首页 > 最新文献

ASN NEURO最新文献

英文 中文
Dorsomedial Ventromedial Hypothalamic Nucleus Growth Hormone-Releasing Hormone Neuron Steroidogenic Factor-1 Gene Targets in Female Rat. 雌性大鼠下丘脑背内侧核生长激素释放激素神经元类固醇生成因子-1的基因靶点
IF 3.9 4区 医学 Q2 NEUROSCIENCES Pub Date : 2024-01-01 Epub Date: 2024-10-14 DOI: 10.1080/17590914.2024.2403345
Subash Sapkota, Sagor C Roy, Karen P Briski

The prospect that the ventromedial hypothalamic nucleus (VMN) transcription factor steroidogenic factor-1/NR5A1 (SF-1) may exert sex-dimorphic control of glucose counterregulation is unresolved. Recent studies in male rats show that SF-1 regulates transcription of co-expressed hypoglycemia-sensitive neurochemicals in dorsomedial VMN growth hormone-releasing hormone (Ghrh) neurons. Gene knockdown and laser-catapult-microdissection/single-cell multiplex qPCR techniques were used here in a female rat model to determine if SF-1 control of Ghrh neuron transmitter marker, energy sensor, and estrogen receptor (ER) variant mRNAs varies according to sex. Data show that in females, hypoglycemia elicits a gain of SF-1 inhibitory control of VMNdm Ghrh neuron Ghrh and Ghrh-receptor gene profiles and loss of augmentation of glutaminase transcription; SF-1 gene silencing diminished eu- and hypoglycemic patterns of neuronal nitric oxide gene transcription. SF-1 imposes divergent control of baseline and hypoglycemic glutamate decarboxylase65 (GAD)-1 (stimulatory) versus GAD2 (inhibitory) mRNAs in that sex. SF-1 stimulates baseline VMNdm Ghrh neuron PRKAA1/AMPKα1 and PRKAA2/AMPKα2 gene expression, yet causes opposite changes in these gene profiles during hypoglycemia. SF-1 exerts glucose-dependent control of ER-alpha and G-protein-coupled ER-1 transcription, but blunts ER-beta gene profiles during eu- and hypoglycemia. In females, SF-1 knockdown did not affect hypercorticosteronemia or hyperglucagonemia, but blunted hypoglycemic suppression of growth hormone secretion. Results show that SF-1 expression is critical for female rat VMNdm Ghrh neuron counterregulatory neurochemical, AMPK catalytic subunit, and ER gene transcription responses to hypoglycemia. Sex differences in direction of SF-1 control of distinctive gene profiles may result in observed disparities in SF-1 regulation of counterregulatory hormone secretion between sexes.

腹内侧下丘脑核(VMN)转录因子类固醇生成因子-1/NR5A1(SF-1)可能对葡萄糖反调节具有性别二态性控制,这一前景尚未得到解决。最近在雄性大鼠身上进行的研究表明,SF-1 可调节背内侧 VMN 生长激素释放激素(Ghrh)神经元中共同表达的对低血糖敏感的神经化学物质的转录。本文在雌性大鼠模型中使用了基因敲除和激光弹弓微切片/单细胞多重 qPCR 技术,以确定 SF-1 对 Ghrh 神经元递质标记、能量传感器和雌激素受体(ER)变体 mRNA 的控制是否因性别而异。数据显示,在雌性大鼠中,低血糖会增强 SF-1 对 VMNdm Ghrh 神经元 Ghrh 和 Ghrh 受体基因图谱的抑制性控制,并丧失对谷氨酰胺酶转录的增强作用;SF-1 基因沉默会减少神经元一氧化氮基因转录的 eu- 和低血糖模式。SF-1对基线和低血糖谷氨酸脱羧酶65(GAD)-1(刺激性)与GAD2(抑制性)mRNA的控制存在差异。SF-1 可刺激基线 VMNdm Ghrh 神经元 PRKAA1/AMPKα1 和 PRKAA2/AMPKα2 基因的表达,但在低血糖时会导致这些基因发生相反的变化。SF-1对ER-α和G蛋白偶联的ER-1转录进行葡萄糖依赖性控制,但在优血症和低血糖时会减弱ER-β基因的表达。在女性中,SF-1基因敲除不会影响高皮质酮血症或高胰高血糖素血症,但会减弱低血糖对生长激素分泌的抑制。结果表明,SF-1的表达对雌性大鼠VMNdm Ghrh神经元反调节神经化学物质、AMPK催化亚基和ER基因转录对低血糖的反应至关重要。SF-1对不同基因的控制方向存在性别差异,这可能导致观察到的SF-1对不同性别间反调节激素分泌的调控存在差异。
{"title":"Dorsomedial Ventromedial Hypothalamic Nucleus Growth Hormone-Releasing Hormone Neuron Steroidogenic Factor-1 Gene Targets in Female Rat.","authors":"Subash Sapkota, Sagor C Roy, Karen P Briski","doi":"10.1080/17590914.2024.2403345","DOIUrl":"https://doi.org/10.1080/17590914.2024.2403345","url":null,"abstract":"<p><p>The prospect that the ventromedial hypothalamic nucleus (VMN) transcription factor steroidogenic factor-1/NR5A1 (SF-1) may exert sex-dimorphic control of glucose counterregulation is unresolved. Recent studies in male rats show that SF-1 regulates transcription of co-expressed hypoglycemia-sensitive neurochemicals in dorsomedial VMN growth hormone-releasing hormone (Ghrh) neurons. Gene knockdown and laser-catapult-microdissection/single-cell multiplex qPCR techniques were used here in a female rat model to determine if SF-1 control of Ghrh neuron transmitter marker, energy sensor, and estrogen receptor (ER) variant mRNAs varies according to sex. Data show that in females, hypoglycemia elicits a gain of SF-1 inhibitory control of VMNdm Ghrh neuron Ghrh and Ghrh-receptor gene profiles and loss of augmentation of glutaminase transcription; SF-1 gene silencing diminished eu- and hypoglycemic patterns of neuronal nitric oxide gene transcription. SF-1 imposes divergent control of baseline and hypoglycemic glutamate decarboxylase<sub>65</sub> (GAD)-1 (stimulatory) versus GAD2 (inhibitory) mRNAs in that sex. SF-1 stimulates baseline VMNdm Ghrh neuron PRKAA1/AMPKα1 and PRKAA2/AMPKα2 gene expression, yet causes opposite changes in these gene profiles during hypoglycemia. SF-1 exerts glucose-dependent control of ER-alpha and G-protein-coupled ER-1 transcription, but blunts ER-beta gene profiles during eu- and hypoglycemia. In females, SF-1 knockdown did not affect hypercorticosteronemia or hyperglucagonemia, but blunted hypoglycemic suppression of growth hormone secretion. Results show that SF-1 expression is critical for female rat VMNdm Ghrh neuron counterregulatory neurochemical, AMPK catalytic subunit, and ER gene transcription responses to hypoglycemia. Sex differences in direction of SF-1 control of distinctive gene profiles may result in observed disparities in SF-1 regulation of counterregulatory hormone secretion between sexes.</p>","PeriodicalId":8616,"journal":{"name":"ASN NEURO","volume":"16 1","pages":"2403345"},"PeriodicalIF":3.9,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142456905","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Steroidogenic Factor-1 Regulation of Dorsomedial Ventromedial Hypothalamic Nucleus Ghrh Neuron Transmitter Marker and Estrogen Receptor Gene Expression in Male Rat. 类固醇生成因子-1 对雄性大鼠下丘脑背内侧核 Ghrh 神经元递质标记和雌激素受体基因表达的调控
IF 3.9 4区 医学 Q2 NEUROSCIENCES Pub Date : 2024-01-01 Epub Date: 2024-07-15 DOI: 10.1080/17590914.2024.2368382
Subash Sapkota, Sagor C Roy, Rami Shrestha, Karen P Briski

Ventromedial hypothalamic nucleus (VMN) growth hormone-releasing hormone (Ghrh) neurotransmission shapes counterregulatory hormone secretion. Dorsomedial VMN Ghrh neurons express the metabolic-sensitive transcription factor steroidogenic factor-1/NR5A1 (SF-1). In vivo SF-1 gene knockdown tools were used here to address the premise that in male rats, SF-1 may regulate basal and/or hypoglycemic patterns of Ghrh, co-transmitter biosynthetic enzyme, and estrogen receptor (ER) gene expression in these neurons. Single-cell multiplex qPCR analyses showed that SF-1 regulates basal profiles of mRNAs that encode Ghrh and protein markers for neurochemicals that suppress (γ-aminobutyric acid) or enhance (nitric oxide; glutamate) counterregulation. SF-1 siRNA pretreatment respectively exacerbated or blunted hypoglycemia-associated inhibition of glutamate decarboxylase67 (GAD67/GAD1) and -65 (GAD65/GAD2) transcripts. Hypoglycemia augmented or reduced nitric oxide synthase and glutaminase mRNAs, responses that were attenuated by SF-1 gene silencing. Ghrh and Ghrh receptor transcripts were correspondingly refractory to or increased by hypoglycemia, yet SF-1 knockdown decreased both gene profiles. Hypoglycemic inhibition of ER-alpha and G protein-coupled-ER gene expression was amplified by SF-1 siRNA pretreatment, whereas as ER-beta mRNA was amplified. SF-1 knockdown decreased (corticosterone) or elevated [glucagon, growth hormone (GH)] basal counterregulatory hormone profiles, but amplified hypoglycemic hypercorticosteronemia and -glucagonemia or prevented elevated GH release. Outcomes document SF-1 control of VMN Ghrh neuron counterregulatory neurotransmitter and ER gene transcription. SF-1 likely regulates Ghrh nerve cell receptivity to estradiol and release of distinctive neurochemicals during glucose homeostasis and systemic imbalance. VMN Ghrh neurons emerge as a likely substrate for SF-1 control of glucose counterregulation in the male rat.

下丘脑背内侧核(VMN)生长激素释放激素(Ghrh)的神经传递影响着激素的反调节分泌。背内侧 VMN Ghrh 神经元表达对代谢敏感的转录因子类固醇生成因子-1/NR5A1(SF-1)。本文使用体内 SF-1 基因敲除工具来研究雄性大鼠体内 SF-1 可能调节这些神经元中 Ghrh、协同递质生物合成酶和雌激素受体(ER)基因表达的基础和/或低血糖模式。单细胞多重 qPCR 分析表明,SF-1 可调节编码 Ghrh 的 mRNA 和抑制(γ-氨基丁酸)或增强(一氧化氮;谷氨酸)反调节的神经化学物质蛋白标记的基础图谱。SF-1 siRNA预处理分别加剧或减弱了低血糖对谷氨酸脱羧酶67(GAD67/GAD1)和-65(GAD65/GAD2)转录本的抑制作用。低血糖会增加或减少一氧化氮合酶和谷氨酰胺酶 mRNA,SF-1 基因沉默可减轻这些反应。Ghrh和Ghrh受体转录物相应地不受低血糖影响或因低血糖而增加,但SF-1基因敲除会减少这两种基因的转录。低血糖对 ER-α 和 G 蛋白偶联-ER 基因表达的抑制在 SF-1 siRNA 预处理后被放大,而 ER-beta mRNA 则被放大。敲除 SF-1 会降低(皮质酮)或升高(胰高血糖素、生长激素(GH))基础反调节激素谱,但会放大低血糖性高皮质酮血症和-胰高血糖素血症或阻止升高的 GH 释放。结果证明了 SF-1 对 VMN Ghrh 神经元反调节神经递质和 ER 基因转录的控制。SF-1 可能调节 Ghrh 神经细胞对雌二醇的接受能力,并在葡萄糖平衡和系统失衡时释放独特的神经化学物质。雄性大鼠的 VMN Ghrh 神经元可能是 SF-1 控制葡萄糖反调节的底物。
{"title":"Steroidogenic Factor-1 Regulation of Dorsomedial Ventromedial Hypothalamic Nucleus Ghrh Neuron Transmitter Marker and Estrogen Receptor Gene Expression in Male Rat.","authors":"Subash Sapkota, Sagor C Roy, Rami Shrestha, Karen P Briski","doi":"10.1080/17590914.2024.2368382","DOIUrl":"10.1080/17590914.2024.2368382","url":null,"abstract":"<p><p>Ventromedial hypothalamic nucleus (VMN) growth hormone-releasing hormone (Ghrh) neurotransmission shapes counterregulatory hormone secretion. Dorsomedial VMN Ghrh neurons express the metabolic-sensitive transcription factor steroidogenic factor-1/NR5A1 (SF-1). <i>In vivo</i> SF-1 gene knockdown tools were used here to address the premise that in male rats, SF-1 may regulate basal and/or hypoglycemic patterns of Ghrh, co-transmitter biosynthetic enzyme, and estrogen receptor (ER) gene expression in these neurons. Single-cell multiplex qPCR analyses showed that SF-1 regulates basal profiles of mRNAs that encode Ghrh and protein markers for neurochemicals that suppress (γ-aminobutyric acid) or enhance (nitric oxide; glutamate) counterregulation. SF-1 siRNA pretreatment respectively exacerbated or blunted hypoglycemia-associated inhibition of glutamate decarboxylase<sub>67</sub> (GAD<sub>67</sub>/GAD1) and -<sub>65</sub> (GAD<sub>65</sub>/GAD2) transcripts. Hypoglycemia augmented or reduced nitric oxide synthase and glutaminase mRNAs, responses that were attenuated by SF-1 gene silencing. Ghrh and Ghrh receptor transcripts were correspondingly refractory to or increased by hypoglycemia, yet SF-1 knockdown decreased both gene profiles. Hypoglycemic inhibition of ER-alpha and G protein-coupled-ER gene expression was amplified by SF-1 siRNA pretreatment, whereas as ER-beta mRNA was amplified. SF-1 knockdown decreased (corticosterone) or elevated [glucagon, growth hormone (GH)] basal counterregulatory hormone profiles, but amplified hypoglycemic hypercorticosteronemia and -glucagonemia or prevented elevated GH release. Outcomes document SF-1 control of VMN Ghrh neuron counterregulatory neurotransmitter and ER gene transcription. SF-1 likely regulates Ghrh nerve cell receptivity to estradiol and release of distinctive neurochemicals during glucose homeostasis and systemic imbalance. VMN Ghrh neurons emerge as a likely substrate for SF-1 control of glucose counterregulation in the male rat.</p>","PeriodicalId":8616,"journal":{"name":"ASN NEURO","volume":"16 1","pages":"2368382"},"PeriodicalIF":3.9,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11262038/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141722923","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Age-Associated Upregulation of Glutamate Transporters and Glutamine Synthetase in Senescent Astrocytes In Vitro and in the Mouse and Human Hippocampus. 衰老星形胶质细胞体外以及小鼠和人类海马中与年龄相关的谷氨酸转运体和谷氨酰胺合成酶的上调
IF 3.9 4区 医学 Q2 NEUROSCIENCES Pub Date : 2023-01-01 DOI: 10.1177/17590914231157974
Isadora Matias, Luan Pereira Diniz, Ana Paula Bergamo Araujo, Isabella Vivarini Damico, Pâmella de Moura, Felipe Cabral-Miranda, Fabiola Diniz, Belisa Parmeggiani, Valeria de Mello Coelho, Renata E P Leite, Claudia K Suemoto, Gustavo Costa Ferreira, Regina Célia Cussa Kubrusly, Flávia Carvalho Alcantara Gomes

Aging is marked by complex and progressive physiological changes, including in the glutamatergic system, that lead to a decline of brain function. Increased content of senescent cells in the brain, such as glial cells, has been reported to impact cognition both in animal models and human tissue during normal aging and in the context of neurodegenerative disease. Changes in the glutamatergic synaptic activity rely on the glutamate-glutamine cycle, in which astrocytes handle glutamate taken up from synapses and provide glutamine for neurons, thus maintaining excitatory neurotransmission. However, the mechanisms of glutamate homeostasis in brain aging are still poorly understood. Herein, we showed that mouse senescent astrocytes in vitro undergo upregulation of GLT-1, GLAST, and glutamine synthetase (GS), along with the increased enzymatic activity of GS and [3H]-D-aspartate uptake. Furthermore, we observed higher levels of GS and increased [3H]-D-aspartate uptake in the hippocampus of aged mice, although the activity of GS was similar between young and old mice. Analysis of a previously available RNAseq dataset of mice at different ages revealed upregulation of GLAST and GS mRNA levels in hippocampal astrocytes during aging. Corroborating these rodent data, we showed an increased number of GS + cells, and GS and GLT-1 levels/intensity in the hippocampus of elderly humans. Our data suggest that aged astrocytes undergo molecular and functional changes that control glutamate-glutamine homeostasis upon brain aging.

衰老的特征是复杂而渐进的生理变化,包括谷氨酸能系统的变化,从而导致大脑功能衰退。据报道,在正常衰老和神经退行性疾病的情况下,大脑中衰老细胞(如神经胶质细胞)含量的增加会影响动物模型和人体组织的认知能力。谷氨酸能突触活动的变化依赖于谷氨酸-谷氨酰胺循环,其中星形胶质细胞处理从突触摄取的谷氨酸,并为神经元提供谷氨酰胺,从而维持兴奋性神经传递。然而,人们对大脑衰老过程中谷氨酸平衡的机制仍知之甚少。在此,我们发现小鼠衰老星形胶质细胞体外 GLT-1、GLAST 和谷氨酰胺合成酶(GS)上调,GS 酶活性和 [3H]-D- 天冬氨酸摄取增加。此外,我们还观察到老年小鼠海马中的 GS 水平较高,[3H]-D-天冬氨酸摄取量增加,尽管年轻小鼠和老年小鼠的 GS 活性相似。对以前获得的不同年龄小鼠的 RNAseq 数据集进行分析后发现,在衰老过程中,海马星形胶质细胞中的 GLAST 和 GS mRNA 水平上调。与这些啮齿动物数据相印证的是,我们发现在老年人的海马中,GS + 细胞的数量以及 GS 和 GLT-1 的水平/强度都有所增加。我们的数据表明,衰老的星形胶质细胞在脑衰老过程中会发生控制谷氨酸-谷氨酰胺平衡的分子和功能变化。
{"title":"Age-Associated Upregulation of Glutamate Transporters and Glutamine Synthetase in Senescent Astrocytes In Vitro and in the Mouse and Human Hippocampus.","authors":"Isadora Matias, Luan Pereira Diniz, Ana Paula Bergamo Araujo, Isabella Vivarini Damico, Pâmella de Moura, Felipe Cabral-Miranda, Fabiola Diniz, Belisa Parmeggiani, Valeria de Mello Coelho, Renata E P Leite, Claudia K Suemoto, Gustavo Costa Ferreira, Regina Célia Cussa Kubrusly, Flávia Carvalho Alcantara Gomes","doi":"10.1177/17590914231157974","DOIUrl":"10.1177/17590914231157974","url":null,"abstract":"<p><p>Aging is marked by complex and progressive physiological changes, including in the glutamatergic system, that lead to a decline of brain function. Increased content of senescent cells in the brain, such as glial cells, has been reported to impact cognition both in animal models and human tissue during normal aging and in the context of neurodegenerative disease. Changes in the glutamatergic synaptic activity rely on the glutamate-glutamine cycle, in which astrocytes handle glutamate taken up from synapses and provide glutamine for neurons, thus maintaining excitatory neurotransmission. However, the mechanisms of glutamate homeostasis in brain aging are still poorly understood. Herein, we showed that mouse senescent astrocytes <i>in vitro</i> undergo upregulation of GLT-1, GLAST, and glutamine synthetase (GS), along with the increased enzymatic activity of GS and [<sup>3</sup>H]-D-aspartate uptake. Furthermore, we observed higher levels of GS and increased [<sup>3</sup>H]-D-aspartate uptake in the hippocampus of aged mice, although the activity of GS was similar between young and old mice. Analysis of a previously available RNAseq dataset of mice at different ages revealed upregulation of GLAST and GS mRNA levels in hippocampal astrocytes during aging. Corroborating these rodent data, we showed an increased number of GS + cells, and GS and GLT-1 levels/intensity in the hippocampus of elderly humans. Our data suggest that aged astrocytes undergo molecular and functional changes that control glutamate-glutamine homeostasis upon brain aging.</p>","PeriodicalId":8616,"journal":{"name":"ASN NEURO","volume":"15 ","pages":"17590914231157974"},"PeriodicalIF":3.9,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/af/85/10.1177_17590914231157974.PMC9950616.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9363191","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sex-Dimorphic Octadecaneuropeptide (ODN) Regulation of Ventromedial Hypothalamic Nucleus Glucoregulatory Neuron Function and Counterregulatory Hormone Secretion. 性别二态性十八神经肽(ODN)对下丘脑中央核糖调节神经元功能和反调节激素分泌的调节作用
IF 4.7 4区 医学 Q2 NEUROSCIENCES Pub Date : 2023-01-01 DOI: 10.1177/17590914231167230
Karen P Briski, Prabhat R Napit, Abdulrahman Alhamyani, Jérôme Leprince, A S M Hasan Mahmood

Central endozepinergic signaling is implicated in glucose homeostasis. Ventromedial hypothalamic nucleus (VMN) metabolic monitoring governs glucose counter-regulation. VMN glucose-stimulatory nitric oxide (NO) and glucose-inhibitory γ-aminobutyric acid (GABA) neurons express the energy gauge 5'-AMP-activated protein kinase (AMPK). Current research addresses the premise that the astrocyte glio-peptide octadecaneuropeptide (ODN) imposes sex-dimorphic control of metabolic sensor activity and neurotransmitter signaling in these neurons. The ODN G-protein coupled-receptor antagonist cyclo(1-8)[DLeu5]OP (LV-1075) was administered intracerebroventricularly (icv) to euglycemic rats of each sex; additional groups were pretreated icv with the ODN isoactive surrogate ODN11-18 (OP) before insulin-induced hypoglycemia. Western blotting of laser-catapult-microdissected VMN NO and GABA neurons showed that hypoglycemia caused OP-reversible augmentation of phospho-, e.g., activated AMPK and nitric oxide synthase (nNOS) expression in rostral (female) or middle (male) VMN segments or ODN-dependent suppression of nNOS in male caudal VMN. OP prevented hypoglycemic down-regulation of glutamate decarboxylase profiles in female rat rostral VMN, without affecting AMPK activity. LV-1075 treatment of male, not female rats elevated plasma glucagon and corticosterone concentrations. Moreover, OP attenuated hypoglycemia-associated augmentation of these hormones in males only. Results identify, for each sex, regional VMN metabolic transmitter signals that are subject to endozepinergic regulation. Directional shifts and gain-or-loss of ODN control during eu- versus hypoglycemia infer that VMN neuron receptivity to or post-receptor processing of this stimulus may be modulated by energy state. In male, counter-regulatory hormone secretion may be governed principally by ODN-sensitive neural pathways, whereas this endocrine outflow may be controlled by parallel, redundant ODN-dependent and -independent mechanisms in female.

中枢内氮平能信号与葡萄糖稳态有关。下丘脑中内侧核(VMN)的代谢监测控制着葡萄糖的反调节。VMN 葡萄糖刺激性一氧化氮(NO)和葡萄糖抑制性γ-氨基丁酸(GABA)神经元表达能量调节剂 5'-AMP 激活蛋白激酶(AMPK)。目前的研究探讨了星形胶质细胞肽十八神经肽(ODN)对这些神经元的代谢传感器活动和神经递质信号转导实施性别二态控制的前提。胰岛素诱导的低血糖大鼠脑室内注射(icv)ODN G蛋白偶联受体拮抗剂环(1-8)[DLeu5]OP(LV-1075);其他组在胰岛素诱导的低血糖前用ODN等活性代用品ODN11-18(OP)进行icv预处理。对激光弹弓微切片 VMN NO 和 GABA 神经元的 Western 印迹显示,低血糖导致 OP 可逆性地增强喙(雌性)或中(雄性)VMN 节段的磷酸化 AMPK 和一氧化氮合酶(nNOS)表达,或 ODN 依赖性地抑制雄性尾 VMN 的 nNOS 表达。OP 阻止了低血糖对雌性大鼠喙VMN谷氨酸脱羧酶的下调,但不影响AMPK活性。对雄性大鼠(而非雌性大鼠)进行 LV-1075 处理会升高血浆中的胰高血糖素和皮质酮浓度。此外,OP 只减弱了雄性大鼠因低血糖引起的这些激素的增加。研究结果确定了每种性别受内氮杂卓能调节的区域 VMN 代谢递质信号。在缺氧和低血糖时,ODN控制的方向性转变和增减推断,VMN神经元对这种刺激的接受能力或受体后处理可能受能量状态的调节。男性的反调节激素分泌可能主要由对 ODN 敏感的神经通路控制,而女性的这种内分泌外流可能由依赖 ODN 和不依赖 ODN 的平行冗余机制控制。
{"title":"Sex-Dimorphic Octadecaneuropeptide (ODN) Regulation of Ventromedial Hypothalamic Nucleus Glucoregulatory Neuron Function and Counterregulatory Hormone Secretion.","authors":"Karen P Briski, Prabhat R Napit, Abdulrahman Alhamyani, Jérôme Leprince, A S M Hasan Mahmood","doi":"10.1177/17590914231167230","DOIUrl":"10.1177/17590914231167230","url":null,"abstract":"<p><p>Central endozepinergic signaling is implicated in glucose homeostasis. Ventromedial hypothalamic nucleus (VMN) metabolic monitoring governs glucose counter-regulation. VMN glucose-stimulatory nitric oxide (NO) and glucose-inhibitory γ-aminobutyric acid (GABA) neurons express the energy gauge 5'-AMP-activated protein kinase (AMPK). Current research addresses the premise that the astrocyte glio-peptide octadecaneuropeptide (ODN) imposes sex-dimorphic control of metabolic sensor activity and neurotransmitter signaling in these neurons. The ODN G-protein coupled-receptor antagonist cyclo<sub>(1-8)</sub>[DLeu<sup>5</sup>]OP (LV-1075) was administered intracerebroventricularly (<i>icv</i>) to euglycemic rats of each sex; additional groups were pretreated <i>icv</i> with the ODN isoactive surrogate ODN<sub>11-18</sub> (OP) before insulin-induced hypoglycemia. Western blotting of laser-catapult-microdissected VMN NO and GABA neurons showed that hypoglycemia caused OP-reversible augmentation of phospho-, e.g., activated AMPK and nitric oxide synthase (nNOS) expression in rostral (female) or middle (male) VMN segments or ODN-dependent suppression of nNOS in male caudal VMN. OP prevented hypoglycemic down-regulation of glutamate decarboxylase profiles in female rat rostral VMN, without affecting AMPK activity. LV-1075 treatment of male, not female rats elevated plasma glucagon and corticosterone concentrations. Moreover, OP attenuated hypoglycemia-associated augmentation of these hormones in males only. Results identify, for each sex, regional VMN metabolic transmitter signals that are subject to endozepinergic regulation. Directional shifts and gain-or-loss of ODN control during eu- versus hypoglycemia infer that VMN neuron receptivity to or post-receptor processing of this stimulus may be modulated by energy state. In male, counter-regulatory hormone secretion may be governed principally by ODN-sensitive neural pathways, whereas this endocrine outflow may be controlled by parallel, redundant ODN-dependent and -independent mechanisms in female.</p>","PeriodicalId":8616,"journal":{"name":"ASN NEURO","volume":"15 ","pages":"17590914231167230"},"PeriodicalIF":4.7,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/c9/f9/10.1177_17590914231167230.PMC10196551.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9515615","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pyruvate Kinase 2, an Energy Metabolism Related Enzyme, May Have a Neuroprotective Function in Retinal Degeneration. 丙酮酸激酶2,一种能量代谢相关酶,可能在视网膜变性中具有神经保护功能。
IF 4.7 4区 医学 Q2 NEUROSCIENCES Pub Date : 2023-01-01 DOI: 10.1177/17590914231151534
Jiaming Zhou, Per Ekström

Retinitis pigmentosa (RP) is an inherited disorder that results in vision impairment but general and mutation-independent therapeutic strategies are not available. However, it is widely regarded that the cGMP system, including cGMP and its interactor cGMP-dependent protein kinase (PKG), acts as a crucial effector during retinal degeneration. We have previously identified a list of cGMP-PKG-dependent genes in the context of RP, and in this study, we further validated one of these, namely pyruvate kinase 2 (PKM2), and investigated the potential role of PKM2 for the photoreceptors' well-being during RP. With the aid of organotypic retinal explant cultures, we pharmacologically manipulated the PKM2 activities in two different RP mouse models (rd2 and rd10) via the addition of TEPP-46 (a PKM2 activator) and found that activation of PKM2 alleviates the progress of photoreceptor death in the rd10 mouse model. We also noted that the expression of both PKM2 and one of its targets, glucose transporter-1 (Glut1), showed alterations depending on the degeneration state. The observations provide supportive evidence that PKM2 may serve as a novel potential molecular target in RP.

色素性视网膜炎(RP)是一种导致视力损害的遗传性疾病,但目前还没有通用的和不依赖突变的治疗策略。然而,人们普遍认为cGMP系统,包括cGMP及其相互作用物cGMP依赖性蛋白激酶(PKG),在视网膜变性过程中起着至关重要的作用。我们之前已经确定了RP背景下cgmp - pkg依赖基因的列表,在本研究中,我们进一步验证了其中一个基因,即丙酮酸激酶2 (PKM2),并研究了PKM2在RP过程中对光感受器健康的潜在作用。借助器官型视网膜外植体培养,我们通过添加TEPP-46 (PKM2激活剂)对两种不同RP小鼠模型(rd2和rd10)的PKM2活性进行药理学处理,发现PKM2的激活可以缓解rd10小鼠模型中光受体死亡的进程。我们还注意到PKM2及其靶标之一葡萄糖转运蛋白-1 (Glut1)的表达随变性状态而改变。这些观察结果为PKM2可能作为RP新的潜在分子靶点提供了支持证据。
{"title":"Pyruvate Kinase 2, an Energy Metabolism Related Enzyme, May Have a Neuroprotective Function in Retinal Degeneration.","authors":"Jiaming Zhou,&nbsp;Per Ekström","doi":"10.1177/17590914231151534","DOIUrl":"https://doi.org/10.1177/17590914231151534","url":null,"abstract":"<p><p>Retinitis pigmentosa (RP) is an inherited disorder that results in vision impairment but general and mutation-independent therapeutic strategies are not available. However, it is widely regarded that the cGMP system, including cGMP and its interactor cGMP-dependent protein kinase (PKG), acts as a crucial effector during retinal degeneration. We have previously identified a list of cGMP-PKG-dependent genes in the context of RP, and in this study, we further validated one of these, namely pyruvate kinase 2 (PKM2), and investigated the potential role of PKM2 for the photoreceptors' well-being during RP. With the aid of organotypic retinal explant cultures, we pharmacologically manipulated the PKM2 activities in two different RP mouse models (<i>rd2</i> and <i>rd10</i>) via the addition of TEPP-46 (a PKM2 activator) and found that activation of PKM2 alleviates the progress of photoreceptor death in the <i>rd10</i> mouse model. We also noted that the expression of both PKM2 and one of its targets, glucose transporter-1 (Glut1), showed alterations depending on the degeneration state. The observations provide supportive evidence that PKM2 may serve as a novel potential molecular target in RP.</p>","PeriodicalId":8616,"journal":{"name":"ASN NEURO","volume":"15 ","pages":"17590914231151534"},"PeriodicalIF":4.7,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9376862","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neuroinflammation: The Abused Concept. 神经炎:滥用的概念。
IF 4.7 4区 医学 Q2 NEUROSCIENCES Pub Date : 2023-01-01 DOI: 10.1177/17590914231197523
Elena Galea, Manuel B Graeber

Scientific progress requires the relentless correction of errors and refinement of hypotheses. Clarity of terminology is essential for clarity of thought and proper experimental interrogation of nature. Therefore, the application of the same scientific term to different and even conflicting phenomena and concepts is not useful and must be corrected. Such abuse of terminology has happened and is still increasing in the case of "neuroinflammation," a term that until the 1990s meant classical inflammation affecting the central nervous system (CNS) and thereon was progressively used to mostly denote microglia activation. The resulting confusion is very wasteful and detrimental not only for scientists but also for patients, given the numerous failed clinical trials in acute and chronic CNS diseases over the last decade with "anti-inflammatory" drugs. Despite this failure, reassessments of the "neuroinflammation" concept are rare, especially considering the number of articles still using the term. This undesirable situation motivates this article. We review the origins and evolution of the term "neuroinflammation," discuss the unique tissue defense and repair strategies in the CNS, define CNS immunity, and emphasize the notion of gliopathies to help readdress, if not bury, the term "neuroinflammation" as it stands in the way of scientific progress.

科学进步需要坚持不懈地纠正错误和完善假设。术语的清晰对于思想的清晰和对自然的适当实验性审问至关重要。因此,将同一科学术语应用于不同甚至相互冲突的现象和概念是没有用的,必须加以纠正。在“神经炎症”的情况下,这种术语的滥用已经发生,并且仍在增加,直到20世纪90年代,这个术语还意味着影响中枢神经系统(CNS)的经典炎症,因此逐渐被用于主要表示小胶质细胞激活。鉴于过去十年中使用“抗炎”药物在急性和慢性中枢神经系统疾病中进行了大量失败的临床试验,由此产生的混乱不仅对科学家,而且对患者都是非常浪费和有害的。尽管失败了,但对“神经炎症”概念的重新评估很少,尤其是考虑到仍在使用该术语的文章数量。这种不可取的情况激发了这篇文章的灵感。我们回顾了“神经炎症”一词的起源和进化,讨论了中枢神经系统中独特的组织防御和修复策略,定义了中枢免疫系统,并强调了胶质瘤病的概念,以帮助重新定义(如果不是埋葬)阻碍科学进步的“神经炎”一词。
{"title":"Neuroinflammation: The Abused Concept.","authors":"Elena Galea, Manuel B Graeber","doi":"10.1177/17590914231197523","DOIUrl":"10.1177/17590914231197523","url":null,"abstract":"<p><p>Scientific progress requires the relentless correction of errors and refinement of hypotheses. Clarity of terminology is essential for clarity of thought and proper experimental interrogation of nature. Therefore, the application of the same scientific term to different and even conflicting phenomena and concepts is not useful and must be corrected. Such abuse of terminology has happened and is still increasing in the case of \"neuroinflammation,\" a term that until the 1990s meant classical inflammation affecting the central nervous system (CNS) and thereon was progressively used to mostly denote microglia activation. The resulting confusion is very wasteful and detrimental not only for scientists but also for patients, given the numerous failed clinical trials in acute and chronic CNS diseases over the last decade with \"anti-inflammatory\" drugs. Despite this failure, reassessments of the \"neuroinflammation\" concept are rare, especially considering the number of articles still using the term. This undesirable situation motivates this article. We review the origins and evolution of the term \"neuroinflammation,\" discuss the unique tissue defense and repair strategies in the CNS, define CNS immunity, and emphasize the notion of gliopathies to help readdress, if not bury, the term \"neuroinflammation\" as it stands in the way of scientific progress.</p>","PeriodicalId":8616,"journal":{"name":"ASN NEURO","volume":"15 ","pages":"17590914231197523"},"PeriodicalIF":4.7,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/9b/cb/10.1177_17590914231197523.PMC10469255.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10509490","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
How Oxidative Stress Induces Depression? 氧化应激如何诱发抑郁?
IF 4.7 4区 医学 Q2 NEUROSCIENCES Pub Date : 2023-01-01 DOI: 10.1177/17590914231181037
Na Ji, Mengzhu Lei, Yating Chen, Shaowen Tian, Chuanyu Li, Bo Zhang

Depression increasingly affects a wide range and a large number of people worldwide, both physically and psychologically, which makes it a social problem requiring prompt attention and management. Accumulating clinical and animal studies have provided us with substantial insights of disease pathogenesis, especially central monoamine deficiency, which considerably promotes antidepressant research and clinical treatment. The first-line antidepressants mainly target the monoamine system, whose drawbacks mainly include slow action and treatment resistant. The novel antidepressant esketamine, targeting on central glutamatergic system, rapidly and robustly alleviates depression (including treatment-resistant depression), whose efficiency is shadowed by potential addictive and psychotomimetic side effects. Thus, exploring novel depression pathogenesis is necessary, for seeking more safe and effective therapeutic methods. Emerging evidence has revealed vital involvement of oxidative stress (OS) in depression, which inspires us to pursue antioxidant pathway for depression prevention and treatment. Fully uncovering the underlying mechanisms of OS-induced depression is the first step towards the avenue, thus we summarize and expound possible downstream pathways of OS, including mitochondrial impairment and related ATP deficiency, neuroinflammation, central glutamate excitotoxicity, brain-derived neurotrophic factor/tyrosine receptor kinase B dysfunction and serotonin deficiency, the microbiota-gut-brain axis disturbance and hypothalamic-pituitary-adrenocortical axis dysregulation. We also elaborate on the intricate interactions between the multiple aspects, and molecular mechanisms mediating the interplay. Through reviewing the related research progress in the field, we hope to depict an integral overview of how OS induces depression, in order to provide fresh ideas and novel targets for the final goal of efficient treatment of the disease.

抑郁症在世界范围内越来越广泛地影响着大量的人,无论是身体上还是心理上,这使它成为一个需要及时关注和管理的社会问题。积累的临床和动物研究为我们提供了关于疾病发病机制的实质性见解,特别是中枢单胺缺乏症,这大大促进了抗抑郁药的研究和临床治疗。一线抗抑郁药物主要针对单胺系统,其缺点主要是作用缓慢和耐药。新型抗抑郁药艾氯胺酮靶向中枢谷氨酸系统,可快速有效地缓解抑郁症(包括难治性抑郁症),但其治疗效果被潜在的成瘾性和拟精神副作用所掩盖。因此,有必要探索新的抑郁症发病机制,寻求更安全有效的治疗方法。越来越多的证据表明,氧化应激(OS)在抑郁症中起着至关重要的作用,这激励我们探索抗氧化途径来预防和治疗抑郁症。因此,我们总结并阐述了OS可能的下游通路,包括线粒体损伤及相关ATP缺乏、神经炎症、中枢谷氨酸兴奋性毒性、脑源性神经营养因子/酪氨酸受体激酶B功能障碍和血清素缺乏、微生物-肠-脑轴紊乱和下丘脑-垂体-肾上腺皮质轴失调。我们还详细阐述了多个方面之间复杂的相互作用,以及介导这种相互作用的分子机制。我们希望通过回顾相关领域的研究进展,对OS诱发抑郁症的机制有一个完整的概述,为最终实现有效治疗抑郁症提供新的思路和新的靶点。
{"title":"How Oxidative Stress Induces Depression?","authors":"Na Ji,&nbsp;Mengzhu Lei,&nbsp;Yating Chen,&nbsp;Shaowen Tian,&nbsp;Chuanyu Li,&nbsp;Bo Zhang","doi":"10.1177/17590914231181037","DOIUrl":"https://doi.org/10.1177/17590914231181037","url":null,"abstract":"<p><p>Depression increasingly affects a wide range and a large number of people worldwide, both physically and psychologically, which makes it a social problem requiring prompt attention and management. Accumulating clinical and animal studies have provided us with substantial insights of disease pathogenesis, especially central monoamine deficiency, which considerably promotes antidepressant research and clinical treatment. The first-line antidepressants mainly target the monoamine system, whose drawbacks mainly include slow action and treatment resistant. The novel antidepressant esketamine, targeting on central glutamatergic system, rapidly and robustly alleviates depression (including treatment-resistant depression), whose efficiency is shadowed by potential addictive and psychotomimetic side effects. Thus, exploring novel depression pathogenesis is necessary, for seeking more safe and effective therapeutic methods. Emerging evidence has revealed vital involvement of oxidative stress (OS) in depression, which inspires us to pursue antioxidant pathway for depression prevention and treatment. Fully uncovering the underlying mechanisms of OS-induced depression is the first step towards the avenue, thus we summarize and expound possible downstream pathways of OS, including mitochondrial impairment and related ATP deficiency, neuroinflammation, central glutamate excitotoxicity, brain-derived neurotrophic factor/tyrosine receptor kinase B dysfunction and serotonin deficiency, the microbiota-gut-brain axis disturbance and hypothalamic-pituitary-adrenocortical axis dysregulation. We also elaborate on the intricate interactions between the multiple aspects, and molecular mechanisms mediating the interplay. Through reviewing the related research progress in the field, we hope to depict an integral overview of how OS induces depression, in order to provide fresh ideas and novel targets for the final goal of efficient treatment of the disease.</p>","PeriodicalId":8616,"journal":{"name":"ASN NEURO","volume":"15 ","pages":"17590914231181037"},"PeriodicalIF":4.7,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/0d/c1/10.1177_17590914231181037.PMC10280786.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10065729","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Astrocyte and Neuronal Panx1 Support Long-Term Reference Memory in Mice. 星形胶质细胞和神经元Panx1支持小鼠长期参考记忆。
IF 4.7 4区 医学 Q2 NEUROSCIENCES Pub Date : 2023-01-01 DOI: 10.1177/17590914231184712
Price Obot, Galadu Subah, Antonia Schonwald, Jian Pan, Libor Velíšek, Jana Velíšková, Patric K Stanton, Eliana Scemes

Pannexin 1 (Panx1) is an ubiquitously expressed protein that forms plasma membrane channels permeable to anions and moderate-sized signaling molecules (e.g., ATP, glutamate). In the nervous system, activation of Panx1 channels has been extensively shown to contribute to distinct neurological disorders (epilepsy, chronic pain, migraine, neuroAIDS, etc.), but knowledge of the extent to which these channels have a physiological role remains restricted to three studies supporting their involvement in hippocampus dependent learning. Given that Panx1 channels may provide an important mechanism for activity-dependent neuron-glia interaction, we used Panx1 transgenic mice with global and cell-type specific deletions of Panx1 to interrogate their participation in working and reference memory. Using the eight-arm radial maze, we show that long-term spatial reference memory, but not spatial working memory, is deficient in Panx1-null mice and that both astrocyte and neuronal Panx1 contribute to the consolidation of long-term spatial memory. Field potential recordings in hippocampal slices of Panx1-null mice revealed an attenuation of both long-term potentiation (LTP) of synaptic strength and long-term depression (LTD) at Schaffer collateral-CA1 synapses without alterations of basal synaptic transmission or pre-synaptic paired-pulse facilitation. Our results implicate both neuronal and astrocyte Panx1 channels as critical players for the development and maintenance of long-term spatial reference memory in mice.

Pannexin 1 (Panx1)是一种普遍表达的蛋白,可形成可渗透阴离子和中等大小信号分子(如ATP,谷氨酸)的质膜通道。在神经系统中,Panx1通道的激活已被广泛证明有助于不同的神经系统疾病(癫痫、慢性疼痛、偏头痛、神经艾滋病等),但关于这些通道在多大程度上具有生理作用的知识仍然局限于支持它们参与海马依赖学习的三项研究。鉴于Panx1通道可能为活动依赖性神经元-胶质细胞相互作用提供了重要的机制,我们使用Panx1转基因小鼠进行Panx1的整体缺失和细胞类型特异性缺失来研究它们在工作记忆和参考记忆中的参与。通过八臂放射状迷宫,我们发现Panx1缺失的小鼠存在长期空间参考记忆缺失,而不是空间工作记忆缺失,星形胶质细胞和神经元Panx1都有助于长期空间记忆的巩固。panx1缺失小鼠海马切片的场电位记录显示,Schaffer侧侧- ca1突触的突触强度长期增强(LTP)和长期抑制(LTD)均有所减弱,但基础突触传递和突触前成对脉冲促进作用未发生改变。我们的研究结果表明,神经元和星形胶质细胞Panx1通道在小鼠长期空间参考记忆的发展和维持中都起着关键作用。
{"title":"Astrocyte and Neuronal Panx1 Support Long-Term Reference Memory in Mice.","authors":"Price Obot,&nbsp;Galadu Subah,&nbsp;Antonia Schonwald,&nbsp;Jian Pan,&nbsp;Libor Velíšek,&nbsp;Jana Velíšková,&nbsp;Patric K Stanton,&nbsp;Eliana Scemes","doi":"10.1177/17590914231184712","DOIUrl":"https://doi.org/10.1177/17590914231184712","url":null,"abstract":"<p><p>Pannexin 1 (Panx1) is an ubiquitously expressed protein that forms plasma membrane channels permeable to anions and moderate-sized signaling molecules (e.g., ATP, glutamate). In the nervous system, activation of Panx1 channels has been extensively shown to contribute to distinct neurological disorders (epilepsy, chronic pain, migraine, neuroAIDS, etc.), but knowledge of the extent to which these channels have a physiological role remains restricted to three studies supporting their involvement in hippocampus dependent learning. Given that Panx1 channels may provide an important mechanism for activity-dependent neuron-glia interaction, we used Panx1 transgenic mice with global and cell-type specific deletions of Panx1 to interrogate their participation in working and reference memory. Using the eight-arm radial maze, we show that long-term spatial reference memory, but not spatial working memory, is deficient in Panx1-null mice and that both astrocyte and neuronal Panx1 contribute to the consolidation of long-term spatial memory. Field potential recordings in hippocampal slices of Panx1-null mice revealed an attenuation of both long-term potentiation (LTP) of synaptic strength and long-term depression (LTD) at Schaffer collateral-CA1 synapses without alterations of basal synaptic transmission or pre-synaptic paired-pulse facilitation. Our results implicate both neuronal and astrocyte Panx1 channels as critical players for the development and maintenance of long-term spatial reference memory in mice.</p>","PeriodicalId":8616,"journal":{"name":"ASN NEURO","volume":"15 ","pages":"17590914231184712"},"PeriodicalIF":4.7,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/1d/58/10.1177_17590914231184712.PMC10326369.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9766071","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Initial Myelination in the Central Nervous System. 中枢神经系统的初始髓鞘形成。
IF 4.7 4区 医学 Q2 NEUROSCIENCES Pub Date : 2023-01-01 DOI: 10.1177/17590914231163039
Qiang Yu, Teng Guan, Ying Guo, Jiming Kong

Myelination contributes not only to the rapid nerve conduction but also to axonal insulation and protection. In the central nervous system (CNS), the initial myelination features a multistep process where oligodendrocyte precursor cells undergo proliferation and migration before differentiating into mature oligodendrocytes. Mature oligodendrocytes then extend processes and wrap around axons to form the multilayered myelin sheath. These steps are tightly regulated by various cellular and molecular mechanisms, such as transcription factors (Olig family, Sox family), growth factors (PDGF, BDNF, FGF-2, IGF), chemokines/cytokines (TGF-β, IL-1β, TNFα, IL-6, IFN-γ), hormones (T3), axonal signals (PSA-NCAM, L1-CAM, LINGO-1, neural activity), and intracellular signaling pathways (Wnt/β-catenin, PI3 K/AKT/mTOR, ERK/MAPK). However, the fundamental mechanisms for initial myelination are yet to be fully elucidated. Identifying pivotal mechanisms for myelination onset, development, and repair will become the focus of future studies. This review focuses on the current understanding of how CNS myelination is initiated and also the regulatory mechanisms underlying the process.

髓鞘形成不仅有助于神经的快速传导,而且还有助于轴突的绝缘和保护。在中枢神经系统(CNS)中,髓鞘形成的初始过程是一个多步骤的过程,其中少突胶质前体细胞经历增殖和迁移,然后分化为成熟的少突胶质细胞。成熟的少突胶质细胞延伸突起并包裹在轴突周围,形成多层髓鞘。这些步骤受到多种细胞和分子机制的严格调控,如转录因子(oligg家族、Sox家族)、生长因子(PDGF、BDNF、FGF-2、IGF)、趋化因子/细胞因子(TGF-β、IL-1β、TNFα、IL-6、IFN-γ)、激素(T3)、轴突信号(PSA-NCAM、L1-CAM、LINGO-1、神经活性)和细胞内信号通路(Wnt/β-catenin、pi3k /AKT/mTOR、ERK/MAPK)。然而,初始髓鞘形成的基本机制尚未完全阐明。确定髓鞘形成的发生、发展和修复的关键机制将成为未来研究的重点。这篇综述的重点是目前对中枢神经系统髓鞘形成是如何开始的以及这一过程的调控机制。
{"title":"The Initial Myelination in the Central Nervous System.","authors":"Qiang Yu,&nbsp;Teng Guan,&nbsp;Ying Guo,&nbsp;Jiming Kong","doi":"10.1177/17590914231163039","DOIUrl":"https://doi.org/10.1177/17590914231163039","url":null,"abstract":"<p><p>Myelination contributes not only to the rapid nerve conduction but also to axonal insulation and protection. In the central nervous system (CNS), the initial myelination features a multistep process where oligodendrocyte precursor cells undergo proliferation and migration before differentiating into mature oligodendrocytes. Mature oligodendrocytes then extend processes and wrap around axons to form the multilayered myelin sheath. These steps are tightly regulated by various cellular and molecular mechanisms, such as transcription factors (Olig family, Sox family), growth factors (PDGF, BDNF, FGF-2, IGF), chemokines/cytokines (TGF-β, IL-1β, TNFα, IL-6, IFN-γ), hormones (T3), axonal signals (PSA-NCAM, L1-CAM, LINGO-1, neural activity), and intracellular signaling pathways (Wnt/β-catenin, PI3 K/AKT/mTOR, ERK/MAPK). However, the fundamental mechanisms for initial myelination are yet to be fully elucidated. Identifying pivotal mechanisms for myelination onset, development, and repair will become the focus of future studies. This review focuses on the current understanding of how CNS myelination is initiated and also the regulatory mechanisms underlying the process.</p>","PeriodicalId":8616,"journal":{"name":"ASN NEURO","volume":"15 ","pages":"17590914231163039"},"PeriodicalIF":4.7,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/c5/0c/10.1177_17590914231163039.PMC10052612.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9884819","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Regulation of the Volume-Regulated Anion Channel Pore-Forming Subunit LRRC8A in the Intrahippocampal Kainic Acid Model of Mesial Temporal Lobe Epilepsy. 体积调节阴离子通道成孔亚基LRRC8A在内侧颞叶癫痫海马内凯尼克酸模型中的调控作用。
IF 4.7 4区 医学 Q2 NEUROSCIENCES Pub Date : 2023-01-01 DOI: 10.1177/17590914231184072
Manolia R Ghouli, Carrie R Jonak, Rajan Sah, Todd A Fiacco, Devin K Binder

Volume-regulated anion channels (VRACs) are a group of ubiquitously expressed outwardly-rectifying anion channels that sense increases in cell volume and act to return cells to baseline volume through an efflux of anions and organic osmolytes, including glutamate. Because cell swelling, increased extracellular glutamate levels, and reduction of the brain extracellular space (ECS) all occur during seizure generation, we set out to determine whether VRACs are dysregulated throughout mesial temporal lobe epilepsy (MTLE), the most common form of adult epilepsy. To accomplish this, we employed the IHKA experimental model of MTLE, and probed for the expression of LRRC8A, the essential pore-forming VRAC subunit, at acute, early-, mid-, and late-epileptogenic time points (1-, 7-, 14-, and 30-days post-IHKA, respectively). Western blot analysis revealed the upregulation of total dorsal hippocampal LRRC8A 14-days post-IHKA in both the ipsilateral and contralateral hippocampus. Immunohistochemical analyses showed an increased LRRC8A signal 7-days post-IHKA in both the ipsilateral and contralateral hippocampus, along with layer-specific changes 1-, 7-, and 30-days post-IHKA bilaterally. LRRC8A upregulation 1 day post-IHKA was observed primarily in astrocytes; however, some upregulation was also observed in neurons. Glutamate-GABA/glutamine cycle enzymes glutamic acid decarboxylase, glutaminase, and glutamine synthetase were also dysregulated at the 7-day timepoint post status epilepticus. The timepoint-dependent upregulation of total hippocampal LRRC8A and the possible subsequent increased efflux of glutamate in the epileptic hippocampus suggest that the dysregulation of astrocytic VRAC may play an important role in the development of epilepsy.

体积调节阴离子通道(vrac)是一组普遍表达的向外矫正阴离子通道,它们感知细胞体积的增加,并通过阴离子和有机渗透物(包括谷氨酸)的外排使细胞恢复到基线体积。由于细胞肿胀、细胞外谷氨酸水平升高和脑细胞外空间(ECS)减少都发生在癫痫发作期间,我们开始确定VRACs是否在成人癫痫最常见的内侧颞叶癫痫(MTLE)中失调。为此,我们采用了MTLE的IHKA实验模型,并在急性、早期、中期和晚期癫痫发病时间点(分别为IHKA后1、7、14和30天)检测了LRRC8A的表达,LRRC8A是必不可少的成孔VRAC亚基。Western blot分析显示,ihka后14天,同侧和对侧海马总背侧LRRC8A水平均上调。免疫组织化学分析显示,ihka后7天,同侧和对侧海马的LRRC8A信号增加,ihka后1、7和30天,双侧海马的分层特异性变化也有所增加。ihka后1天LRRC8A上调主要出现在星形胶质细胞中;然而,在神经元中也观察到一些上调。谷氨酸- gaba /谷氨酰胺循环酶谷氨酸脱羧酶、谷氨酰胺酶和谷氨酰胺合成酶也在癫痫持续状态后7天出现异常。海马总LRRC8A的时间依赖性上调以及随后可能出现的癫痫海马谷氨酸外排增加提示星形胶质细胞VRAC的失调可能在癫痫的发生中起重要作用。
{"title":"Regulation of the Volume-Regulated Anion Channel Pore-Forming Subunit LRRC8A in the Intrahippocampal Kainic Acid Model of Mesial Temporal Lobe Epilepsy.","authors":"Manolia R Ghouli, Carrie R Jonak, Rajan Sah, Todd A Fiacco, Devin K Binder","doi":"10.1177/17590914231184072","DOIUrl":"10.1177/17590914231184072","url":null,"abstract":"<p><p>Volume-regulated anion channels (VRACs) are a group of ubiquitously expressed outwardly-rectifying anion channels that sense increases in cell volume and act to return cells to baseline volume through an efflux of anions and organic osmolytes, including glutamate. Because cell swelling, increased extracellular glutamate levels, and reduction of the brain extracellular space (ECS) all occur during seizure generation, we set out to determine whether VRACs are dysregulated throughout mesial temporal lobe epilepsy (MTLE), the most common form of adult epilepsy. To accomplish this, we employed the IHKA experimental model of MTLE, and probed for the expression of LRRC8A, the essential pore-forming VRAC subunit, at acute, early-, mid-, and late-epileptogenic time points (1-, 7-, 14-, and 30-days post-IHKA, respectively). Western blot analysis revealed the upregulation of total dorsal hippocampal LRRC8A 14-days post-IHKA in both the ipsilateral and contralateral hippocampus. Immunohistochemical analyses showed an increased LRRC8A signal 7-days post-IHKA in both the ipsilateral and contralateral hippocampus, along with layer-specific changes 1-, 7-, and 30-days post-IHKA bilaterally. LRRC8A upregulation 1 day post-IHKA was observed primarily in astrocytes; however, some upregulation was also observed in neurons. Glutamate-GABA/glutamine cycle enzymes glutamic acid decarboxylase, glutaminase, and glutamine synthetase were also dysregulated at the 7-day timepoint post status epilepticus. The timepoint-dependent upregulation of total hippocampal LRRC8A and the possible subsequent increased efflux of glutamate in the epileptic hippocampus suggest that the dysregulation of astrocytic VRAC may play an important role in the development of epilepsy.</p>","PeriodicalId":8616,"journal":{"name":"ASN NEURO","volume":"15 ","pages":"17590914231184072"},"PeriodicalIF":4.7,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/6e/15/10.1177_17590914231184072.PMC10331354.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10181528","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
ASN NEURO
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1