首页 > 最新文献

ASN NEURO最新文献

英文 中文
Casein Kinase 2 Mediates HIV- and Opioid-Induced Pathologic Phosphorylation of TAR DNA Binding Protein 43 in the Basal Ganglia. 酪蛋白激酶 2 在基底神经节介导 HIV 和阿片类药物诱导的 TAR DNA 结合蛋白 43 的病理性磷酸化。
IF 4.7 4区 医学 Q2 NEUROSCIENCES Pub Date : 2023-01-01 DOI: 10.1177/17590914231158218
Michael Ohene-Nyako, Sara R Nass, Hope T Richard, Robert Lukande, Melanie R Nicol, MaryPeace McRae, Pamela E Knapp, Kurt F Hauser

Summary statement: HIV/HIV-1 Tat and morphine independently increase pathologic phosphorylation of TAR DNA binding protein 43 in the striatum. HIV- and opioid-induced pathologic phosphorylation of TAR DNA binding protein 43 may involve enhanced CK2 activity and protein levels.

摘要说明:HIV/HIV-1 Tat 和吗啡可独立增加纹状体中 TAR DNA 结合蛋白 43 的病理性磷酸化。艾滋病毒和阿片类药物诱导的 TAR DNA 结合蛋白 43 的病理性磷酸化可能涉及 CK2 活性和蛋白水平的增强。
{"title":"Casein Kinase 2 Mediates HIV- and Opioid-Induced Pathologic Phosphorylation of TAR DNA Binding Protein 43 in the Basal Ganglia.","authors":"Michael Ohene-Nyako, Sara R Nass, Hope T Richard, Robert Lukande, Melanie R Nicol, MaryPeace McRae, Pamela E Knapp, Kurt F Hauser","doi":"10.1177/17590914231158218","DOIUrl":"10.1177/17590914231158218","url":null,"abstract":"<p><strong>Summary statement: </strong>HIV/HIV-1 Tat and morphine independently increase pathologic phosphorylation of TAR DNA binding protein 43 in the striatum. HIV- and opioid-induced pathologic phosphorylation of TAR DNA binding protein 43 may involve enhanced CK2 activity and protein levels.</p>","PeriodicalId":8616,"journal":{"name":"ASN NEURO","volume":"15 ","pages":"17590914231158218"},"PeriodicalIF":4.7,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/06/3a/10.1177_17590914231158218.PMC9998424.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9868374","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neuroprotection by Preconditioning in Mice is Dependent on MyD88-Mediated CXCL10 Expression in Endothelial Cells. 小鼠预处理的神经保护依赖于MyD88介导的CXCL10在内皮细胞中的表达。
IF 4.7 4区 医学 Q2 NEUROSCIENCES Pub Date : 2023-01-01 DOI: 10.1177/17590914221146365
Zhihong Chen, Weiwei Hu, Mynor J Mendez, Zachary C Gossman, Anthony Chomyk, Brendan T Boylan, Grahame J Kidd, Timothy W Phares, Cornelia C Bergmann, Bruce D Trapp

The central nervous system (CNS) can be preconditioned to resist damage by peripheral pretreatment with low-dose gram-negative bacterial endotoxin lipopolysaccharide (LPS). Underlying mechanisms associated with transient protection of the cerebral cortex against traumatic brain injury include increased neuronal production of antiapoptotic and neurotrophic molecules, microglial-mediated displacement of inhibitory presynaptic terminals innervating the soma of cortical projection neurons, and synchronized firing of cortical projection neurons. However, the cell types and signaling responsible for these neuronal and microglial changes are unknown. A fundamental question is whether LPS penetrates the CNS or acts on the luminal surface of brain endothelial cells, thereby triggering an indirect parenchymal neuroprotective response. The present study shows that a low-dose intraperitoneal LPS treatment increases brain endothelial cell activation markers CD54, but does not open the blood-brain barrier or alter brain endothelial cell tight junctions as assessed by electron microscopy. NanoString nCounter transcript analyses of CD31-positive brain endothelial cells further revealed significant upregulation of Cxcl10, C3, Ccl2, Il1β, Cxcl2, and Cxcl1, consistent with identification of myeloid differentiation primary response 88 (MyD88) as a regulator of these transcripts by pathway analysis. Conditional genetic endothelial cell gene ablation approaches demonstrated that both MyD88-dependent Toll-like receptor 4 (TLR4) signaling and Cxcl10 expression are essential for LPS-induced neuroprotection and microglial activation. These results suggest that C-X-C motif chemokine ligand 10 (CXCL10) production by endothelial cells in response to circulating TLR ligands may directly or indirectly signal to CXCR3 on neurons and/or microglia. Targeted activation of brain endothelial receptors may thus provide an attractive approach for inducing transient neuroprotection.

中枢神经系统(CNS)可以通过低剂量革兰氏阴性细菌内毒素脂多糖(LPS)的外周预处理来预处理以抵抗损伤。与大脑皮层对创伤性脑损伤的瞬时保护相关的潜在机制包括抗凋亡和神经营养分子的神经元产生增加,小胶质细胞介导的支配皮层投射神经元胞体的抑制性突触前终末的移位,以及皮层投射神经元的同步放电。然而,负责这些神经元和小胶质细胞变化的细胞类型和信号传导尚不清楚。一个根本问题是LPS是否穿透中枢神经系统或作用于脑内皮细胞的管腔表面,从而触发间接的实质神经保护反应。本研究表明,低剂量腹膜内LPS治疗增加了脑内皮细胞活化标志物CD54,但不会打开血脑屏障或改变脑内皮细胞紧密连接,如电子显微镜所评估的。CD31阳性脑内皮细胞的NanoString nCounter转录物分析进一步揭示了Cxcl10、C3、Ccl2、Il1β、Cxcl2和Cxcl1的显著上调,这与通过通路分析鉴定髓系分化初级反应88(MyD88)是这些转录物的调节剂相一致。条件遗传内皮细胞基因消融方法表明,MyD88依赖性Toll样受体4(TLR4)信号传导和Cxcl10表达对LPS诱导的神经保护和小胶质细胞活化至关重要。这些结果表明,内皮细胞响应循环TLR配体产生的C-X-C基序趋化因子配体10(CXCL10)可能直接或间接向神经元和/或小胶质细胞上的CXCR3发出信号。因此,脑内皮受体的靶向激活可以为诱导短暂的神经保护提供一种有吸引力的方法。
{"title":"Neuroprotection by Preconditioning in Mice is Dependent on MyD88-Mediated CXCL10 Expression in Endothelial Cells.","authors":"Zhihong Chen,&nbsp;Weiwei Hu,&nbsp;Mynor J Mendez,&nbsp;Zachary C Gossman,&nbsp;Anthony Chomyk,&nbsp;Brendan T Boylan,&nbsp;Grahame J Kidd,&nbsp;Timothy W Phares,&nbsp;Cornelia C Bergmann,&nbsp;Bruce D Trapp","doi":"10.1177/17590914221146365","DOIUrl":"10.1177/17590914221146365","url":null,"abstract":"<p><p>The central nervous system (CNS) can be preconditioned to resist damage by peripheral pretreatment with low-dose gram-negative bacterial endotoxin lipopolysaccharide (LPS). Underlying mechanisms associated with transient protection of the cerebral cortex against traumatic brain injury include increased neuronal production of antiapoptotic and neurotrophic molecules, microglial-mediated displacement of inhibitory presynaptic terminals innervating the soma of cortical projection neurons, and synchronized firing of cortical projection neurons. However, the cell types and signaling responsible for these neuronal and microglial changes are unknown. A fundamental question is whether LPS penetrates the CNS or acts on the luminal surface of brain endothelial cells, thereby triggering an indirect parenchymal neuroprotective response. The present study shows that a low-dose intraperitoneal LPS treatment increases brain endothelial cell activation markers CD54, but does not open the blood-brain barrier or alter brain endothelial cell tight junctions as assessed by electron microscopy. NanoString nCounter transcript analyses of CD31-positive brain endothelial cells further revealed significant upregulation of <i>Cxcl10, C3, Ccl2, Il1β, Cxcl2,</i> and <i>Cxcl1</i>, consistent with identification of myeloid differentiation primary response 88 (MyD88) as a regulator of these transcripts by pathway analysis. Conditional genetic endothelial cell gene ablation approaches demonstrated that both MyD88-dependent Toll-like receptor 4 (TLR4) signaling and <i>Cxcl10</i> expression are essential for LPS-induced neuroprotection and microglial activation. These results suggest that C-X-C motif chemokine ligand 10 (CXCL10) production by endothelial cells in response to circulating TLR ligands may directly or indirectly signal to CXCR3 on neurons and/or microglia. Targeted activation of brain endothelial receptors may thus provide an attractive approach for inducing transient neuroprotection.</p>","PeriodicalId":8616,"journal":{"name":"ASN NEURO","volume":"15 ","pages":"17590914221146365"},"PeriodicalIF":4.7,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/3b/50/10.1177_17590914221146365.PMC9810995.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10211960","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Therapeutic Effect of Nicotinamide Mononucleotide for Hypoxic-Ischemic Brain Injury in Neonatal Mice. 烟酰胺单核苷酸对新生小鼠缺氧缺血性脑损伤的治疗作用。
IF 4.7 4区 医学 Q2 NEUROSCIENCES Pub Date : 2023-01-01 DOI: 10.1177/17590914231198983
Takuya Kawamura, Gagandeep Singh Mallah, Maryam Ardalan, Tetyana Chumak, Pernilla Svedin, Lina Jonsson, Seyedeh Marziyeh Jabbari Shiadeh, Fanny Goretta, Tomoaki Ikeda, Henrik Hagberg, Mats Sandberg, Carina Mallard

Summary statement: Neonatal hypoxia-ischemia reduces nicotinamide adenine dinucleotide (NAD+) and SIRT6 levels in the injured hippocampus.Hippocampal high mobility group box-1 (HMGB1) release is significantly increased after neonatal hypoxia-ischemia.Nicotinamide mononucleotide (NMN) treatment normalizes hippocampal NAD+ and SIRT6 levels, with significant decrease in caspase-3 activity and HMGB1 release.NMN improves early developmental behavior, as well as motor and memory function.

概述:新生儿缺氧缺血降低了受损海马中烟酰胺腺嘌呤二核苷酸(NAD+)和SIRT6的水平。新生儿缺氧缺血后,海马高迁移率组box-1(HMGB1)的释放显著增加。烟酰胺单核苷酸(NMN)治疗使海马NAD+和SIRT6水平正常化,胱天蛋白酶-3活性和HMGB1释放显著降低。NMN改善早期发育行为,以及运动和记忆功能。
{"title":"Therapeutic Effect of Nicotinamide Mononucleotide for Hypoxic-Ischemic Brain Injury in Neonatal Mice.","authors":"Takuya Kawamura, Gagandeep Singh Mallah, Maryam Ardalan, Tetyana Chumak, Pernilla Svedin, Lina Jonsson, Seyedeh Marziyeh Jabbari Shiadeh, Fanny Goretta, Tomoaki Ikeda, Henrik Hagberg, Mats Sandberg, Carina Mallard","doi":"10.1177/17590914231198983","DOIUrl":"10.1177/17590914231198983","url":null,"abstract":"<p><strong>Summary statement: </strong>Neonatal hypoxia-ischemia reduces nicotinamide adenine dinucleotide (NAD<sup>+</sup>) and SIRT6 levels in the injured hippocampus.Hippocampal high mobility group box-1 (HMGB1) release is significantly increased after neonatal hypoxia-ischemia.Nicotinamide mononucleotide (NMN) treatment normalizes hippocampal NAD<sup>+</sup> and SIRT6 levels, with significant decrease in caspase-3 activity and HMGB1 release.NMN improves early developmental behavior, as well as motor and memory function.</p>","PeriodicalId":8616,"journal":{"name":"ASN NEURO","volume":"15 ","pages":"17590914231198983"},"PeriodicalIF":4.7,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10548811/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41105321","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transferrin Enhances Neuronal Differentiation. 转铁蛋白促进神经元分化。
IF 4.7 4区 医学 Q2 NEUROSCIENCES Pub Date : 2023-01-01 DOI: 10.1177/17590914231170703
María Julia Pérez, Tomas Roberto Carden, Paula Ayelen Dos Santos Claro, Susana Silberstein, Pablo Martin Páez, Veronica Teresita Cheli, Jorge Correale, Juana M Pasquini

Although transferrin (Tf) is a glycoprotein best known for its role in iron delivery, iron-independent functions have also been reported. Here, we assessed apoTf (aTf) treatment effects on Neuro-2a (N2a) cells, a mouse neuroblastoma cell line which, once differentiated, shares many properties with neurons, including process outgrowth, expression of selective neuronal markers, and electrical activity. We first examined the binding of Tf to its receptor (TfR) in our model and verified that, like neurons, N2a cells can internalize Tf from the culture medium. Next, studies on neuronal developmental parameters showed that Tf increases N2a survival through a decrease in apoptosis. Additionally, Tf accelerated the morphological development of N2a cells by promoting neurite outgrowth. These pro-differentiating effects were also observed in primary cultures of mouse cortical neurons treated with aTf, as neurons matured at a higher rate than controls and showed a decrease in the expression of early neuronal markers. Further experiments in iron-enriched and iron-deficient media showed that Tf preserved its pro-differentiation properties in N2a cells, with results hinting at a modulatory role for iron. Moreover, N2a-microglia co-cultures revealed an increase in IL-10 upon aTf treatment, which may be thought to favor N2a differentiation. Taken together, these findings suggest that Tf reduces cell death and favors the neuronal differentiation process, thus making Tf a promising candidate to be used in regenerative strategies for neurodegenerative diseases.

虽然转铁蛋白(Tf)是一种糖蛋白,以其在铁传递中的作用而闻名,但也有报道称其具有不依赖铁的功能。在这里,我们评估了apoTf (aTf)对神经-2a (N2a)细胞的治疗效果,神经-2a是一种小鼠神经母细胞瘤细胞系,一旦分化,与神经元共享许多特性,包括过程产物、选择性神经元标记物的表达和电活动。我们首先在我们的模型中检测了Tf与其受体(TfR)的结合,并验证了N2a细胞像神经元一样可以从培养基中内化Tf。接下来,对神经元发育参数的研究表明,Tf通过减少细胞凋亡来提高N2a的存活率。此外,Tf通过促进神经突的生长来加速N2a细胞的形态发育。在aTf处理的小鼠皮质神经元原代培养物中也观察到这些促进分化的作用,因为神经元的成熟速度高于对照组,并且早期神经元标记物的表达减少。在富铁和缺铁培养基中进行的进一步实验表明,Tf在N2a细胞中保持了其促分化特性,结果提示铁的调节作用。此外,N2a-小胶质细胞共培养显示,aTf处理后IL-10增加,这可能被认为有利于N2a分化。综上所述,这些发现表明Tf可以减少细胞死亡并促进神经元分化过程,因此使Tf成为一个有希望用于神经退行性疾病的再生策略的候选者。
{"title":"Transferrin Enhances Neuronal Differentiation.","authors":"María Julia Pérez,&nbsp;Tomas Roberto Carden,&nbsp;Paula Ayelen Dos Santos Claro,&nbsp;Susana Silberstein,&nbsp;Pablo Martin Páez,&nbsp;Veronica Teresita Cheli,&nbsp;Jorge Correale,&nbsp;Juana M Pasquini","doi":"10.1177/17590914231170703","DOIUrl":"https://doi.org/10.1177/17590914231170703","url":null,"abstract":"<p><p>Although transferrin (Tf) is a glycoprotein best known for its role in iron delivery, iron-independent functions have also been reported. Here, we assessed apoTf (aTf) treatment effects on Neuro-2a (N2a) cells, a mouse neuroblastoma cell line which, once differentiated, shares many properties with neurons, including process outgrowth, expression of selective neuronal markers, and electrical activity. We first examined the binding of Tf to its receptor (TfR) in our model and verified that, like neurons, N2a cells can internalize Tf from the culture medium. Next, studies on neuronal developmental parameters showed that Tf increases N2a survival through a decrease in apoptosis. Additionally, Tf accelerated the morphological development of N2a cells by promoting neurite outgrowth. These pro-differentiating effects were also observed in primary cultures of mouse cortical neurons treated with aTf, as neurons matured at a higher rate than controls and showed a decrease in the expression of early neuronal markers. Further experiments in iron-enriched and iron-deficient media showed that Tf preserved its pro-differentiation properties in N2a cells, with results hinting at a modulatory role for iron. Moreover, N2a-microglia co-cultures revealed an increase in IL-10 upon aTf treatment, which may be thought to favor N2a differentiation. Taken together, these findings suggest that Tf reduces cell death and favors the neuronal differentiation process, thus making Tf a promising candidate to be used in regenerative strategies for neurodegenerative diseases.</p>","PeriodicalId":8616,"journal":{"name":"ASN NEURO","volume":"15 ","pages":"17590914231170703"},"PeriodicalIF":4.7,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/cc/6f/10.1177_17590914231170703.PMC10134178.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9507415","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynamic Involvement of Striatal NG2-glia in L-DOPA Induced Dyskinesia in Parkinsonian Rats: Effects of Doxycycline. 左旋多巴诱导帕金森大鼠运动障碍时纹状体ng2神经胶质的动态参与:强力霉素的影响。
IF 4.7 4区 医学 Q2 NEUROSCIENCES Pub Date : 2023-01-01 DOI: 10.1177/17590914231155976
G C Nascimento, M Bortolanza, A Bribian, G C Leal-Luiz, R Raisman-Vozari, L López-Mascaraque, E Del-Bel

Summary statement: NG2-glia alters its dynamics in response to L-DOPA-induced dyskinesia. In these animals, striatal NG2-glia density was reduced with cells presenting activated phenotype while doxycycline antidyskinetic therapy promotes a return to NG2-glia cell density and protein to a not activated state.

摘要:ng2 -胶质细胞在左旋多巴诱导的运动障碍中改变其动力学。在这些动物中,纹状体ng2 -胶质细胞密度降低,细胞呈现激活表型,而强力霉素抗运动障碍治疗可促进ng2 -胶质细胞密度和蛋白质恢复到非激活状态。
{"title":"Dynamic Involvement of Striatal NG2-glia in L-DOPA Induced Dyskinesia in Parkinsonian Rats: Effects of Doxycycline.","authors":"G C Nascimento,&nbsp;M Bortolanza,&nbsp;A Bribian,&nbsp;G C Leal-Luiz,&nbsp;R Raisman-Vozari,&nbsp;L López-Mascaraque,&nbsp;E Del-Bel","doi":"10.1177/17590914231155976","DOIUrl":"https://doi.org/10.1177/17590914231155976","url":null,"abstract":"<p><strong>Summary statement: </strong>NG2-glia alters its dynamics in response to L-DOPA-induced dyskinesia. In these animals, striatal NG2-glia density was reduced with cells presenting activated phenotype while doxycycline antidyskinetic therapy promotes a return to NG2-glia cell density and protein to a not activated state.</p>","PeriodicalId":8616,"journal":{"name":"ASN NEURO","volume":"15 ","pages":"17590914231155976"},"PeriodicalIF":4.7,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/89/1f/10.1177_17590914231155976.PMC10084551.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9566783","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Expression of Ectonucleoside Triphosphate Diphosphohydrolase 2 (NTPDase2) Is Negatively Regulated Under Neuroinflammatory Conditions In Vivo and In Vitro 神经炎性条件下三磷酸二磷酸酶2(NTPDase2)表达的体内外负调控
IF 4.7 4区 医学 Q2 NEUROSCIENCES Pub Date : 2022-05-01 DOI: 10.1177/17590914221102068
M. Dragić, Katarina Mihajlović, Marija Adzic, Marija Jakovljevic, M. Z. Kontić, N. Mitrović, Danijela Laketa, I. Lavrnja, M. Kipp, I. Grković, N. Nedeljkovic
Ectonucleoside triphosphate diphosphohydrolase 2 (NTPDase2) hydrolyzes extracellular ATP to ADP, which is the ligand for P2Y1,12,13 receptors. The present study describes the distribution of NTPDase2 in adult rat brains in physiological conditions, and in hippocampal neurodegeneration induced by trimethyltin (TMT). The study also describes the regulation of NTPDase2 by inflammatory mediators in primary astrocytes and oligodendroglial cell line OLN93. In physiological conditions, NTPDase2 protein was most abundant in the hippocampus, where it was found in fibrous astrocytes and synaptic endings in the synaptic-rich hippocampal layers. In TMT-induced neurodegeneration, NTPDase2-mRNA acutely decreased at 2-dpi and then gradually recovered to the control level at 7-dpi and 21-dpi. As determined by immunohistochemistry and double immunofluorescence, the decrease was most pronounced in the dentate gyrus (DG), where NTPDase2 withdrew from the synaptic boutons in the polymorphic layer of DG, whereas the recovery of the expression was most profound in the subgranular layer. Concerning the regulation of NTPDase2 gene expression, proinflammatory cytokines IL-6, IL-1β, TNFα, and IFNγ negatively regulated the expression of NTPDase2 in OLN93 cells, while did not altering the expression in primary astrocytes. Different cell-intrinsic stressors, such as depletion of intracellular energy store, oxidative stress, endoplasmic reticulum stress, and activation of protein kinase C, also massively disturbed the expression of the NTPDase2 gene. Together, our results suggest that the expression and the activity of NTPDase2 transiently cease in neurodegeneration and brain injury, most likely as a part of the acute adaptive response designed to promote cell defense, survival, and recovery.
外核三磷酸二磷酸酶2(NTPDase2)将细胞外ATP水解为ADP,ADP是P2Y1、12、13受体的配体。本研究描述了NTPDase2在生理条件下成年大鼠大脑中的分布,以及在三甲基锡(TMT)诱导的海马神经退行性变中的分布。该研究还描述了原代星形胶质细胞和少突胶质细胞系OLN93中炎症介质对NTPDase2的调节。在生理条件下,NTPDase2蛋白在海马中含量最高,在富含突触的海马层的纤维星形胶质细胞和突触末梢中发现。在TMT诱导的神经退行性变中,NTPDase2mRNA在2-dpi时急剧下降,然后在7-dpi和21dpi时逐渐恢复到对照水平。通过免疫组织化学和双重免疫荧光测定,减少在齿状回(DG)最为明显,其中NTPDase2从DG多态层的突触突中退出,而表达在亚颗粒层的恢复最为深刻。关于NTPDase2基因表达的调节,促炎细胞因子IL-6、IL-1β、TNFα和IFNγ在OLN93细胞中负调节NTPDase2中的表达,而不改变原代星形胶质细胞中的表达。不同的细胞内在应激源,如细胞内能量储存的耗竭、氧化应激、内质网应激和蛋白激酶C的激活,也严重干扰NTPDase2基因的表达。总之,我们的研究结果表明,NTPDase2的表达和活性在神经退行性变和脑损伤中短暂停止,很可能是旨在促进细胞防御、存活和恢复的急性适应性反应的一部分。
{"title":"Expression of Ectonucleoside Triphosphate Diphosphohydrolase 2 (NTPDase2) Is Negatively Regulated Under Neuroinflammatory Conditions In Vivo and In Vitro","authors":"M. Dragić, Katarina Mihajlović, Marija Adzic, Marija Jakovljevic, M. Z. Kontić, N. Mitrović, Danijela Laketa, I. Lavrnja, M. Kipp, I. Grković, N. Nedeljkovic","doi":"10.1177/17590914221102068","DOIUrl":"https://doi.org/10.1177/17590914221102068","url":null,"abstract":"Ectonucleoside triphosphate diphosphohydrolase 2 (NTPDase2) hydrolyzes extracellular ATP to ADP, which is the ligand for P2Y1,12,13 receptors. The present study describes the distribution of NTPDase2 in adult rat brains in physiological conditions, and in hippocampal neurodegeneration induced by trimethyltin (TMT). The study also describes the regulation of NTPDase2 by inflammatory mediators in primary astrocytes and oligodendroglial cell line OLN93. In physiological conditions, NTPDase2 protein was most abundant in the hippocampus, where it was found in fibrous astrocytes and synaptic endings in the synaptic-rich hippocampal layers. In TMT-induced neurodegeneration, NTPDase2-mRNA acutely decreased at 2-dpi and then gradually recovered to the control level at 7-dpi and 21-dpi. As determined by immunohistochemistry and double immunofluorescence, the decrease was most pronounced in the dentate gyrus (DG), where NTPDase2 withdrew from the synaptic boutons in the polymorphic layer of DG, whereas the recovery of the expression was most profound in the subgranular layer. Concerning the regulation of NTPDase2 gene expression, proinflammatory cytokines IL-6, IL-1β, TNFα, and IFNγ negatively regulated the expression of NTPDase2 in OLN93 cells, while did not altering the expression in primary astrocytes. Different cell-intrinsic stressors, such as depletion of intracellular energy store, oxidative stress, endoplasmic reticulum stress, and activation of protein kinase C, also massively disturbed the expression of the NTPDase2 gene. Together, our results suggest that the expression and the activity of NTPDase2 transiently cease in neurodegeneration and brain injury, most likely as a part of the acute adaptive response designed to promote cell defense, survival, and recovery.","PeriodicalId":8616,"journal":{"name":"ASN NEURO","volume":" ","pages":""},"PeriodicalIF":4.7,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46001693","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Lanthionine Ketimine Ethyl Ester Accelerates Remyelination in a Mouse Model of Multiple Sclerosis. 硫氨酸氯胺酮乙酯加速多发性硬化症小鼠模型的再髓鞘形成。
IF 4.7 4区 医学 Q2 NEUROSCIENCES Pub Date : 2022-01-01 DOI: 10.1177/17590914221112352
Jeffrey L Dupree, Pablo M Paez, Seema K Tiwari-Woodruff, Travis T Denton, Kenneth Hensley, Christina G Angeliu, Anne I Boullerne, Sergey Kalinin, Sophia Egge, Veronica T Cheli, Giancarlo Denaroso, Kelley C Atkinson, Micah Feri, Douglas L Feinstein

Although over 20 disease modifying therapies are approved to treat Multiple Sclerosis (MS), these do not increase remyelination of demyelinated axons or mitigate axon damage. Previous studies showed that lanthionine ketenamine ethyl ester (LKE) reduces clinical signs in the experimental autoimmune encephalomyelitis (EAE) mouse model of MS and increased maturation of oligodendrocyte (OL) progenitor cells (OPCs) in vitro. In the current study, we used the cuprizone (CPZ) demyelination model of MS to test if LKE could increase remyelination. The corpus callosum (CC) and somatosensory cortex was examined by immunohistochemistry (IHC), electron microscopy and for mRNA expression changes in mice provided 5 weeks of CPZ diet followed by 2 weeks of normal diet in the presence of LKE or vehicle. A significant increase in the number of myelinated axons, and increased myelin thickness was observed in the CC of LKE-treated groups compared to vehicle-treated groups. LKE also increased myelin basic protein and proteolipid protein expression in the CC and cortex, and increased the number of mature OLs in the cortex. In contrast, LKE did not increase the percentage of proliferating OPCs suggesting effects on OPC survival and differentiation but not proliferation. The effects of LKE on OL maturation and remyelination were supported by similar changes in their relative mRNA levels. Interestingly, LKE did not have significant effects on GFAP or Iba1 immunostaining or mRNA levels. These findings suggest that remyelinating actions of LKE can potentially be formulated to induce remyelination in neurological diseases associated with demyelination including MS.

尽管超过20种疾病修饰疗法被批准用于治疗多发性硬化症(MS),但这些疗法并不能增加脱髓鞘轴突的再髓鞘形成或减轻轴突损伤。先前的研究表明,硫氨酸氯胺酮乙酯(LKE)可减少实验性自身免疫性脑脊髓炎(EAE)小鼠MS模型的临床症状,并促进体外少突胶质细胞(OL)祖细胞(OPCs)的成熟。在本研究中,我们使用铜酮(CPZ)脱髓鞘模型来测试LKE是否可以促进骨髓鞘再生。采用免疫组化(IHC)、电镜观察和mRNA表达变化,分别饲喂5周CPZ和2周LKE或载药小鼠的胼胝体和体感觉皮层。与对照组相比,lke处理组CC中有髓鞘轴突数量显著增加,髓鞘厚度显著增加。LKE还增加了CC和皮层中髓鞘碱性蛋白和蛋白脂蛋白的表达,增加了皮层中成熟OLs的数量。相比之下,LKE没有增加增殖OPC的百分比,这表明对OPC存活和分化有影响,但对增殖没有影响。LKE对OL成熟和髓鞘再生的影响与它们相对mRNA水平的变化相似。有趣的是,LKE对GFAP或Iba1免疫染色或mRNA水平没有显著影响。这些发现表明,LKE的髓鞘再生作用可能会在包括多发性硬化症在内的与脱髓鞘相关的神经系统疾病中诱导髓鞘再生。
{"title":"Lanthionine Ketimine Ethyl Ester Accelerates Remyelination in a Mouse Model of Multiple Sclerosis.","authors":"Jeffrey L Dupree,&nbsp;Pablo M Paez,&nbsp;Seema K Tiwari-Woodruff,&nbsp;Travis T Denton,&nbsp;Kenneth Hensley,&nbsp;Christina G Angeliu,&nbsp;Anne I Boullerne,&nbsp;Sergey Kalinin,&nbsp;Sophia Egge,&nbsp;Veronica T Cheli,&nbsp;Giancarlo Denaroso,&nbsp;Kelley C Atkinson,&nbsp;Micah Feri,&nbsp;Douglas L Feinstein","doi":"10.1177/17590914221112352","DOIUrl":"https://doi.org/10.1177/17590914221112352","url":null,"abstract":"<p><p>Although over 20 disease modifying therapies are approved to treat Multiple Sclerosis (MS), these do not increase remyelination of demyelinated axons or mitigate axon damage. Previous studies showed that lanthionine ketenamine ethyl ester (LKE) reduces clinical signs in the experimental autoimmune encephalomyelitis (EAE) mouse model of MS and increased maturation of oligodendrocyte (OL) progenitor cells (OPCs) <i>in vitro</i>. In the current study, we used the cuprizone (CPZ) demyelination model of MS to test if LKE could increase remyelination. The corpus callosum (CC) and somatosensory cortex was examined by immunohistochemistry (IHC), electron microscopy and for mRNA expression changes in mice provided 5 weeks of CPZ diet followed by 2 weeks of normal diet in the presence of LKE or vehicle. A significant increase in the number of myelinated axons, and increased myelin thickness was observed in the CC of LKE-treated groups compared to vehicle-treated groups. LKE also increased myelin basic protein and proteolipid protein expression in the CC and cortex, and increased the number of mature OLs in the cortex. In contrast, LKE did not increase the percentage of proliferating OPCs suggesting effects on OPC survival and differentiation but not proliferation. The effects of LKE on OL maturation and remyelination were supported by similar changes in their relative mRNA levels. Interestingly, LKE did not have significant effects on GFAP or Iba1 immunostaining or mRNA levels. These findings suggest that remyelinating actions of LKE can potentially be formulated to induce remyelination in neurological diseases associated with demyelination including MS.</p>","PeriodicalId":8616,"journal":{"name":"ASN NEURO","volume":"14 ","pages":"17590914221112352"},"PeriodicalIF":4.7,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/30/dd/10.1177_17590914221112352.PMC9272172.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10345469","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Acute Manganese Exposure Modifies the Translation Machinery via PI3K/Akt Signaling in Glial Cells. 急性锰暴露通过PI3K/Akt信号通路改变神经胶质细胞的翻译机制。
IF 4.7 4区 医学 Q2 NEUROSCIENCES Pub Date : 2022-01-01 DOI: 10.1177/17590914221131452
Jzmín Soto-Verdugo, Janisse Siva-Parra, Luisa C Hernández-Kelly, Arturo Ortega

Summary statement: We demonstrate herein that short-term exposure of radial glia cells to Manganese, a neurotoxic metal, induces an effect on protein synthesis, altering the protein repertoire of these cells.

摘要声明:我们在此证明,放射状胶质细胞短期暴露于锰(一种神经毒性金属)会诱导蛋白质合成,改变这些细胞的蛋白质库。
{"title":"Acute Manganese Exposure Modifies the Translation Machinery <i>via</i> PI3K/Akt Signaling in Glial Cells.","authors":"Jzmín Soto-Verdugo,&nbsp;Janisse Siva-Parra,&nbsp;Luisa C Hernández-Kelly,&nbsp;Arturo Ortega","doi":"10.1177/17590914221131452","DOIUrl":"https://doi.org/10.1177/17590914221131452","url":null,"abstract":"<p><strong>Summary statement: </strong>We demonstrate herein that short-term exposure of radial glia cells to Manganese, a neurotoxic metal, induces an effect on protein synthesis, altering the protein <i>repertoire</i> of these cells.</p>","PeriodicalId":8616,"journal":{"name":"ASN NEURO","volume":" ","pages":"17590914221131452"},"PeriodicalIF":4.7,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/5a/2d/10.1177_17590914221131452.PMC9551334.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"33492373","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dendritic Polyglycerol Amine: An Enhanced Substrate to Support Long-Term Neural Cell Culture. 树突状聚甘油胺:支持长期神经细胞培养的增强底物。
IF 4.7 4区 医学 Q2 NEUROSCIENCES Pub Date : 2022-01-01 DOI: 10.1177/17590914211073276
Jean-Pierre Clément, Laila Al-Alwan, Stephen D Glasgow, Avya Stolow, Yi Ding, Thaiany Quevedo Melo, Anouar Khayachi, Yumin Liu, Markus Hellmund, Rainer Haag, Austen J Milnerwood, Peter Grütter, Timothy E Kennedy

Long-term stable cell culture is a critical tool to better understand cell function. Most adherent cell culture models require a polymer substrate coating of poly-lysine or poly-ornithine for the cells to adhere and survive. However, polypeptide-based substrates are degraded by proteolysis and it remains a challenge to maintain healthy cell cultures for extended periods of time. Here, we report the development of an enhanced cell culture substrate based on a coating of dendritic polyglycerol amine (dPGA), a non-protein macromolecular biomimetic of poly-lysine, to promote the adhesion and survival of neurons in cell culture. We show that this new polymer coating provides enhanced survival, differentiation and long-term stability for cultures of primary neurons or neurons derived from human induced pluripotent stem cells (hiPSCs). Atomic force microscopy analysis provides evidence that greater nanoscale roughness contributes to the enhanced capacity of dPGA-coated surfaces to support cells in culture. We conclude that dPGA is a cytocompatible, functionally superior, easy to use, low cost and highly stable alternative to poly-cationic polymer cell culture substrate coatings such as poly-lysine and poly-ornithine. Summary statementHere, we describe a novel dendritic polyglycerol amine-based substrate coating, demonstrating superior performance compared to current polymer coatings for long-term culture of primary neurons and neurons derived from induced pluripotent stem cells.

长期稳定的细胞培养是更好地了解细胞功能的关键工具。大多数粘附细胞培养模型需要一层聚赖氨酸或聚鸟氨酸的聚合物基底涂层,以使细胞粘附和存活。然而,多肽基底物会被蛋白质水解降解,因此长时间维持健康的细胞培养仍然是一个挑战。在这里,我们报道了一种基于树突状聚甘油胺(dPGA)涂层的增强细胞培养底物的发展,dPGA是一种非蛋白质大分子聚赖氨酸的仿生物,可以促进细胞培养中神经元的粘附和存活。我们发现这种新的聚合物涂层为原代神经元或来源于人诱导多能干细胞(hiPSCs)的神经元的培养提供了更高的存活、分化和长期稳定性。原子力显微镜分析提供的证据表明,更大的纳米级粗糙度有助于提高dpga涂层表面在培养中支持细胞的能力。我们认为dPGA是一种细胞相容性好、功能优越、易于使用、成本低且高度稳定的多阳离子聚合物细胞培养基质涂层的替代品,如聚赖氨酸和聚鸟氨酸。在这里,我们描述了一种新型的树突状聚甘油胺基基底涂层,与目前的聚合物涂层相比,它在长期培养原代神经元和诱导多能干细胞来源的神经元方面表现出优越的性能。
{"title":"Dendritic Polyglycerol Amine: An Enhanced Substrate to Support Long-Term Neural Cell Culture.","authors":"Jean-Pierre Clément,&nbsp;Laila Al-Alwan,&nbsp;Stephen D Glasgow,&nbsp;Avya Stolow,&nbsp;Yi Ding,&nbsp;Thaiany Quevedo Melo,&nbsp;Anouar Khayachi,&nbsp;Yumin Liu,&nbsp;Markus Hellmund,&nbsp;Rainer Haag,&nbsp;Austen J Milnerwood,&nbsp;Peter Grütter,&nbsp;Timothy E Kennedy","doi":"10.1177/17590914211073276","DOIUrl":"https://doi.org/10.1177/17590914211073276","url":null,"abstract":"<p><p>Long-term stable cell culture is a critical tool to better understand cell function. Most adherent cell culture models require a polymer substrate coating of poly-lysine or poly-ornithine for the cells to adhere and survive. However, polypeptide-based substrates are degraded by proteolysis and it remains a challenge to maintain healthy cell cultures for extended periods of time. Here, we report the development of an enhanced cell culture substrate based on a coating of dendritic polyglycerol amine (dPGA), a non-protein macromolecular biomimetic of poly-lysine, to promote the adhesion and survival of neurons in cell culture. We show that this new polymer coating provides enhanced survival, differentiation and long-term stability for cultures of primary neurons or neurons derived from human induced pluripotent stem cells (hiPSCs). Atomic force microscopy analysis provides evidence that greater nanoscale roughness contributes to the enhanced capacity of dPGA-coated surfaces to support cells in culture. We conclude that dPGA is a cytocompatible, functionally superior, easy to use, low cost and highly stable alternative to poly-cationic polymer cell culture substrate coatings such as poly-lysine and poly-ornithine. <b>Summary statement</b>Here, we describe a novel dendritic polyglycerol amine-based substrate coating, demonstrating superior performance compared to current polymer coatings for long-term culture of primary neurons and neurons derived from induced pluripotent stem cells.</p>","PeriodicalId":8616,"journal":{"name":"ASN NEURO","volume":" ","pages":"17590914211073276"},"PeriodicalIF":4.7,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8784910/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39816465","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
GFAP Alternative Splicing and the Relevance for Disease – A Focus on Diffuse Gliomas GFAP选择性剪接及其与疾病的相关性——聚焦弥漫性胶质瘤
IF 4.7 4区 医学 Q2 NEUROSCIENCES Pub Date : 2022-01-01 DOI: 10.1177/17590914221102065
Jessy V. van Asperen, P. Robe, Elly M. Hol
Glial fibrillary acidic protein (GFAP) is an intermediate filament protein that is characteristic for astrocytes and neural stem cells, and their malignant analogues in glioma. Since the discovery of the protein 50 years ago, multiple alternative splice variants of the GFAP gene have been discovered, leading to different GFAP isoforms. In this review, we will describe GFAP isoform expression from gene to protein to network, taking the canonical isoforms GFAPα and the main alternative variant GFAPδ as the starting point. We will discuss the relevance of studying GFAP and its isoforms in disease, with a specific focus on diffuse gliomas.
胶质原纤维酸性蛋白(GFAP)是星形胶质细胞和神经干细胞及其恶性类似物在胶质瘤中的特征性中间丝蛋白。自50年前发现该蛋白以来,已经发现了GFAP基因的多种替代剪接变体,导致不同的GFAP亚型。在这篇综述中,我们将以典型的亚型GFAPα和主要的替代变体GFAPδ为起点,描述从基因到蛋白质再到网络的GFAP亚型表达。我们将讨论研究GFAP及其亚型在疾病中的相关性,特别关注弥漫性胶质瘤。
{"title":"GFAP Alternative Splicing and the Relevance for Disease – A Focus on Diffuse Gliomas","authors":"Jessy V. van Asperen, P. Robe, Elly M. Hol","doi":"10.1177/17590914221102065","DOIUrl":"https://doi.org/10.1177/17590914221102065","url":null,"abstract":"Glial fibrillary acidic protein (GFAP) is an intermediate filament protein that is characteristic for astrocytes and neural stem cells, and their malignant analogues in glioma. Since the discovery of the protein 50 years ago, multiple alternative splice variants of the GFAP gene have been discovered, leading to different GFAP isoforms. In this review, we will describe GFAP isoform expression from gene to protein to network, taking the canonical isoforms GFAPα and the main alternative variant GFAPδ as the starting point. We will discuss the relevance of studying GFAP and its isoforms in disease, with a specific focus on diffuse gliomas.","PeriodicalId":8616,"journal":{"name":"ASN NEURO","volume":" ","pages":""},"PeriodicalIF":4.7,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41336085","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
期刊
ASN NEURO
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1