胞)和非视觉光感受器(本质上是光敏的视网膜神经节细胞和水平细胞)捕获光,触发一些与图像和非图像形成功能相关的基本活动(日常节律的光带、瞳孔光反射、松果体褪黑素抑制等)。虽然视网膜含有不同类型的神经元基光感受器细胞,最初被分类为睫状体或横纹肌样类型,但近年来,研究表明视网膜的主要胶质细胞类型,神经胶质细胞(MC),表达蓝色光色素Opn3(脑视素)和Opn5(神经视素),并表现出与细胞内Ca2 +动员相关的光反应。这些发现有力地证明了MC是一种新型的视网膜光电探测器(Rios et al., 2019)。在此,我们进一步研究了胚胎鸡视网膜MC原代培养物的内在光响应,特别是通过荧光成像研究Ca2 +动员,以及负责蓝光响应的内部Ca2 +储存的身份。结果清楚地表明,光响应是特定的蓝光长时间暴露,Ca2 +的主要水库触发下游反应来自于内质网定位的细胞内储存。这些观察带来了更多的复杂性,视网膜细胞的内在光敏性,特别是在可见光光谱的蓝色范围内的光检测。并为神经胶质细胞添加新的功能,与其他光感受器合作,在视网膜回路中检测和整合环境光,并参与细胞间的交流。摘要:脊椎动物视网膜中的非神经元细胞穆勒神经胶质细胞表达非规范光色素并感知蓝光,导致细胞内储存的钙释放,这强烈表明一种新的内在光敏性和新的调节事件介导了光驱动过程,其生理意义尚不清楚。
{"title":"The Intrinsic Blue Light Responses of Avian Müller Glial Cells Imply Calcium Release from Internal Stores.","authors":"Natalia A Marchese,&nbsp;Maximiliano N Ríos,&nbsp;Mario E Guido","doi":"10.1177/17590914221076698","DOIUrl":"https://doi.org/10.1177/17590914221076698","url":null,"abstract":"<p><p>The retina of vertebrates is responsible for capturing light through visual (cones and rods) and non-visual photoreceptors (intrinsically photosensitive retinal ganglion cells and horizontal cells) triggering a number of essential activities associated to image- and non-image forming functions (photic entrainment of daily rhythms, pupillary light reflexes, pineal melatonin inhibition, among others). Although the retina contains diverse types of neuronal based-photoreceptors cells, originally classified as ciliary- or rhabdomeric-like types, in recent years, it has been shown that the major glial cell type of the retina, the Müller glial cells (MC), express blue photopigments as Opn3 (encephalopsin) and Opn5 (neuropsin) and display light responses associated to intracellular Ca2 + mobilization. These findings strongly propose MC as novel retinal photodetectors (Rios et al., 2019). Herein, we further investigated the intrinsic light responses of primary cultures of MC from embryonic chicken retinas specially focused on Ca2 + mobilization by fluorescence imaging and the identity of the internal Ca2 + stores responsible for blue light responses. Results clearly demonstrated that light responses were specific to blue light of long time exposure, and that the main Ca2 + reservoir to trigger downstream responses came from intracellular stores localized in the endoplasmic reticulum These observations bring more complexity to the intrinsic photosensitivity of retinal cells, particularly with regard to the detection of light in the blue range of visible spectra, and add novel functions to glial cells cooperating with other photoreceptors to detect and integrate ambient light in the retinal circuit and participate in cell to cell communication.<b>Summary statement:</b>Non-neuronal cells in the vertebrate retina, Muller glial cells, express non-canonical photopigments and sense blue light causing calcium release from intracellular stores strongly suggesting a novel intrinsic photosensitivity and new regulatory events mediating light-driven processes with yet unknown physiological implications.</p>","PeriodicalId":8616,"journal":{"name":"ASN NEURO","volume":null,"pages":null},"PeriodicalIF":4.7,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/c2/c5/10.1177_17590914221076698.PMC8814826.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39877904","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Disruption of Synaptic Transmission in the Bed Nucleus of the Stria Terminalis Reduces Seizure-Induced Death in DBA/1 Mice and Alters Brainstem E/I Balance. 终止纹床核突触传递的中断减少DBA/1小鼠癫痫致死亡并改变脑干E/I平衡
IF 4.7 4区 医学 Q2 Medicine Pub Date : 2022-01-01 DOI: 10.1177/17590914221103188
Maya Xia, Benjamin Owen, Jeremy Chiang, Alyssa Levitt, Katherine Preisinger, Wen Wei Yan, Ragan Huffman, William P Nobis

Sudden unexpected death in epilepsy (SUDEP) is the leading cause of death in refractory epilepsy patients. Accumulating evidence from recent human studies and animal models suggests that seizure-related respiratory arrest may be important for initiating cardiorespiratory arrest and death. Prior evidence suggests that apnea onset can coincide with seizure spread to the amygdala and that stimulation of the amygdala can reliably induce apneas in epilepsy patients, potentially implicating amygdalar regions in seizure-related respiratory arrest and subsequent postictal hypoventilation and cardiorespiratory death. This study aimed to determine if an extended amygdalar structure, the dorsal bed nucleus of the stria terminalis (dBNST), is involved in seizure-induced respiratory arrest (S-IRA) and death using DBA/1 mice, a mouse strain which has audiogenic seizures (AGS) and a high incidence of postictal respiratory arrest and death. The presence of S-IRA significantly increased c-Fos expression in the dBNST of DBA/1 mice. Furthermore, disruption of synaptic output from the dBNST via viral-induced tetanus neurotoxin (TeNT) significantly improved survival following S-IRA in DBA/1 mice without affecting baseline breathing or hypercapnic (HCVR) and hypoxic ventilatory response (HVR). This disruption in the dBNST resulted in changes to the balance of excitatory/inhibitory (E/I) synaptic events in the downstream brainstem regions of the lateral parabrachial nucleus (PBN) and the periaqueductal gray (PAG). These findings suggest that the dBNST is a potential subcortical forebrain site necessary for the mediation of S-IRA, potentially through its outputs to brainstem respiratory regions.

癫痫猝死(SUDEP)是难治性癫痫患者死亡的主要原因。从最近的人体研究和动物模型中积累的证据表明,癫痫相关的呼吸骤停可能是引发心肺骤停和死亡的重要因素。先前的证据表明,呼吸暂停的发作可能与癫痫扩散到杏仁核同时发生,刺激杏仁核可以可靠地诱发癫痫患者的呼吸暂停,可能涉及杏仁核区域与癫痫发作相关的呼吸骤停和随后的后通气不足和心肺死亡。本研究旨在确定一种扩展的杏仁核结构,即终纹背床核(dBNST)是否参与癫痫性呼吸骤停(S-IRA)和死亡,研究对象是DBA/1小鼠,这是一种具有听源性癫痫发作(AGS)和高发后呼吸骤停和死亡的小鼠毒株。S-IRA的存在显著增加了DBA/1小鼠dBNST中c-Fos的表达。此外,通过病毒诱导的破伤风神经毒素(TeNT)破坏dBNST的突触输出可显着提高DBA/1小鼠S-IRA后的生存率,而不影响基线呼吸或高碳酸血症(HCVR)和低氧通气反应(HVR)。dBNST的这种破坏导致了侧臂旁核(PBN)和导水管周围灰质(PAG)下游脑干区域兴奋性/抑制性(E/I)突触事件平衡的变化。这些发现表明,dBNST是一个潜在的皮质下前脑部位,可能通过其输出到脑干呼吸区介导S-IRA。
{"title":"Disruption of Synaptic Transmission in the Bed Nucleus of the Stria Terminalis Reduces Seizure-Induced Death in DBA/1 Mice and Alters Brainstem E/I Balance.","authors":"Maya Xia,&nbsp;Benjamin Owen,&nbsp;Jeremy Chiang,&nbsp;Alyssa Levitt,&nbsp;Katherine Preisinger,&nbsp;Wen Wei Yan,&nbsp;Ragan Huffman,&nbsp;William P Nobis","doi":"10.1177/17590914221103188","DOIUrl":"https://doi.org/10.1177/17590914221103188","url":null,"abstract":"<p><p>Sudden unexpected death in epilepsy (SUDEP) is the leading cause of death in refractory epilepsy patients. Accumulating evidence from recent human studies and animal models suggests that seizure-related respiratory arrest may be important for initiating cardiorespiratory arrest and death. Prior evidence suggests that apnea onset can coincide with seizure spread to the amygdala and that stimulation of the amygdala can reliably induce apneas in epilepsy patients, potentially implicating amygdalar regions in seizure-related respiratory arrest and subsequent postictal hypoventilation and cardiorespiratory death. This study aimed to determine if an extended amygdalar structure, the dorsal bed nucleus of the stria terminalis (dBNST), is involved in seizure-induced respiratory arrest (S-IRA) and death using DBA/1 mice, a mouse strain which has audiogenic seizures (AGS) and a high incidence of postictal respiratory arrest and death. The presence of S-IRA significantly increased c-Fos expression in the dBNST of DBA/1 mice. Furthermore, disruption of synaptic output from the dBNST via viral-induced tetanus neurotoxin (TeNT) significantly improved survival following S-IRA in DBA/1 mice without affecting baseline breathing or hypercapnic (HCVR) and hypoxic ventilatory response (HVR). This disruption in the dBNST resulted in changes to the balance of excitatory/inhibitory (E/I) synaptic events in the downstream brainstem regions of the lateral parabrachial nucleus (PBN) and the periaqueductal gray (PAG). These findings suggest that the dBNST is a potential subcortical forebrain site necessary for the mediation of S-IRA, potentially through its outputs to brainstem respiratory regions.</p>","PeriodicalId":8616,"journal":{"name":"ASN NEURO","volume":null,"pages":null},"PeriodicalIF":4.7,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/b0/65/10.1177_17590914221103188.PMC9136462.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10694884","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multispectral LEDs Eliminate Lipofuscin-Associated Autofluorescence for Immunohistochemistry and CD44 Variant Detection by in Situ Hybridization in Aging Human, non-Human Primate, and Murine Brain. 在衰老的人类、非人灵长类动物和小鼠大脑中,通过原位杂交进行免疫组织化学和 CD44 变异检测时,多光谱 LED 可消除与脂褐素相关的自发荧光。
IF 3.9 4区 医学 Q2 NEUROSCIENCES Pub Date : 2022-01-01 DOI: 10.1177/17590914221123138
Philip A Adeniyi, Katie-Anne Fopiano, Fatima Banine, Mariel Garcia, Xi Gong, C Dirk Keene, Larry S Sherman, Zsolt Bagi, Stephen A Back

A major limitation of mechanistic studies in aging brains is the lack of routine methods to robustly visualize and discriminate the cellular distribution of tissue antigens using fluorescent immunohistochemical multi-labeling techniques. Although such approaches are routine in non-aging brains, they are not consistently feasible in the aging brain due to the progressive accumulation of autofluorescent pigments, particularly lipofuscin, which strongly excite and emit over a broad spectral range. Consequently, aging research has relied upon colorimetric antibody techniques, where discrimination of tissue antigens is often challenging. We report the application of a simple, reproducible, and affordable protocol using multispectral light-emitting diodes (mLEDs) exposure for the reduction/elimination of lipofuscin autofluorescence (LAF) in aging brain tissue from humans, non-human primates, and mice. The mLEDs lamp has a broad spectral range that spans from the UV to infrared range and includes spectra in the violet/blue and orange/red. After photo quenching, the LAF level was markedly reduced when the tissue background fluorescence before and after mLEDs exposure was compared (p < 0.0001) across the spectral range. LAF elimination was estimated at 95 ± 1%. This approach permitted robust specific fluorescent immunohistochemical co-visualization of commonly studied antigens in aging brains. We also successfully applied this method to specifically visualize CD44 variant expression in aging human cerebral white matter using RNAscope fluorescent in-situ hybridization. Photo quenching provides an attractive means to accelerate progress in aging research by increasing the number of molecules that can be topologically discriminated by fluorescence detection in brain tissue from normative or pathological aging.

老化大脑机理研究的一个主要局限是缺乏常规方法,无法利用荧光免疫组化多重标记技术对组织抗原的细胞分布进行有力的观察和鉴别。虽然这种方法在非衰老大脑中是常规方法,但由于自发荧光色素(尤其是脂褐质)的逐渐积累,在衰老大脑中并不总是可行的。因此,衰老研究一直依赖于比色抗体技术,而组织抗原的分辨往往具有挑战性。我们报告了利用多光谱发光二极管(mLEDs)照射来减少/消除人、非人灵长类动物和小鼠衰老脑组织中脂褐素自发荧光(LAF)的一种简单、可重复且经济实惠的方案。mLEDs 灯的光谱范围很广,从紫外到红外,包括紫/蓝和橙/红光谱。光淬灭后,将暴露于 mLEDs 之前和之后的组织背景荧光进行比较,LAF 水平明显降低(p
{"title":"Multispectral LEDs Eliminate Lipofuscin-Associated Autofluorescence for Immunohistochemistry and CD44 Variant Detection by in Situ Hybridization in Aging Human, non-Human Primate, and Murine Brain.","authors":"Philip A Adeniyi, Katie-Anne Fopiano, Fatima Banine, Mariel Garcia, Xi Gong, C Dirk Keene, Larry S Sherman, Zsolt Bagi, Stephen A Back","doi":"10.1177/17590914221123138","DOIUrl":"10.1177/17590914221123138","url":null,"abstract":"<p><p>A major limitation of mechanistic studies in aging brains is the lack of routine methods to robustly visualize and discriminate the cellular distribution of tissue antigens using fluorescent immunohistochemical multi-labeling techniques. Although such approaches are routine in non-aging brains, they are not consistently feasible in the aging brain due to the progressive accumulation of autofluorescent pigments, particularly lipofuscin, which strongly excite and emit over a broad spectral range. Consequently, aging research has relied upon colorimetric antibody techniques, where discrimination of tissue antigens is often challenging. We report the application of a simple, reproducible, and affordable protocol using multispectral light-emitting diodes (mLEDs) exposure for the reduction/elimination of lipofuscin autofluorescence (LAF) in aging brain tissue from humans, non-human primates, and mice. The mLEDs lamp has a broad spectral range that spans from the UV to infrared range and includes spectra in the violet/blue and orange/red. After photo quenching, the LAF level was markedly reduced when the tissue background fluorescence before and after mLEDs exposure was compared (p < 0.0001) across the spectral range. LAF elimination was estimated at 95 ± 1%. This approach permitted robust specific fluorescent immunohistochemical co-visualization of commonly studied antigens in aging brains. We also successfully applied this method to specifically visualize CD44 variant expression in aging human cerebral white matter using RNAscope fluorescent in-situ hybridization. Photo quenching provides an attractive means to accelerate progress in aging research by increasing the number of molecules that can be topologically discriminated by fluorescence detection in brain tissue from normative or pathological aging.</p>","PeriodicalId":8616,"journal":{"name":"ASN NEURO","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/ae/82/10.1177_17590914221123138.PMC9520168.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10820881","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Circadian Clock, Glucocorticoids and NF-κB Signaling in Neuroinflammation- Implicating Glucocorticoid Induced Leucine Zipper as a Molecular Link. 生物钟、糖皮质激素和NF-κ b信号在神经炎症中的作用——糖皮质激素诱导亮氨酸拉链的分子联系。
IF 4.7 4区 医学 Q2 Medicine Pub Date : 2022-01-01 DOI: 10.1177/17590914221120190
Mythily Srinivasan, Chandler Walker

Inflammation including neuroinflammation is considered a protective response and is directed to repair, regenerate, and restore damaged tissues in the central nervous system. Persistent inflammation due to chronic stress, age related accrual of free radicals, subclinical infections or other factors lead to reduced survival and increased neuronal death. Circadian abnormalities secondary to altered sleep/wake cycles is one of the earliest signs of neurodegenerative diseases. Brain specific or global deficiency of core circadian trans-activator brain and muscle ARNT (Arylhydrocarbon Receptor Nuclear Translocator)-like protein 1 (BMAL1) or that of the transrepressor REV-ERBα, impaired neural function and cognitive performance in rodents. Consistently, transcripts of inflammatory cytokines and host immune responses have been shown to exhibit diurnal variation, in parallel with the disruption of the circadian rhythm. Glucocorticoids that exhibit both a circadian rhythm similar to that of the core clock transactivator BMAL1 and tissue specific ultradian rhythm are critical in the control of neuroinflammation and re-establishment of homeostasis. It is widely accepted that the glucocorticoids suppress nuclear factor-kappa B (NF-κB) mediated transactivation and suppress inflammation. Recent mechanistic elucidations suggest that the core clock components also modulate NF-κB mediated transactivation in the brain and peripheral tissues. In this review we discuss evidence for interactions between the circadian clock components, glucocorticoids and NF-κB signaling responses in the brain and propose glucocorticoid induced leucine zipper (GILZ) encoded by Tsc22d3, as a molecular link that connect all three pathways in the maintenance of CNS homeostasis as well as in the pathogenesis of neuroinflammation-neurodegeneration.

包括神经炎症在内的炎症被认为是一种保护性反应,旨在修复、再生和恢复中枢神经系统中受损的组织。慢性应激、年龄相关自由基积累、亚临床感染或其他因素引起的持续炎症导致存活减少和神经元死亡增加。继发于睡眠/觉醒周期改变的昼夜节律异常是神经退行性疾病的最早征兆之一。核心昼夜节律反式激活剂脑和肌肉ARNT(芳烃受体核转运器)样蛋白1 (BMAL1)或转抑制因子rev - erba α的脑特异性或全脑性缺乏会损害啮齿动物的神经功能和认知能力。一致地,炎症细胞因子和宿主免疫反应的转录本显示出昼夜变化,与昼夜节律的破坏并行。糖皮质激素表现出与核心时钟激活因子BMAL1相似的昼夜节律和组织特异性超昼夜节律,在控制神经炎症和重建体内平衡中至关重要。糖皮质激素抑制核因子κB (NF-κB)介导的反活化,抑制炎症反应,已被广泛接受。最近的机制阐明表明,核心时钟组件也调节NF-κB介导的脑和外周组织的交易激活。在这篇综述中,我们讨论了大脑中昼夜节律钟成分、糖皮质激素和NF-κB信号反应之间相互作用的证据,并提出糖皮质激素诱导的亮氨酸拉链(GILZ)是由Tsc22d3编码的,是连接这三条通路的分子纽带,在维持中枢神经系统稳态以及神经炎症-神经变性的发病机制中起作用。
{"title":"Circadian Clock, Glucocorticoids and NF-κB Signaling in Neuroinflammation- Implicating Glucocorticoid Induced Leucine Zipper as a Molecular Link.","authors":"Mythily Srinivasan,&nbsp;Chandler Walker","doi":"10.1177/17590914221120190","DOIUrl":"https://doi.org/10.1177/17590914221120190","url":null,"abstract":"<p><p>Inflammation including neuroinflammation is considered a protective response and is directed to repair, regenerate, and restore damaged tissues in the central nervous system. Persistent inflammation due to chronic stress, age related accrual of free radicals, subclinical infections or other factors lead to reduced survival and increased neuronal death. Circadian abnormalities secondary to altered sleep/wake cycles is one of the earliest signs of neurodegenerative diseases. Brain specific or global deficiency of core circadian trans-activator brain and muscle ARNT (Arylhydrocarbon Receptor Nuclear Translocator)-like protein 1 (BMAL1) or that of the transrepressor REV-ERBα, impaired neural function and cognitive performance in rodents. Consistently, transcripts of inflammatory cytokines and host immune responses have been shown to exhibit diurnal variation, in parallel with the disruption of the circadian rhythm. Glucocorticoids that exhibit both a circadian rhythm similar to that of the core clock transactivator BMAL1 and tissue specific ultradian rhythm are critical in the control of neuroinflammation and re-establishment of homeostasis. It is widely accepted that the glucocorticoids suppress nuclear factor-kappa B (NF-κB) mediated transactivation and suppress inflammation. Recent mechanistic elucidations suggest that the core clock components also modulate NF-κB mediated transactivation in the brain and peripheral tissues. In this review we discuss evidence for interactions between the circadian clock components, glucocorticoids and NF-κB signaling responses in the brain and propose glucocorticoid induced leucine zipper (GILZ) encoded by Tsc22d3, as a molecular link that connect all three pathways in the maintenance of CNS homeostasis as well as in the pathogenesis of neuroinflammation-neurodegeneration.</p>","PeriodicalId":8616,"journal":{"name":"ASN NEURO","volume":null,"pages":null},"PeriodicalIF":4.7,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/0d/6a/10.1177_17590914221120190.PMC9629546.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40460474","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Microglia at the Crossroads of Pathogen-Induced Neuroinflammation 处于病原体诱导的神经炎症十字路口的小胶质细胞
IF 4.7 4区 医学 Q2 Medicine Pub Date : 2022-01-01 DOI: 10.1177/17590914221104566
A. M. Rodríguez, J. Rodríguez, G. Giambartolomei
Microglia are the resident tissue macrophages of the central nervous system (CNS). Recent findings point out that in the steady state the major role of microglia, is to instruct and regulate the correct function of the neuronal networks and different components of the neurovascular unit in the adult CNS, while providing immune surveillance. Paradoxically, during CNS infection immune activation of microglia generates an inflammatory milieu that contributes to the clearance of the pathogen but can, in the process, harm nearby cells of CNS. Most of the knowledge about the harmful effects of activated microglia on CNS has arisen from studies on neurodegenerative diseases. In this review we will focus on the beneficial role and detrimental functions of microglial cells on the neighboring cells of the CNS upon infection.
小胶质细胞是中枢神经系统(CNS)的固有组织巨噬细胞。最近的研究结果指出,在稳定状态下,小胶质细胞的主要作用是指导和调节成年中枢神经系统中神经元网络和神经血管单元不同组成部分的正确功能,同时提供免疫监测。矛盾的是,在中枢神经系统感染过程中,小胶质细胞的免疫激活会产生一种炎症环境,有助于清除病原体,但在这个过程中会伤害中枢神经系统附近的细胞。关于活化的小胶质细胞对中枢神经系统有害影响的大部分知识都来自于对神经退行性疾病的研究。在这篇综述中,我们将重点关注小胶质细胞在感染时对中枢神经系统邻近细胞的有益作用和有害功能。
{"title":"Microglia at the Crossroads of Pathogen-Induced Neuroinflammation","authors":"A. M. Rodríguez, J. Rodríguez, G. Giambartolomei","doi":"10.1177/17590914221104566","DOIUrl":"https://doi.org/10.1177/17590914221104566","url":null,"abstract":"Microglia are the resident tissue macrophages of the central nervous system (CNS). Recent findings point out that in the steady state the major role of microglia, is to instruct and regulate the correct function of the neuronal networks and different components of the neurovascular unit in the adult CNS, while providing immune surveillance. Paradoxically, during CNS infection immune activation of microglia generates an inflammatory milieu that contributes to the clearance of the pathogen but can, in the process, harm nearby cells of CNS. Most of the knowledge about the harmful effects of activated microglia on CNS has arisen from studies on neurodegenerative diseases. In this review we will focus on the beneficial role and detrimental functions of microglial cells on the neighboring cells of the CNS upon infection.","PeriodicalId":8616,"journal":{"name":"ASN NEURO","volume":null,"pages":null},"PeriodicalIF":4.7,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49394011","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 20
Defibrinogenation Ameliorates Retinal Microgliosis and Inflammation in A CX3CR1-Independent Manner. 去纤维蛋白原能以一种与 CX3CR1 无关的方式改善视网膜小胶质细胞增多和炎症。
IF 3.9 4区 医学 Q2 NEUROSCIENCES Pub Date : 2022-01-01 DOI: 10.1177/17590914221131446
Borna Sarker, Sandra M Cardona, Kaira A Church, Difernando Vanegas, Priscila Velazquez, Colin Rorex, Derek Rodriguez, Andrew S Mendiola, Timothy S Kern, Nadia D Domingo, Robin Stephens, Isabel A Muzzio, Astrid E Cardona

Summary statement: Diabetic human and murine retinas revealed pronounced microglial morphological activation and vascular abnormalities associated with inflammation. Pharmacological fibrinogen depletion using ancrod dampened microglial morphology alterations, resolved fibrinogen accumulation, rescued axonal integrity, and reduced inflammation in the diabetic murine retina.

摘要说明:糖尿病人和小鼠视网膜显示出明显的小胶质细胞形态激活和与炎症相关的血管异常。在糖尿病小鼠视网膜中,使用 ancrod 进行药理纤维蛋白原耗竭可抑制小胶质细胞形态改变,解决纤维蛋白原积聚问题,挽救轴突完整性并减轻炎症。
{"title":"Defibrinogenation Ameliorates Retinal Microgliosis and Inflammation in A CX3CR1-Independent Manner.","authors":"Borna Sarker, Sandra M Cardona, Kaira A Church, Difernando Vanegas, Priscila Velazquez, Colin Rorex, Derek Rodriguez, Andrew S Mendiola, Timothy S Kern, Nadia D Domingo, Robin Stephens, Isabel A Muzzio, Astrid E Cardona","doi":"10.1177/17590914221131446","DOIUrl":"10.1177/17590914221131446","url":null,"abstract":"<p><strong>Summary statement: </strong>Diabetic human and murine retinas revealed pronounced microglial morphological activation and vascular abnormalities associated with inflammation. Pharmacological fibrinogen depletion using ancrod dampened microglial morphology alterations, resolved fibrinogen accumulation, rescued axonal integrity, and reduced inflammation in the diabetic murine retina.</p>","PeriodicalId":8616,"journal":{"name":"ASN NEURO","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/65/d0/10.1177_17590914221131446.PMC9557863.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9109783","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Carboxypeptidase E Independently Changes Microtubule Glutamylation, Dendritic Branching, and Neuronal Migration. 羧基肽酶E独立改变微管谷氨酰化、树突分支和神经元迁移。
IF 4.7 4区 医学 Q2 Medicine Pub Date : 2022-01-01 DOI: 10.1177/17590914211062765
Chen Liang, Damien Carrel, Nisha K Singh, Liam L Hiester, Isabelle Fanget, Hyuck Kim, Bonnie L Firestein

Neuronal migration and dendritogenesis are dependent on dynamic changes to the microtubule (MT) network. Among various factors that regulate MT dynamics and stability, post-translational modifications (PTMs) of MTs play a critical role in conferring specificity of regulatory protein binding to MTs. Thus, it is important to understand the regulation of PTMs during brain development as multiple developmental processes are dependent on MTs. In this study, we identified that carboxypeptidase E (CPE) changes tubulin polyglutamylation, a major PTM in the brain, and we examine the impact of CPE-mediated changes to polyglutamylation on cortical neuron migration and dendrite morphology. We show, for the first time, that overexpression of CPE increases the level of polyglutamylated α-tubulin while knockdown decreases the level of polyglutamylation. We also demonstrate that CPE-mediated changes to polyglutamylation are dependent on the CPE zinc-binding motif and that this motif is necessary for CPE action on p150Glued localization. However, overexpression of a CPE mutant that does not increase MT glutamylation mimics the effects of overexpression of wild type CPE on dendrite branching. Furthermore, although overexpression of wild type CPE does not alter cortical neuron migration, overexpression of the mutant may act in a dominant-negative manner as it decreases the number of neurons that reach the cortical plate (CP), as we previously reported for CPE knockdown. Overall, our data suggest that CPE changes MT glutamylation and redistribution of p150Glued and that this function of CPE is independent of its role in shaping dendrite development but plays a partial role in regulating cortical neuron migration.

神经元迁移和树突发生依赖于微管(MT)网络的动态变化。在调节脑转移动力学和稳定性的诸多因素中,脑转移的翻译后修饰(PTMs)在赋予调节蛋白与mtts结合的特异性方面起着至关重要的作用。因此,了解PTMs在大脑发育过程中的调节非常重要,因为多种发育过程依赖于PTMs。在本研究中,我们发现羧肽酶E (CPE)改变脑内主要的PTM微管蛋白多谷氨酰化。我们研究了cpe介导的多谷氨酰化对皮层神经元迁移和树突形态的影响。我们首次发现,CPE的过表达增加了聚谷氨酰化α-微管蛋白的水平,而敲低则降低了聚谷氨酰化水平。我们还证明了CPE介导的多谷氨酰化的变化依赖于CPE锌结合基序,并且该基序对于CPE对p150glue定位的作用是必要的。然而,一个不增加MT谷氨酰化的CPE突变体的过表达模拟了野生型CPE过表达对树突分支的影响。此外,尽管野生型CPE的过表达不会改变皮质神经元的迁移,但正如我们之前报道的CPE敲低一样,突变体的过表达可能以显性负向方式起作用,因为它减少了到达皮质板(CP)的神经元数量。总的来说,我们的数据表明,CPE改变MT谷氨酰化和p150glue的重新分布,并且CPE的这种功能独立于其在树突发育中的作用,但在调节皮质神经元迁移中起部分作用。
{"title":"Carboxypeptidase E Independently Changes Microtubule Glutamylation, Dendritic Branching, and Neuronal Migration.","authors":"Chen Liang,&nbsp;Damien Carrel,&nbsp;Nisha K Singh,&nbsp;Liam L Hiester,&nbsp;Isabelle Fanget,&nbsp;Hyuck Kim,&nbsp;Bonnie L Firestein","doi":"10.1177/17590914211062765","DOIUrl":"https://doi.org/10.1177/17590914211062765","url":null,"abstract":"<p><p>Neuronal migration and dendritogenesis are dependent on dynamic changes to the microtubule (MT) network. Among various factors that regulate MT dynamics and stability, post-translational modifications (PTMs) of MTs play a critical role in conferring specificity of regulatory protein binding to MTs. Thus, it is important to understand the regulation of PTMs during brain development as multiple developmental processes are dependent on MTs. In this study, we identified that carboxypeptidase E (CPE) changes tubulin polyglutamylation, a major PTM in the brain, and we examine the impact of CPE-mediated changes to polyglutamylation on cortical neuron migration and dendrite morphology. We show, for the first time, that overexpression of CPE increases the level of polyglutamylated α-tubulin while knockdown decreases the level of polyglutamylation. We also demonstrate that CPE-mediated changes to polyglutamylation are dependent on the CPE zinc-binding motif and that this motif is necessary for CPE action on p150<sup>Glued</sup> localization. However, overexpression of a CPE mutant that does not increase MT glutamylation mimics the effects of overexpression of wild type CPE on dendrite branching. Furthermore, although overexpression of wild type CPE does not alter cortical neuron migration, overexpression of the mutant may act in a dominant-negative manner as it decreases the number of neurons that reach the cortical plate (CP), as we previously reported for CPE knockdown. Overall, our data suggest that CPE changes MT glutamylation and redistribution of p150<sup>Glued</sup> and that this function of CPE is independent of its role in shaping dendrite development but plays a partial role in regulating cortical neuron migration.</p>","PeriodicalId":8616,"journal":{"name":"ASN NEURO","volume":null,"pages":null},"PeriodicalIF":4.7,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/84/3e/10.1177_17590914211062765.PMC8755936.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39809789","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
期刊
ASN NEURO
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1