Pub Date : 2025-01-01Epub Date: 2025-10-16DOI: 10.1080/17590914.2025.2564628
M H Kassir, J W Lovelace, D K Binder, I E Ethell, K A Razak
Fragile X Syndrome (FXS) is a leading genetic cause of intellectual disability and autism-like behaviors. Glutamatergic mGluR5 receptors and matrix metalloproteinase-9 (MMP-9) are therapeutic targets to treat FXS, but clinical trials targeting each of these pathways have not been successful. Here, we tested if the electroencephalography (EEG) phenotypes associated with FXS are reversed with a novel combination of treatments affecting the two pathways. Fmr1 knockout (KO) mice were given 10 days of CTEP (mGluR5 antagonist) alone or in combination with minocycline (MMP-9 inhibitor). EEG was recorded during resting (no acoustic stimulation) and during sound presentations (to produce sound-evoked EEG) at 1 day and 10 days after the beginning of treatment administration to test acute effects and potential tachyphylaxis. In pre-treatment WT and KO mice comparisons, we replicated previously published Fmr1 KO mouse EEG phenotypes including elevated power in the resting gamma band, elevated single trial power, and reduced phase-locking to spectrotemporally dynamic auditory stimuli. We found that CTEP treatment alone did not show any benefit compared to vehicle in Fmr1 KO mice after either 1 or 10 days of treatment. CTEP + minocycline reduced resting gamma band power in the Fmr1 KO mice to a greater extent than vehicle at both treatment time points. There were no effects on sound-evoked responses. These data suggest that combined CTEP and minocycline treatment alters resting EEG measures while each treatment administered separately does not yield similar changes. High power in broadband gamma frequency correlates with irritability, stereotyped behaviors, and hyperactivity in FXS patients, suggesting a combination of drugs that reduce mGluR5 and MMP-9 activity may be beneficial in FXS.
{"title":"Combined Treatment with Minocycline and an mGluR5 Antagonist Alters Resting EEG Spectral Power, but Not Sound-Evoked Responses, in a Mouse Model of Fragile X Syndrome.","authors":"M H Kassir, J W Lovelace, D K Binder, I E Ethell, K A Razak","doi":"10.1080/17590914.2025.2564628","DOIUrl":"10.1080/17590914.2025.2564628","url":null,"abstract":"<p><p>Fragile X Syndrome (FXS) is a leading genetic cause of intellectual disability and autism-like behaviors. Glutamatergic mGluR5 receptors and matrix metalloproteinase-9 (MMP-9) are therapeutic targets to treat FXS, but clinical trials targeting each of these pathways have not been successful. Here, we tested if the electroencephalography (EEG) phenotypes associated with FXS are reversed with a novel combination of treatments affecting the two pathways. <i>Fmr1</i> knockout (KO) mice were given 10 days of CTEP (mGluR5 antagonist) alone or in combination with minocycline (MMP-9 inhibitor). EEG was recorded during resting (no acoustic stimulation) and during sound presentations (to produce sound-evoked EEG) at 1 day and 10 days after the beginning of treatment administration to test acute effects and potential tachyphylaxis. In pre-treatment WT and KO mice comparisons, we replicated previously published <i>Fmr1</i> KO mouse EEG phenotypes including elevated power in the resting gamma band, elevated single trial power, and reduced phase-locking to spectrotemporally dynamic auditory stimuli. We found that CTEP treatment alone did not show any benefit compared to vehicle in <i>Fmr1</i> KO mice after either 1 or 10 days of treatment. CTEP + minocycline reduced resting gamma band power in the <i>Fmr1</i> KO mice to a greater extent than vehicle at both treatment time points. There were no effects on sound-evoked responses. These data suggest that combined CTEP and minocycline treatment alters resting EEG measures while each treatment administered separately does not yield similar changes. High power in broadband gamma frequency correlates with irritability, stereotyped behaviors, and hyperactivity in FXS patients, suggesting a combination of drugs that reduce mGluR5 and MMP-9 activity may be beneficial in FXS.</p>","PeriodicalId":8616,"journal":{"name":"ASN NEURO","volume":"17 1","pages":"2564628"},"PeriodicalIF":3.7,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12533955/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145298505","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2025-07-21DOI: 10.1080/17590914.2025.2535963
Zachary McDonald, Ankit Tandon, Travis T Denton, Mehek Taneja, Jacqueline Rocha, Jeffrey L Dupree, Pablo M Paez, Veronica T Cheli, Swathi G Tumuluri, Douglas L Feinstein
Previous studies have shown that lanthionine ketimine ethyl ester (LKE) reduces clinical scores in the experimental autoimmune encephalomyelitis (EAE) mouse model of Multiple Sclerosis, induces differentiation of oligodendrocyte progenitor cells (OPCs) in vitro, and accelerates remyelination following cuprizone induced demyelination. In a search for derivatives with greater efficacy to induce OPC maturation or proliferation, we screened a panel of 2-alkyl and 3-phosphonate substituted LK derivatives. Incubation of Oli-neu oligodendrocyte cells with 2-n-butyl- or 2-n-hexyl-LKE-phosphonate reduced spontaneous cell death, increased proliferation, and increased maturation. These were associated with changes in corresponding mRNA levels of Olig2, PLP, and O4. These derivatives also reduced cell death and increased proliferation and maturation in primary mouse OPCs. The increased hydrophobicity of these derivatives suggests these will be better candidates for testing effects in animal models of Multiple Sclerosis and other demyelinating diseases.
{"title":"Identifying Lanthionine Ketimine Derivatives for Maturation and Proliferative Effects in Oligodendrocyte Progenitor Cells.","authors":"Zachary McDonald, Ankit Tandon, Travis T Denton, Mehek Taneja, Jacqueline Rocha, Jeffrey L Dupree, Pablo M Paez, Veronica T Cheli, Swathi G Tumuluri, Douglas L Feinstein","doi":"10.1080/17590914.2025.2535963","DOIUrl":"10.1080/17590914.2025.2535963","url":null,"abstract":"<p><p>Previous studies have shown that lanthionine ketimine ethyl ester (LKE) reduces clinical scores in the experimental autoimmune encephalomyelitis (EAE) mouse model of Multiple Sclerosis, induces differentiation of oligodendrocyte progenitor cells (OPCs) in vitro, and accelerates remyelination following cuprizone induced demyelination. In a search for derivatives with greater efficacy to induce OPC maturation or proliferation, we screened a panel of 2-alkyl and 3-phosphonate substituted LK derivatives. Incubation of Oli-neu oligodendrocyte cells with 2-<i>n</i>-butyl- or 2-<i>n</i>-hexyl-LKE-phosphonate reduced spontaneous cell death, increased proliferation, and increased maturation. These were associated with changes in corresponding mRNA levels of Olig2, PLP, and O4. These derivatives also reduced cell death and increased proliferation and maturation in primary mouse OPCs. The increased hydrophobicity of these derivatives suggests these will be better candidates for testing effects in animal models of Multiple Sclerosis and other demyelinating diseases.</p>","PeriodicalId":8616,"journal":{"name":"ASN NEURO","volume":"17 1","pages":"2535963"},"PeriodicalIF":3.7,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12296138/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144681923","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2025-10-18DOI: 10.1080/17590914.2025.2573965
Suzanne M de la Monte, Greg Sutherland
Long-term effects of alcohol-related brain damage (ARBD) include neurocognitive and neurobehavioral dysfunctions with neurodegeneration. White matter (WM) is notably targeted across the lifespan yet relatively little is known about the stages, mechanisms, and consequences of myelin and axonal loss. In alcohol-related liver disease, early pathology is reversible, but with chronic heavy alcohol exposures, disease progresses with degeneration, and ultimately organ failure. Similarly, WM ARBD also develops in two broad stages. The early stages of WM ARBD are likely mediated by vascular dysfunction with tissue swelling, oligodendrocyte dysfunction, myelin loss, neuroinflammation, and oxidative stress. The chronic progressive stage is linked to metabolic dysfunction related to impairments in insulin and insulin-like growth factor signaling through Akt-mechanistic target of rapamycin (mTOR) pathways that mediate oligodendrocyte survival and function, myelin homeostasis, and blood-brain-barrier (BBB) integrity. We hypothesize that early-stage WM ARBD may be largely reversible by abstinence and anti-oxidant/anti-inflammatory measures, whereas late-stage ARBD requires strategies to restore WM/oligodendrocyte metabolic function via insulin sensitizer, antioxidant, anti-inflammatory, and myelin homeostasis/normalization support. Multi-pronged, overlapping but distinct therapeutic strategies are needed to reduce the impact and long-term health consequences of chronic progressive WM ARBD.
{"title":"Dual Stages of Alcohol-Related Cerebral White Matter Degeneration Reviewed: Early-Stage Stress/Neuroinflammation Versus Late-Stage Impaired Insulin/IGF Signaling Through Akt-mTOR-Review.","authors":"Suzanne M de la Monte, Greg Sutherland","doi":"10.1080/17590914.2025.2573965","DOIUrl":"10.1080/17590914.2025.2573965","url":null,"abstract":"<p><p>Long-term effects of alcohol-related brain damage (ARBD) include neurocognitive and neurobehavioral dysfunctions with neurodegeneration. White matter (WM) is notably targeted across the lifespan yet relatively little is known about the stages, mechanisms, and consequences of myelin and axonal loss. In alcohol-related liver disease, early pathology is reversible, but with chronic heavy alcohol exposures, disease progresses with degeneration, and ultimately organ failure. Similarly, WM ARBD also develops in two broad stages. The early stages of WM ARBD are likely mediated by vascular dysfunction with tissue swelling, oligodendrocyte dysfunction, myelin loss, neuroinflammation, and oxidative stress. The chronic progressive stage is linked to metabolic dysfunction related to impairments in insulin and insulin-like growth factor signaling through Akt-mechanistic target of rapamycin (mTOR) pathways that mediate oligodendrocyte survival and function, myelin homeostasis, and blood-brain-barrier (BBB) integrity. We hypothesize that early-stage WM ARBD may be largely reversible by abstinence and anti-oxidant/anti-inflammatory measures, whereas late-stage ARBD requires strategies to restore WM/oligodendrocyte metabolic function via insulin sensitizer, antioxidant, anti-inflammatory, and myelin homeostasis/normalization support. Multi-pronged, overlapping but distinct therapeutic strategies are needed to reduce the impact and long-term health consequences of chronic progressive WM ARBD.</p>","PeriodicalId":8616,"journal":{"name":"ASN NEURO","volume":"17 1","pages":"2573965"},"PeriodicalIF":3.7,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12536632/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145312052","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2025-06-16DOI: 10.1080/17590914.2025.2513881
Johyeon Nam, Hongseong Shin, Chaeyeon You, Eunha Baeg, Jae Geun Kim, Sunggu Yang, Mi-Ryung Han
Parkinson's disease is the second most prevalent neurodegenerative disorder and is characterized by the degeneration of dopaminergic neurons. Significant improvements in gait balance, particularly in step length and velocity, were observed with less invasive wireless cortical stimulation. Transcriptome sequencing was performed to demonstrate the cellular mechanism, specifically targeting the primary motor cortex, where stimulation was applied. Our findings indicated that 38 differentially expressed genes (DEGs), initially downregulated following Parkinson's disease induction, were subsequently restored to normal levels after cortical stimulation. These 38 DEGs are potential targets for the treatment of motor disorders in Parkinson's disease. These genes are implicated in crucial processes, such as astrocyte-mediated blood vessel development and microglia-mediated phagocytosis of damaged motor neurons, suggesting their significant roles in improving behavioral disorders. Moreover, these biomarkers not only facilitate the rapid and accurate diagnosis of Parkinson's disease but also assist in precision medicine approaches.
{"title":"Cortical Stimulation-Based Transcriptome Shifts on Parkinson's Disease Animal Model.","authors":"Johyeon Nam, Hongseong Shin, Chaeyeon You, Eunha Baeg, Jae Geun Kim, Sunggu Yang, Mi-Ryung Han","doi":"10.1080/17590914.2025.2513881","DOIUrl":"10.1080/17590914.2025.2513881","url":null,"abstract":"<p><p>Parkinson's disease is the second most prevalent neurodegenerative disorder and is characterized by the degeneration of dopaminergic neurons. Significant improvements in gait balance, particularly in step length and velocity, were observed with less invasive wireless cortical stimulation. Transcriptome sequencing was performed to demonstrate the cellular mechanism, specifically targeting the primary motor cortex, where stimulation was applied. Our findings indicated that 38 differentially expressed genes (DEGs), initially downregulated following Parkinson's disease induction, were subsequently restored to normal levels after cortical stimulation. These 38 DEGs are potential targets for the treatment of motor disorders in Parkinson's disease. These genes are implicated in crucial processes, such as astrocyte-mediated blood vessel development and microglia-mediated phagocytosis of damaged motor neurons, suggesting their significant roles in improving behavioral disorders. Moreover, these biomarkers not only facilitate the rapid and accurate diagnosis of Parkinson's disease but also assist in precision medicine approaches.</p>","PeriodicalId":8616,"journal":{"name":"ASN NEURO","volume":"17 1","pages":"2513881"},"PeriodicalIF":3.7,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12184173/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144309489","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2025-12-06DOI: 10.1080/17590914.2025.2598310
Somayeh Dadras, Kiran Bhaskar
Brain inflammation is strongly associated with neurodegeneration in Alzheimer's disease (AD) and related tauopathies. We have previously demonstrated that microglia-derived interleukin-1β (IL-1β) induces tau hyperphosphorylation in a cell-autonomous manner and depends on activating the IL-1 receptor (IL-1R1) signaling pathway. IL-1 receptor accessory protein (IL-1RAcP) is a co-receptor for IL-1R1 and is essential for the IL-1R1 receptor function and downstream signaling. Genome-wide association studies have identified several single-nucleotide polymorphisms (SNPs) in the IL1RAP gene that have been shown to increase AD risk. Here, we demonstrate that global and neuron-specific isoform deficiency of IL-1RAcP regulates hyperphosphorylated tau levels in a lipopolysaccharide (LPS)-induced mouse model of systemic inflammation. Notably, while global Il1rap-/- reduced pS202(AT8) and pT231 (AT180) tau levels, neuron-specific IL-1RAcP (IL-1RAcPb) deficiency specifically increased total tau levels. Together, these results suggest that IL-1RAcP is an important regulator of tau hyperphosphorylation relevant to AD and related tauopathies.
{"title":"Global Deficiency of Alzheimer's Disease Risk Gene <i>Il1rap</i> Reduces Pathological Tau in a Mouse Model of Systemic Inflammation.","authors":"Somayeh Dadras, Kiran Bhaskar","doi":"10.1080/17590914.2025.2598310","DOIUrl":"10.1080/17590914.2025.2598310","url":null,"abstract":"<p><p>Brain inflammation is strongly associated with neurodegeneration in Alzheimer's disease (AD) and related tauopathies. We have previously demonstrated that microglia-derived interleukin-1β (IL-1β) induces tau hyperphosphorylation in a cell-autonomous manner and depends on activating the IL-1 receptor (IL-1R1) signaling pathway. IL-1 receptor accessory protein (IL-1RAcP) is a co-receptor for IL-1R1 and is essential for the IL-1R1 receptor function and downstream signaling. Genome-wide association studies have identified several single-nucleotide polymorphisms (SNPs) in the <i>IL1RAP</i> gene that have been shown to increase AD risk. Here, we demonstrate that global and neuron-specific isoform deficiency of IL-1RAcP regulates hyperphosphorylated tau levels in a lipopolysaccharide (LPS)-induced mouse model of systemic inflammation. Notably, while global <i>Il1rap<sup>-/-</sup></i> reduced pS202(AT8) and pT231 (AT180) tau levels, neuron-specific IL-1RAcP (IL-1RAcPb) deficiency specifically increased total tau levels. Together, these results suggest that IL-1RAcP is an important regulator of tau hyperphosphorylation relevant to AD and related tauopathies.</p>","PeriodicalId":8616,"journal":{"name":"ASN NEURO","volume":"17 1","pages":"2598310"},"PeriodicalIF":3.7,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12688222/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145695993","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2025-04-10DOI: 10.1080/17590914.2025.2488935
Shokofeh Rahimpour, Ethan Meadows, John M Hollander, Kate Karelina, Candice M Brown
Maintaining optimal brain metabolism supports neuronal function, synaptic communication, and cognitive processes. During ischemic stroke, brain metabolism and cellular bioenergetics within the neurovascular unit are disrupted, emphasizing the significance of understanding the physiology and pathology of the stroke brain. The objective of this study was to quantify and compare phase-dependent changes in glycolysis and oxidative phosphorylation following ischemic stroke by using the Seahorse XFe24 Analyzer. Since there are limited established methods to quantify glycolytic activity in brain tissue, we optimized the accuracy and reproducibility of extracellular acidification rate (ECAR) measurement by increasing the incubation time following exposure to each reagent. Following optimization, we quantified both ECAR and the oxygen consumption rate (OCR), a measure of oxidative phosphorylation, in cortical brain tissue punches corresponding to the penumbra from mice subjected to ischemic stroke. ECAR and OCR were quantified in tissue punches from the injured (ipsilateral) and the non-injured (contralateral) hemispheres at 48 hours, 7 days, and 14 days post-stroke. Normalized ECAR measurements showed elevated glycolytic activity in the ipsilateral and contralateral hemispheres at 7 days post-stroke compared to other time points. In contrast, normalized OCR measurements showed a modest increase in basal respiration within the ipsilateral hemispheres between 48 hours and 14 days post-stroke. In summary, the results demonstrate that ischemic stroke results in a distinct phase-dependent metabolic phenotype in both cortical hemispheres that persists up to 14 days after injury.
{"title":"Assessment of Phase-Dependent Alterations in Cortical Glycolytic and Mitochondrial Metabolism Following Ischemic Stroke.","authors":"Shokofeh Rahimpour, Ethan Meadows, John M Hollander, Kate Karelina, Candice M Brown","doi":"10.1080/17590914.2025.2488935","DOIUrl":"10.1080/17590914.2025.2488935","url":null,"abstract":"<p><p>Maintaining optimal brain metabolism supports neuronal function, synaptic communication, and cognitive processes. During ischemic stroke, brain metabolism and cellular bioenergetics within the neurovascular unit are disrupted, emphasizing the significance of understanding the physiology and pathology of the stroke brain. The objective of this study was to quantify and compare phase-dependent changes in glycolysis and oxidative phosphorylation following ischemic stroke by using the Seahorse XFe24 Analyzer. Since there are limited established methods to quantify glycolytic activity in brain tissue, we optimized the accuracy and reproducibility of extracellular acidification rate (ECAR) measurement by increasing the incubation time following exposure to each reagent. Following optimization, we quantified both ECAR and the oxygen consumption rate (OCR), a measure of oxidative phosphorylation, in cortical brain tissue punches corresponding to the penumbra from mice subjected to ischemic stroke. ECAR and OCR were quantified in tissue punches from the injured (ipsilateral) and the non-injured (contralateral) hemispheres at 48 hours, 7 days, and 14 days post-stroke. Normalized ECAR measurements showed elevated glycolytic activity in the ipsilateral and contralateral hemispheres at 7 days post-stroke compared to other time points. In contrast, normalized OCR measurements showed a modest increase in basal respiration within the ipsilateral hemispheres between 48 hours and 14 days post-stroke. In summary, the results demonstrate that ischemic stroke results in a distinct phase-dependent metabolic phenotype in both cortical hemispheres that persists up to 14 days after injury.</p>","PeriodicalId":8616,"journal":{"name":"ASN NEURO","volume":"17 1","pages":"2488935"},"PeriodicalIF":3.7,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12140487/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143975226","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2025-08-07DOI: 10.1080/17590914.2025.2542998
Louise Thiry, Nisha S Pulimood, Ye Man Tang, Stefano Stifani
Hexanucleotide repeat expansion (HRE) in the non-coding region of the gene C9orf72 is the most prevalent mutation in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The C9orf72 HRE contributes to neuron degeneration in ALS/FTD through both cell-autonomous mechanisms and non-cell autonomous disease processes involving glial cells such as microglia. The molecular mechanisms underlying the contribution of C9orf72-HRE microglia to neuron death in ALS/FTD remain to be fully elucidated. In this study, we generated microglia from human C9orf72-HRE and isogenic iPSCs using three different microglia derivation methods. RNA sequencing analysis reveals a cell-autonomous dysregulation of extracellular matrix (ECM) genes and genes involved in pathways underlying inflammasome activation in C9orf72-HRE microglia. In agreement with elevated expression of inflammasome components, conditioned media from C9orf72-HRE microglia enhance the death of C9orf72-HRE motor neurons implicating microglia-secreted molecules in non-cell autonomous mechanisms of C9orf72 HRE pathology. These findings suggest that aberrant activation of inflammasome-mediated mechanisms in C9orf72-HRE microglia results in a pro-inflammatory phenotype that contributes to non-cell autonomous mechanisms of motor neuron degeneration in ALS/FTD.
{"title":"Dysregulated Expression of Inflammasome and Extracellular Matrix Genes in <i>C9orf72</i>-ALS/FTD Microglia.","authors":"Louise Thiry, Nisha S Pulimood, Ye Man Tang, Stefano Stifani","doi":"10.1080/17590914.2025.2542998","DOIUrl":"10.1080/17590914.2025.2542998","url":null,"abstract":"<p><p>Hexanucleotide repeat expansion (HRE) in the non-coding region of the gene <i>C9orf72</i> is the most prevalent mutation in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The <i>C9orf72</i> HRE contributes to neuron degeneration in ALS/FTD through both cell-autonomous mechanisms and non-cell autonomous disease processes involving glial cells such as microglia. The molecular mechanisms underlying the contribution of <i>C9orf72</i>-HRE microglia to neuron death in ALS/FTD remain to be fully elucidated. In this study, we generated microglia from human <i>C9orf72</i>-HRE and isogenic iPSCs using three different microglia derivation methods. RNA sequencing analysis reveals a cell-autonomous dysregulation of extracellular matrix (ECM) genes and genes involved in pathways underlying inflammasome activation in <i>C9orf72</i>-HRE microglia. In agreement with elevated expression of inflammasome components, conditioned media from <i>C9orf72</i>-HRE microglia enhance the death of <i>C9orf72</i>-HRE motor neurons implicating microglia-secreted molecules in non-cell autonomous mechanisms of <i>C9orf72</i> HRE pathology. These findings suggest that aberrant activation of inflammasome-mediated mechanisms in <i>C9orf72</i>-HRE microglia results in a pro-inflammatory phenotype that contributes to non-cell autonomous mechanisms of motor neuron degeneration in ALS/FTD.</p>","PeriodicalId":8616,"journal":{"name":"ASN NEURO","volume":"17 1","pages":"2542998"},"PeriodicalIF":3.7,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12499538/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144798044","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Neurological diseases present a wide range of conditions, intricate diagnosis and treatment processes, and complex prognostic considerations. Therefore, research focusing on the diagnosis and treatment of these diseases is crucial. Exosomal miRNAs are small RNA molecules enclosed in membrane vesicles, released by cells and known to play roles in the development of various neurological disorders. They also serve as specific biomarkers for these conditions. Drawing on extensive research on exosomal miRNAs in diseases like stroke, Alzheimer's, epilepsy, Parkinson's, and neuroregeneration, this paper provides a comprehensive review of the relationship between exosomal miRNAs and neurological diseases. We strive to offer current and detailed theoretical understandings to help with the diagnosis and treatment of these disorders.
{"title":"Advances in Research on Exosomal miRNAs in Central Nervous System Diseases.","authors":"Guangli Feng, Xiaoqian Lan, Shiyi Qin, Yuting Shi, Qinxi Zhao, Qing Li, Lianmei Zhong","doi":"10.1080/17590914.2025.2465546","DOIUrl":"10.1080/17590914.2025.2465546","url":null,"abstract":"<p><p>Neurological diseases present a wide range of conditions, intricate diagnosis and treatment processes, and complex prognostic considerations. Therefore, research focusing on the diagnosis and treatment of these diseases is crucial. Exosomal miRNAs are small RNA molecules enclosed in membrane vesicles, released by cells and known to play roles in the development of various neurological disorders. They also serve as specific biomarkers for these conditions. Drawing on extensive research on exosomal miRNAs in diseases like stroke, Alzheimer's, epilepsy, Parkinson's, and neuroregeneration, this paper provides a comprehensive review of the relationship between exosomal miRNAs and neurological diseases. We strive to offer current and detailed theoretical understandings to help with the diagnosis and treatment of these disorders.</p>","PeriodicalId":8616,"journal":{"name":"ASN NEURO","volume":"17 1","pages":"2465546"},"PeriodicalIF":3.7,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12140465/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143750503","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2025-01-16DOI: 10.1080/17590914.2024.2440299
Justin R Siebert, Kiersten Kennedy, Donna J Osterhout
Functional recovery following spinal cord injury will require the regeneration and repair of damaged neuronal pathways. It is well known that the tissue response to injury involves inflammation and the formation of a glial scar at the lesion site, which significantly impairs the capacity for neuronal regeneration and functional recovery. There are initial attempts by both supraspinal and intraspinal neurons to regenerate damaged axons, often influenced by the neighboring tissue pathology. Many experimental therapeutic strategies are targeted to further stimulate the initial axonal regrowth, with little consideration for the diversity of the affected neuronal populations. Notably, recent studies reveal that the neuronal response to injury is variable, based on multiple factors, including the location of the injury with respect to the neuronal cell bodies and the affected neuronal populations. New insights into regenerative mechanisms have shown that neurons are not homogenous but instead exhibit a wide array of diversity in their gene expression, physiology, and intrinsic responses to injury. Understanding this diverse intrinsic response is crucial, as complete functional recovery requires the successful coordinated regeneration and reorganization of various neuron pathways.
{"title":"Neurons Are Not All the Same: Diversity in Neuronal Populations and Their Intrinsic Responses to Spinal Cord Injury.","authors":"Justin R Siebert, Kiersten Kennedy, Donna J Osterhout","doi":"10.1080/17590914.2024.2440299","DOIUrl":"10.1080/17590914.2024.2440299","url":null,"abstract":"<p><p>Functional recovery following spinal cord injury will require the regeneration and repair of damaged neuronal pathways. It is well known that the tissue response to injury involves inflammation and the formation of a glial scar at the lesion site, which significantly impairs the capacity for neuronal regeneration and functional recovery. There are initial attempts by both supraspinal and intraspinal neurons to regenerate damaged axons, often influenced by the neighboring tissue pathology. Many experimental therapeutic strategies are targeted to further stimulate the initial axonal regrowth, with little consideration for the diversity of the affected neuronal populations. Notably, recent studies reveal that the neuronal response to injury is variable, based on multiple factors, including the location of the injury with respect to the neuronal cell bodies and the affected neuronal populations. New insights into regenerative mechanisms have shown that neurons are not homogenous but instead exhibit a wide array of diversity in their gene expression, physiology, and intrinsic responses to injury. Understanding this diverse intrinsic response is crucial, as complete functional recovery requires the successful coordinated regeneration and reorganization of various neuron pathways.</p>","PeriodicalId":8616,"journal":{"name":"ASN NEURO","volume":"17 1","pages":"2440299"},"PeriodicalIF":3.7,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11877619/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142998934","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2025-01-14DOI: 10.1080/17590914.2024.2443442
Linfang Wang, Shuanglong Yi, Shiping Zhang, Yu-Ting Tsai, Yi-Hsuan Cheng, Yu-Tung Lin, Chia-Ching Lin, Yi-Hua Lee, Honglei Wang, Margaret S Ho
We previously identified a role for dAuxilin (dAux), the fly homolog of Cyclin G-associated kinase, in glial autophagy contributing to Parkinson's disease (PD). To further dissect the mechanism, we present evidence here that lack of glial dAux enhanced the phosphorylation of the autophagy-related protein Atg9 at two newly identified threonine residues, T62 and T69. The enhanced Atg9 phosphorylation in the absence of dAux promotes autophagosome formation and Atg9 trafficking to the autophagosomes in glia. Whereas the expression of the non-phosphorylatable Atg9 variants suppresses the lack of dAux-induced increase in both autophagosome formation and Atg9 trafficking to autophagosome, the expression of the phosphomimetic Atg9 variants restores the lack of Atg1-induced decrease in both events. In relation to pathophysiology, Atg9 phosphorylation at T62 and T69 contributes to dopaminergic neurodegeneration and locomotor dysfunction in a Drosophila PD model. Notably, increased expression of the master autophagy regulator Atg1 promotes dAux-Atg9 interaction. Thus, we have identified a dAux-Atg1-Atg9 axis relaying signals through the Atg9 phosphorylation at T62 and T69; these findings further elaborate the mechanism of dAux regulating glial autophagy and highlight the significance of protein degradation pathway in glia contributing to PD.
{"title":"New Atg9 Phosphorylation Sites Regulate Autophagic Trafficking in Glia.","authors":"Linfang Wang, Shuanglong Yi, Shiping Zhang, Yu-Ting Tsai, Yi-Hsuan Cheng, Yu-Tung Lin, Chia-Ching Lin, Yi-Hua Lee, Honglei Wang, Margaret S Ho","doi":"10.1080/17590914.2024.2443442","DOIUrl":"10.1080/17590914.2024.2443442","url":null,"abstract":"<p><p>We previously identified a role for dAuxilin (dAux), the fly homolog of Cyclin G-associated kinase, in glial autophagy contributing to Parkinson's disease (PD). To further dissect the mechanism, we present evidence here that lack of glial dAux enhanced the phosphorylation of the autophagy-related protein Atg9 at two newly identified threonine residues, T62 and T69. The enhanced Atg9 phosphorylation in the absence of dAux promotes autophagosome formation and Atg9 trafficking to the autophagosomes in glia. Whereas the expression of the non-phosphorylatable Atg9 variants suppresses the lack of dAux-induced increase in both autophagosome formation and Atg9 trafficking to autophagosome, the expression of the phosphomimetic Atg9 variants restores the lack of Atg1-induced decrease in both events. In relation to pathophysiology, Atg9 phosphorylation at T62 and T69 contributes to dopaminergic neurodegeneration and locomotor dysfunction in a <i>Drosophila</i> PD model. Notably, increased expression of the master autophagy regulator Atg1 promotes dAux-Atg9 interaction. Thus, we have identified a dAux-Atg1-Atg9 axis relaying signals through the Atg9 phosphorylation at T62 and T69; these findings further elaborate the mechanism of dAux regulating glial autophagy and highlight the significance of protein degradation pathway in glia contributing to PD.</p>","PeriodicalId":8616,"journal":{"name":"ASN NEURO","volume":"17 1","pages":"2443442"},"PeriodicalIF":3.7,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11877618/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143055768","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}