首页 > 最新文献

Behavioral and Brain Sciences最新文献

英文 中文
Meta-learned models beyond and beneath the cognitive. 认知之外和认知之下的元学习模型。
IF 16.6 1区 心理学 Q1 BEHAVIORAL SCIENCES Pub Date : 2024-09-23 DOI: 10.1017/S0140525X24000141
Mihnea Moldoveanu

I propose that meta-learned models, and in particular the situation-aware deployment of "learning-to-infer" modules can be advantageously extended to domains commonly thought to lie outside the cognitive, such as motivations and preferences on one hand, and the effectuation of micro- and coping-type behaviors.

我提出,元学习模型,特别是 "学习--推断 "模块的情境感知部署,可以很好地扩展到通常被认为不属于认知的领域,如动机和偏好,以及微观和应对型行为的效果。
{"title":"Meta-learned models beyond and beneath the cognitive.","authors":"Mihnea Moldoveanu","doi":"10.1017/S0140525X24000141","DOIUrl":"https://doi.org/10.1017/S0140525X24000141","url":null,"abstract":"<p><p>I propose that meta-learned models, and in particular the situation-aware deployment of \"learning-to-infer\" modules can be advantageously extended to domains commonly thought to lie outside the cognitive, such as motivations and preferences on one hand, and the effectuation of micro- and coping-type behaviors.</p>","PeriodicalId":8698,"journal":{"name":"Behavioral and Brain Sciences","volume":"47 ","pages":"e156"},"PeriodicalIF":16.6,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142279925","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Meta-learning in active inference. 主动推理中的元学习
IF 16.6 1区 心理学 Q1 BEHAVIORAL SCIENCES Pub Date : 2024-09-23 DOI: 10.1017/S0140525X24000074
O Penacchio, A Clemente

Binz et al. propose meta-learning as a promising avenue for modelling human cognition. They provide an in-depth reflection on the advantages of meta-learning over other computational models of cognition, including a sound discussion on how their proposal can accommodate neuroscientific insights. We argue that active inference presents similar computational advantages while offering greater mechanistic explanatory power and biological plausibility.

Binz等人提出元学习(meta-learning)是建立人类认知模型的一条大有可为的途径。他们深入反思了元学习相对于其他认知计算模型的优势,包括对他们的建议如何适应神经科学洞察力的合理讨论。我们认为,主动推理具有类似的计算优势,同时具有更强的机理解释能力和生物学合理性。
{"title":"Meta-learning in active inference.","authors":"O Penacchio, A Clemente","doi":"10.1017/S0140525X24000074","DOIUrl":"https://doi.org/10.1017/S0140525X24000074","url":null,"abstract":"<p><p>Binz et al. propose meta-learning as a promising avenue for modelling human cognition. They provide an in-depth reflection on the advantages of meta-learning over other computational models of cognition, including a sound discussion on how their proposal can accommodate neuroscientific insights. We argue that active inference presents similar computational advantages while offering greater mechanistic explanatory power and biological plausibility.</p>","PeriodicalId":8698,"journal":{"name":"Behavioral and Brain Sciences","volume":"47 ","pages":"e159"},"PeriodicalIF":16.6,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142279929","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantum Markov blankets for meta-learned classical inferential paradoxes with suboptimal free energy. 针对具有次优自由能的元学习经典推理悖论的量子马尔可夫空白。
IF 16.6 1区 心理学 Q1 BEHAVIORAL SCIENCES Pub Date : 2024-09-23 DOI: 10.1017/S0140525X24000244
Kevin B Clark

Quantum active Bayesian inference and quantum Markov blankets enable robust modeling and simulation of difficult-to-render natural agent-based classical inferential paradoxes interfaced with task-specific environments. Within a non-realist cognitive completeness regime, quantum Markov blankets ensure meta-learned irrational decision making is fitted to explainable manifolds at optimal free energy, where acceptable incompatible observations or temporal Bell-inequality violations represent important verifiable real-world outcomes.

量子主动贝叶斯推理和量子马尔可夫毯能够对难以渲染的基于自然代理的经典推理悖论进行稳健建模和模拟,并与特定任务环境相结合。在非现实主义认知完备性体系中,量子马尔可夫毯确保元学习的非理性决策以最佳自由能适合于可解释流形,其中可接受的不相容观测或时间性贝尔-线性违反代表了重要的可验证现实世界结果。
{"title":"Quantum Markov blankets for meta-learned classical inferential paradoxes with suboptimal free energy.","authors":"Kevin B Clark","doi":"10.1017/S0140525X24000244","DOIUrl":"https://doi.org/10.1017/S0140525X24000244","url":null,"abstract":"<p><p>Quantum active Bayesian inference and quantum Markov blankets enable robust modeling and simulation of difficult-to-render natural agent-based classical inferential paradoxes interfaced with task-specific environments. Within a non-realist cognitive completeness regime, quantum Markov blankets ensure meta-learned irrational decision making is fitted to explainable manifolds at optimal free energy, where acceptable incompatible observations or temporal Bell-inequality violations represent important verifiable real-world outcomes.</p>","PeriodicalId":8698,"journal":{"name":"Behavioral and Brain Sciences","volume":"47 ","pages":"e150"},"PeriodicalIF":16.6,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142279934","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Meta-learning goes hand-in-hand with metacognition. 元学习与元认知相辅相成。
IF 16.6 1区 心理学 Q1 BEHAVIORAL SCIENCES Pub Date : 2024-09-23 DOI: 10.1017/S0140525X24000256
Chris Fields, James F Glazebrook

Binz et al. propose a general framework for meta-learning and contrast it with built-by-hand Bayesian models. We comment on some architectural assumptions of the approach, its relation to the active inference framework, its potential applicability to living systems in general, and the advantages of the latter in addressing the explanation problem.

Binz等人提出了元学习的一般框架,并将其与手工建立的贝叶斯模型进行了对比。我们对该方法的一些架构假设、它与主动推理框架的关系、它对一般生命系统的潜在适用性以及后者在解决解释问题方面的优势进行了评论。
{"title":"Meta-learning goes hand-in-hand with metacognition.","authors":"Chris Fields, James F Glazebrook","doi":"10.1017/S0140525X24000256","DOIUrl":"https://doi.org/10.1017/S0140525X24000256","url":null,"abstract":"<p><p>Binz et al. propose a general framework for meta-learning and contrast it with built-by-hand Bayesian models. We comment on some architectural assumptions of the approach, its relation to the active inference framework, its potential applicability to living systems in general, and the advantages of the latter in addressing the explanation problem.</p>","PeriodicalId":8698,"journal":{"name":"Behavioral and Brain Sciences","volume":"47 ","pages":"e151"},"PeriodicalIF":16.6,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142279928","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Meta-learning: Bayesian or quantum? 元学习:贝叶斯还是量子?
IF 16.6 1区 心理学 Q1 BEHAVIORAL SCIENCES Pub Date : 2024-09-23 DOI: 10.1017/S0140525X24000220
Antonio Mastrogiorgio

Abundant experimental evidence illustrates violations of Bayesian models across various cognitive processes. Quantum cognition capitalizes on the limitations of Bayesian models, providing a compelling alternative. We suggest that a generalized quantum approach in meta-learning is simultaneously more robust and flexible, as it retains all the advantages of the Bayesian framework while avoiding its limitations.

大量实验证据表明,贝叶斯模型违反了各种认知过程。量子认知利用了贝叶斯模型的局限性,提供了一个引人注目的替代方案。我们认为,元学习中的广义量子方法既保留了贝叶斯框架的所有优点,又避免了它的局限性,因此更稳健、更灵活。
{"title":"Meta-learning: Bayesian or quantum?","authors":"Antonio Mastrogiorgio","doi":"10.1017/S0140525X24000220","DOIUrl":"https://doi.org/10.1017/S0140525X24000220","url":null,"abstract":"<p><p>Abundant experimental evidence illustrates violations of Bayesian models across various cognitive processes. Quantum cognition capitalizes on the limitations of Bayesian models, providing a compelling alternative. We suggest that a generalized quantum approach in meta-learning is simultaneously more robust and flexible, as it retains all the advantages of the Bayesian framework while avoiding its limitations.</p>","PeriodicalId":8698,"journal":{"name":"Behavioral and Brain Sciences","volume":"47 ","pages":"e154"},"PeriodicalIF":16.6,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142279931","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Meta-learning: Data, architecture, and both. 元学习:数据、架构和两者。
IF 16.6 1区 心理学 Q1 BEHAVIORAL SCIENCES Pub Date : 2024-09-23 DOI: 10.1017/S0140525X24000311
Marcel Binz, Ishita Dasgupta, Akshay Jagadish, Matthew Botvinick, Jane X Wang, Eric Schulz

We are encouraged by the many positive commentaries on our target article. In this response, we recapitulate some of the points raised and identify synergies between them. We have arranged our response based on the tension between data and architecture that arises in the meta-learning framework. We additionally provide a short discussion that touches upon connections to foundation models.

对我们目标文章的许多积极评论使我们深受鼓舞。在这篇回应中,我们将重述提出的一些观点,并确定它们之间的协同作用。我们根据元学习框架中出现的数据与架构之间的矛盾来安排我们的回应。此外,我们还就与基础模型的联系进行了简短讨论。
{"title":"Meta-learning: Data, architecture, and both.","authors":"Marcel Binz, Ishita Dasgupta, Akshay Jagadish, Matthew Botvinick, Jane X Wang, Eric Schulz","doi":"10.1017/S0140525X24000311","DOIUrl":"10.1017/S0140525X24000311","url":null,"abstract":"<p><p>We are encouraged by the many positive commentaries on our target article. In this response, we recapitulate some of the points raised and identify synergies between them. We have arranged our response based on the tension between data and architecture that arises in the meta-learning framework. We additionally provide a short discussion that touches upon connections to foundation models.</p>","PeriodicalId":8698,"journal":{"name":"Behavioral and Brain Sciences","volume":"47 ","pages":"e170"},"PeriodicalIF":16.6,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142279932","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The added value of affective processes for models of human cognition and learning. 情感过程对人类认知和学习模型的附加值。
IF 16.6 1区 心理学 Q1 BEHAVIORAL SCIENCES Pub Date : 2024-09-23 DOI: 10.1017/S0140525X24000207
Yoann Stussi, Daniel Dukes, David Sander

Building on the affectivism approach, we expand on Binz et al.'s meta-learning research program by highlighting that emotion and other affective phenomena should be key to the modeling of human learning. We illustrate the added value of affective processes for models of learning across multiple domains with a focus on reinforcement learning, knowledge acquisition, and social learning.

在情感主义方法的基础上,我们扩展了宾兹等人的元学习研究计划,强调情感和其他情感现象应该成为人类学习建模的关键。我们以强化学习、知识获取和社会学习为重点,说明了情感过程对跨领域学习模型的附加价值。
{"title":"The added value of affective processes for models of human cognition and learning.","authors":"Yoann Stussi, Daniel Dukes, David Sander","doi":"10.1017/S0140525X24000207","DOIUrl":"https://doi.org/10.1017/S0140525X24000207","url":null,"abstract":"<p><p>Building on the affectivism approach, we expand on Binz et al.'s meta-learning research program by highlighting that emotion and other affective phenomena should be key to the modeling of human learning. We illustrate the added value of affective processes for models of learning across multiple domains with a focus on reinforcement learning, knowledge acquisition, and social learning.</p>","PeriodicalId":8698,"journal":{"name":"Behavioral and Brain Sciences","volume":"47 ","pages":"e165"},"PeriodicalIF":16.6,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142279936","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Integrative learning in the lens of meta-learned models of cognition: Impacts on animal and human learning outcomes. 元学习认知模型视角下的综合学习:对动物和人类学习成果的影响。
IF 16.6 1区 心理学 Q1 BEHAVIORAL SCIENCES Pub Date : 2024-09-23 DOI: 10.1017/S0140525X2400027X
Bin Yin, Xi-Dan Xiao, Xiao-Rui Wu, Rong Lian

This commentary examines the synergy between meta-learned models of cognition and integrative learning in enhancing animal and human learning outcomes. It highlights three integrative learning modes - holistic integration of parts, top-down reasoning, and generalization with in-depth analysis - and their alignment with meta-learned models of cognition. This convergence promises significant advances in educational practices, artificial intelligence, and cognitive neuroscience, offering a novel perspective on learning and cognition.

这篇评论探讨了元学习认知模式与综合性学习在提高动物和人类学习成果方面的协同作用。它强调了三种综合性学习模式--部分的整体整合、自上而下的推理和深入分析的概括--及其与元学习认知模型的一致性。这种融合有望在教育实践、人工智能和认知神经科学方面取得重大进展,为学习和认知提供一个新的视角。
{"title":"Integrative learning in the lens of meta-learned models of cognition: Impacts on animal and human learning outcomes.","authors":"Bin Yin, Xi-Dan Xiao, Xiao-Rui Wu, Rong Lian","doi":"10.1017/S0140525X2400027X","DOIUrl":"https://doi.org/10.1017/S0140525X2400027X","url":null,"abstract":"<p><p>This commentary examines the synergy between meta-learned models of cognition and integrative learning in enhancing animal and human learning outcomes. It highlights three integrative learning modes - holistic integration of parts, top-down reasoning, and generalization with in-depth analysis - and their alignment with meta-learned models of cognition. This convergence promises significant advances in educational practices, artificial intelligence, and cognitive neuroscience, offering a novel perspective on learning and cognition.</p>","PeriodicalId":8698,"journal":{"name":"Behavioral and Brain Sciences","volume":"47 ","pages":"e169"},"PeriodicalIF":16.6,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142279920","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Linking meta-learning to meta-structure. 将元学习与元结构联系起来。
IF 16.6 1区 心理学 Q1 BEHAVIORAL SCIENCES Pub Date : 2024-09-23 DOI: 10.1017/S0140525X24000232
Malte Schilling, Helge J Ritter, Frank W Ohl

We propose that a principled understanding of meta-learning, as aimed for by the authors, benefits from linking the focus on learning with an equally strong focus on structure, which means to address the question: What are the meta-structures that can guide meta-learning?

我们建议,作者所希望的对元学习的原则性理解,得益于将对学习的关注与同样强烈的对结构的关注联系起来,这意味着要解决这样一个问题:能够指导元学习的元结构是什么?能够指导元学习的元结构是什么?
{"title":"Linking meta-learning to meta-structure.","authors":"Malte Schilling, Helge J Ritter, Frank W Ohl","doi":"10.1017/S0140525X24000232","DOIUrl":"10.1017/S0140525X24000232","url":null,"abstract":"<p><p>We propose that a principled understanding of meta-learning, as aimed for by the authors, benefits from linking the focus on learning with an equally strong focus on structure, which means to address the question: What are the meta-structures that can guide meta-learning?</p>","PeriodicalId":8698,"journal":{"name":"Behavioral and Brain Sciences","volume":"47 ","pages":"e164"},"PeriodicalIF":16.6,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142279923","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Meta-learning and the evolution of cognition. 元学习与认知进化。
IF 16.6 1区 心理学 Q1 BEHAVIORAL SCIENCES Pub Date : 2024-09-23 DOI: 10.1017/S0140525X24000177
Walter Veit, Heather Browning

Meta-learning offers a promising framework to make sense of some parts of decision-making that have eluded satisfactory explanation. Here, we connect this research to work in animal behaviour and cognition in order to shed light on how and whether meta-learning could help us to understand the evolution of cognition.

元学习(meta-learning)提供了一个很有希望的框架,让我们能够理解决策过程中某些无法令人满意地解释的部分。在这里,我们将这项研究与动物行为和认知领域的工作联系起来,以阐明元学习如何以及是否能帮助我们理解认知的进化。
{"title":"Meta-learning and the evolution of cognition.","authors":"Walter Veit, Heather Browning","doi":"10.1017/S0140525X24000177","DOIUrl":"https://doi.org/10.1017/S0140525X24000177","url":null,"abstract":"<p><p>Meta-learning offers a promising framework to make sense of some parts of decision-making that have eluded satisfactory explanation. Here, we connect this research to work in animal behaviour and cognition in order to shed light on how and whether meta-learning could help us to understand the evolution of cognition.</p>","PeriodicalId":8698,"journal":{"name":"Behavioral and Brain Sciences","volume":"47 ","pages":"e167"},"PeriodicalIF":16.6,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142279926","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Behavioral and Brain Sciences
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1