首页 > 最新文献

Autophagy最新文献

英文 中文
Lactate is a bridge linking glycolysis and autophagy through lactylation. 乳酸是连接糖酵解和自噬的桥梁。
IF 13.3 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2023-12-01 Epub Date: 2023-08-18 DOI: 10.1080/15548627.2023.2246356
Weixia Sun, Mengshu Jia, Yingyan Feng, Xiawei Cheng

Lactate is a glycolysis product that is produced from pyruvate by LDH (lactate dehydrogenase) and plays an important role in physiological and pathological processes. However, whether lactate regulates autophagy is still unknown. We recently reported that LDHA is phosphorylated at serine 196 by ULK1 (unc-51 like kinase 1) under nutrient-deprivation conditions, promoting lactate production. Then, lactate mediates PIK3C3/VPS34 lactylation at lysine 356 and lysine 781 via acyltransferase KAT5/TIP60. PIK3C3/VPS34 lactylation enhances the association of PIK3C3/VPS34 with BECN1 (beclin 1, autophagy related), ATG14 and UVRAG, increases PIK3C3/VPS34 lipid kinase activity, promotes macroautophagy/autophagy and facilitates the endolysosomal degradation pathway. PIK3C3/VPS34 hyperlactylation induces autophagy and plays an essential role in skeletal muscle homeostasis and cancer progression. Overall, this study describes an autophagy regulation mechanism and the integration of two highly conserved life processes: glycolysis and autophagy.

乳酸是由丙酮酸通过乳酸脱氢酶(LDH)产生的糖酵解产物,在生理和病理过程中起着重要作用。然而,乳酸是否调节自噬仍然未知。我们最近报道,在营养缺乏条件下,LDHA在丝氨酸196被ULK1(unc-51样激酶1)磷酸化,促进乳酸的产生。然后,乳酸盐通过酰基转移酶KAT5/TIP60介导PIK3C3/VPS34在赖氨酸356和赖氨酸781处的乳酰化。PIK3C3/VPS34乳酸化增强了PIK3C3/VPS34与BECN1(beclin 1,自噬相关)、ATG14和UVRAG的结合,增加了PIK3C3/VPS34脂质激酶活性,促进了大自噬/自噬,并促进了内溶酶体降解途径。PIK3C3/VPS34高乳酸化诱导自噬,并在骨骼肌稳态和癌症进展中发挥重要作用。总的来说,这项研究描述了自噬调节机制和两个高度保守的生命过程的整合:糖酵解和自噬。
{"title":"Lactate is a bridge linking glycolysis and autophagy through lactylation.","authors":"Weixia Sun,&nbsp;Mengshu Jia,&nbsp;Yingyan Feng,&nbsp;Xiawei Cheng","doi":"10.1080/15548627.2023.2246356","DOIUrl":"10.1080/15548627.2023.2246356","url":null,"abstract":"<p><p>Lactate is a glycolysis product that is produced from pyruvate by LDH (lactate dehydrogenase) and plays an important role in physiological and pathological processes. However, whether lactate regulates autophagy is still unknown. We recently reported that LDHA is phosphorylated at serine 196 by ULK1 (unc-51 like kinase 1) under nutrient-deprivation conditions, promoting lactate production. Then, lactate mediates PIK3C3/VPS34 lactylation at lysine 356 and lysine 781 via acyltransferase KAT5/TIP60. PIK3C3/VPS34 lactylation enhances the association of PIK3C3/VPS34 with BECN1 (beclin 1, autophagy related), ATG14 and UVRAG, increases PIK3C3/VPS34 lipid kinase activity, promotes macroautophagy/autophagy and facilitates the endolysosomal degradation pathway. PIK3C3/VPS34 hyperlactylation induces autophagy and plays an essential role in skeletal muscle homeostasis and cancer progression. Overall, this study describes an autophagy regulation mechanism and the integration of two highly conserved life processes: glycolysis and autophagy.</p>","PeriodicalId":8722,"journal":{"name":"Autophagy","volume":" ","pages":"3240-3241"},"PeriodicalIF":13.3,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10621282/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10019341","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
AIE-enabled transfection-free identification and isolation of viable cell subpopulations differing in the level of autophagy. AIE能够对自噬水平不同的活细胞亚群进行无转染鉴定和分离。
IF 14.6 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2023-12-01 Epub Date: 2023-08-02 DOI: 10.1080/15548627.2023.2235197
Wenbin Zhang, Pengfei Wei, Liu Liu, Tao Ding, Yinyin Yang, Peipei Jin, Li Zhang, Zhibin Zhao, Meimei Wang, Bochuan Hu, Xin Jin, Zeng Xu, Han Zhang, Yang Song, Liansheng Wang, Suqin Zhong, Jing Chen, Zhenyu Yang, Ziying Chen, Yu Wu, Zhiming Ye, Youcui Xu, Yunjiao Zhang, Long-Ping Wen

Abbreviations: 3-MA, 3-methyladenine; AIE, aggregation-induced emission; AIEgens, aggregation-induced emission luminogens; ATG5, autophagy related 5; BMDM, bone marrow-derived macrophage; CQ, chloroquine; DiD, 1,1'-dioctadecyl-3,3,3',3'-tetramethylindodicarbocyanine perchlorate; DiO, 3,3'-dioctadecyloxacarbocyanine perchlorate; DMSO, dimethyl sulfoxide; d-THP-1, differentiated THP-1; FACS, fluorescence activated cell sorting; FBS, fetal bovine serum; FCCP, carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone; GABARAP, GABA type A receptor-associated protein; GFP, green fluorescent protein; HBSS, Hanks' balanced salt solution; HPLC, high-performance liquid chromatography; HRP, horseradish peroxidase; IL1B, interleukin 1 beta; KT, an AIE probe composed of a cell-penetrating peptide and an AIEgen tetraphenyl ethylene; LC3-II, lipidated LC3; LDH, lactate dehydrogenase; LIR, LC3-interacting region; LKR, engineered molecular probe composed of an LC3-interacting peptide, a cell-penetrating peptide and a non-AIE fluorescent molecule rhodamine; LKT, engineered molecular probe composed of an LC3-interacting peptide, a cell-penetrating peptide and an AIEgen tetraphenyl ethylene; LPS, lipopolysaccharide; MAP1LC3/LC3, microtubule associated protein 1 light chain 3; MEF, mouse embryonic fibroblast; mRFP, monomeric red fluorescent protein; NHS, N-hydroxysuccinimide; NLRP3, NLR family pyrin domain containing 3; PBS, phosphate-buffered saline; PCC, pearson's correlation coefficient; PL, photoluminescence; PMA, phorbol 12-myristate 13-acetate; RAP, rapamycin; RIM, restriction of intramolecular motions; s.e.m., standard error of the mean; SPR, surface plasmon resonance; SQSTM1/p62, sequestosome 1; TAX1BP1, Tax1 binding protein 1; TPE, tetraphenylethylene; TPE-yne, 1-(4-ethynylphenyl)-1,2,2-triphenylethene; Tre, trehalose; u-THP-1: undifferentiated THP-1; UV-Vis, ultraviolet visible.

缩写:3-MA,3-甲基腺嘌呤;AIE,聚集诱导发射;AIEgens,聚集诱导发射发光原;ATG5,自噬相关5;骨髓源性巨噬细胞;CQ、氯喹;DiD,1,1'-二十八烷基-3,3,3'-四甲基吲哚二碳花青高氯酸盐;高氯酸二O,3,3'-二十八碳酰氧羰基花青;DMSO、二甲基亚砜;d-THP-1、分化的THP-1;FACS,荧光激活细胞分选;FBS,胎牛血清;FCCP,羰基氰化物4-(三氟甲氧基)苯基腙;GABARAP,GABA型受体相关蛋白;绿色荧光蛋白;HBSS,汉克斯平衡盐溶液;高效液相色谱法;HRP、辣根过氧化物酶;IL1B,白细胞介素1β;KT,由细胞穿透肽和AIEgen四苯基乙烯组成的AIE探针;脂化LC3;LDH、乳酸脱氢酶;LIR、LC3相互作用区;LKR,由LC3相互作用肽、细胞穿透肽和非AIE荧光分子罗丹明组成的工程分子探针;LKT,由LC3相互作用肽、细胞穿透肽和AIEgen四苯基乙烯组成的工程分子探针;LPS、脂多糖;MAP1LC3/LC3、微管相关蛋白1轻链3;小鼠胚胎成纤维细胞;mRFP,单体红色荧光蛋白;NHS,N-羟基琥珀酰亚胺;NLRP3,含有3个的NLR家族pyrin结构域;PBS、磷酸盐缓冲盐水;PCC,pearson相关系数;PL、光致发光;PMA、佛波醇12-肉豆蔻酸酯13-乙酸酯;RAP、雷帕霉素;RIM,分子内运动的限制;s.e.m,平均值的标准误差;SPR,表面等离子体共振;SQSTM1/p62,螯合体1;TAX1BP1、Tax1结合蛋白1;四苯基乙烯;TPE炔,1-(4-乙炔基苯基)-1,2,2-三苯基乙烯;Tre,海藻糖;u-THP-1:未分化的THP-1;紫外线可见,紫外线可见。
{"title":"AIE-enabled transfection-free identification and isolation of viable cell subpopulations differing in the level of autophagy.","authors":"Wenbin Zhang, Pengfei Wei, Liu Liu, Tao Ding, Yinyin Yang, Peipei Jin, Li Zhang, Zhibin Zhao, Meimei Wang, Bochuan Hu, Xin Jin, Zeng Xu, Han Zhang, Yang Song, Liansheng Wang, Suqin Zhong, Jing Chen, Zhenyu Yang, Ziying Chen, Yu Wu, Zhiming Ye, Youcui Xu, Yunjiao Zhang, Long-Ping Wen","doi":"10.1080/15548627.2023.2235197","DOIUrl":"10.1080/15548627.2023.2235197","url":null,"abstract":"<p><strong>Abbreviations: </strong>3-MA, 3-methyladenine; AIE, aggregation-induced emission; AIEgens, aggregation-induced emission luminogens; ATG5, autophagy related 5; BMDM, bone marrow-derived macrophage; CQ, chloroquine; DiD, 1,1'-dioctadecyl-3,3,3',3'-tetramethylindodicarbocyanine perchlorate; DiO, 3,3'-dioctadecyloxacarbocyanine perchlorate; DMSO, dimethyl sulfoxide; d-THP-1, differentiated THP-1; FACS, fluorescence activated cell sorting; FBS, fetal bovine serum; FCCP, carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone; GABARAP, GABA type A receptor-associated protein; GFP, green fluorescent protein; HBSS, Hanks' balanced salt solution; HPLC, high-performance liquid chromatography; HRP, horseradish peroxidase; IL1B, interleukin 1 beta; KT, an AIE probe composed of a cell-penetrating peptide and an AIEgen tetraphenyl ethylene; LC3-II, lipidated LC3; LDH, lactate dehydrogenase; LIR, LC3-interacting region; LKR, engineered molecular probe composed of an LC3-interacting peptide, a cell-penetrating peptide and a non-AIE fluorescent molecule rhodamine; LKT, engineered molecular probe composed of an LC3-interacting peptide, a cell-penetrating peptide and an AIEgen tetraphenyl ethylene; LPS, lipopolysaccharide; MAP1LC3/LC3, microtubule associated protein 1 light chain 3; MEF, mouse embryonic fibroblast; mRFP, monomeric red fluorescent protein; NHS, N-hydroxysuccinimide; NLRP3, NLR family pyrin domain containing 3; PBS, phosphate-buffered saline; PCC, pearson's correlation coefficient; PL, photoluminescence; PMA, phorbol 12-myristate 13-acetate; RAP, rapamycin; RIM, restriction of intramolecular motions; s.e.m., standard error of the mean; SPR, surface plasmon resonance; SQSTM1/p62, sequestosome 1; TAX1BP1, Tax1 binding protein 1; TPE, tetraphenylethylene; TPE-yne, 1-(4-ethynylphenyl)-1,2,2-triphenylethene; Tre, trehalose; u-THP-1: undifferentiated THP-1; UV-Vis, ultraviolet visible.</p>","PeriodicalId":8722,"journal":{"name":"Autophagy","volume":" ","pages":"3062-3078"},"PeriodicalIF":14.6,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10621245/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10302420","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
AI-based AlphaFold2 significantly expands the structural space of the autophagy pathway. 基于人工智能的AlphaFold2显著扩展了自噬途径的结构空间。
IF 14.6 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2023-12-01 Epub Date: 2023-07-30 DOI: 10.1080/15548627.2023.2238578
Nidhi Malhotra, Shantanu Khatri, Ajit Kumar, Akanksha Arun, Purba Daripa, Saman Fatihi, Sureshkumar Venkadesan, Niyati Jain, Lipi Thukral

Abbreviations: AF2: AlphaFold2; AF2-Mult: AlphaFold2 multimer; ATG: autophagy-related; CTD: C-terminal domain; ECTD: extreme C-terminal domain; FR: flexible region; MD: molecular dynamics; NTD: N-terminal domain; pLDDT: predicted local distance difference test; UBL: ubiquitin-like.

缩写:AF2:AlphaFold2;AF2多聚体:AlphaFold2多聚体;ATG:自噬相关;CTD:C端结构域;ECTD:极端C端结构域;FR:柔性区域;MD:分子动力学;NTD:N端结构域;pLDDT:预测局部距离差检验;UBL:泛素样。
{"title":"AI-based AlphaFold2 significantly expands the structural space of the autophagy pathway.","authors":"Nidhi Malhotra, Shantanu Khatri, Ajit Kumar, Akanksha Arun, Purba Daripa, Saman Fatihi, Sureshkumar Venkadesan, Niyati Jain, Lipi Thukral","doi":"10.1080/15548627.2023.2238578","DOIUrl":"10.1080/15548627.2023.2238578","url":null,"abstract":"<p><strong>Abbreviations: </strong>AF2: AlphaFold2; AF2-Mult: AlphaFold2 multimer; ATG: autophagy-related; CTD: C-terminal domain; ECTD: extreme C-terminal domain; FR: flexible region; MD: molecular dynamics; NTD: N-terminal domain; pLDDT: predicted local distance difference test; UBL: ubiquitin-like.</p>","PeriodicalId":8722,"journal":{"name":"Autophagy","volume":" ","pages":"3201-3220"},"PeriodicalIF":14.6,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10621275/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9944093","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chloroplast microautophagy: A green role for NBR1. 叶绿体微自噬:NBR1的绿色作用。
IF 14.6 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2023-12-01 Epub Date: 2023-08-18 DOI: 10.1080/15548627.2023.2246857
Han Nim Lee, Sarika K Marathe, Marisa S Otegui
{"title":"Chloroplast microautophagy: A green role for NBR1.","authors":"Han Nim Lee, Sarika K Marathe, Marisa S Otegui","doi":"10.1080/15548627.2023.2246857","DOIUrl":"10.1080/15548627.2023.2246857","url":null,"abstract":"","PeriodicalId":8722,"journal":{"name":"Autophagy","volume":" ","pages":"3244-3245"},"PeriodicalIF":14.6,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10621284/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10016616","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Aging Differentially Affects Axonal Autophagosome Formation and Maturation. 衰老对轴索自噬体的形成和成熟有不同的影响。
IF 14.6 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2023-12-01 Epub Date: 2023-07-18 DOI: 10.1080/15548627.2023.2236485
Heather Tsong, Erika Lf Holzbaur, Andrea Kh Stavoe

Misregulation of neuronal macroautophagy/autophagy has been implicated in age-related neurodegenerative diseases. We compared autophagosome formation and maturation in primary murine neurons during development and through aging to elucidate how aging affects neuronal autophagy. We observed an age-related decrease in the rate of autophagosome formation leading to a significant decrease in the density of autophagosomes along the axon. Next, we identified a surprising increase in the maturation of autophagic vesicles in neurons from aged mice. While we did not detect notable changes in endolysosomal content in the distal axon during early aging, we did observe a significant loss of acidified vesicles in the distal axon during late aging. Interestingly, we found that autophagic vesicles were transported more efficiently in neurons from adult mice than in neurons from young mice. This efficient transport of autophagic vesicles in both the distal and proximal axon is maintained in neurons during early aging, but is lost during late aging. Our data indicate that early aging does not negatively impact autophagic vesicle transport nor the later stages of autophagy. However, alterations in autophagic vesicle transport efficiency during late aging reveal that aging differentially impacts distinct aspects of neuronal autophagy.Abbreviations: ACAP3: ArfGAP with coiled-coil, ankyrin repeat and PH domains 3; ARF6: ADP-ribosylation factor 6; ATG: autophagy related; AVs: autophagic vesicles; DCTN1/p150Glued: dynactin 1; DRG: dorsal root ganglia; GAP: GTPase activating protein; GEF: guanine nucleotide exchange factor; LAMP2: lysosomal-associated protein 2; LysoT: LysoTracker; MAP1LC3B/LC3B: microtubule-associated protein 1 light chain 3 beta; MAPK8IP1/JIP1: mitogen-activated protein kinase 8 interacting protein 1; MAPK8IP3/JIP3: mitogen-activated protein kinase 8 interacting protein 3; mCh: mCherry; PE: phosphatidylethanolamine.

神经元大自噬/自噬的失调与年龄相关的神经退行性疾病有关。我们比较了原代鼠神经元在发育过程和衰老过程中的自噬体形成和成熟,以阐明衰老如何影响神经元自噬。我们观察到与年龄相关的自噬体形成率下降,导致轴突上自噬体密度显著降低。接下来,我们发现了衰老小鼠神经元中自噬小泡成熟的惊人增加。虽然我们在衰老早期没有检测到远端轴突内溶酶体含量的显著变化,但在衰老晚期,我们确实观察到远端轴突中酸化囊泡的显著损失。有趣的是,我们发现自噬小泡在成年小鼠神经元中的运输效率高于年轻小鼠神经元。这种在远端和近端轴突中的自噬小泡的有效运输在早期衰老期间在神经元中保持,但在晚期衰老期间丢失。我们的数据表明,早期衰老不会对自噬囊泡运输和自噬后期产生负面影响。然而,衰老后期自噬囊泡运输效率的变化表明,衰老对神经元自噬的不同方面有不同的影响。缩写:ACAP3:ArfGAP,具有卷曲线圈、锚蛋白重复序列和PH结构域3;ARF6:ADP核糖基化因子6;ATG:自噬相关;AVs:自噬小泡;DCTN1/p150Glued:dynactin 1;DRG:背根神经节;GAP:GTP酶激活蛋白;GEF:鸟嘌呤核苷酸交换因子;LAMP2:溶酶体相关蛋白2;LysoT:LysoTracker;MAP1LC3B/LC3B:微管相关蛋白1轻链3β;MAPK8IP1/JIP1:丝裂原活化蛋白激酶8相互作用蛋白1;MAPK8IP3/JIP3:丝裂原活化蛋白激酶8相互作用蛋白3;mCh:mCherry;PE:磷脂酰乙醇胺。
{"title":"Aging Differentially Affects Axonal Autophagosome Formation and Maturation.","authors":"Heather Tsong, Erika Lf Holzbaur, Andrea Kh Stavoe","doi":"10.1080/15548627.2023.2236485","DOIUrl":"10.1080/15548627.2023.2236485","url":null,"abstract":"<p><p>Misregulation of neuronal macroautophagy/autophagy has been implicated in age-related neurodegenerative diseases. We compared autophagosome formation and maturation in primary murine neurons during development and through aging to elucidate how aging affects neuronal autophagy. We observed an age-related decrease in the rate of autophagosome formation leading to a significant decrease in the density of autophagosomes along the axon. Next, we identified a surprising increase in the maturation of autophagic vesicles in neurons from aged mice. While we did not detect notable changes in endolysosomal content in the distal axon during early aging, we did observe a significant loss of acidified vesicles in the distal axon during late aging. Interestingly, we found that autophagic vesicles were transported more efficiently in neurons from adult mice than in neurons from young mice. This efficient transport of autophagic vesicles in both the distal and proximal axon is maintained in neurons during early aging, but is lost during late aging. Our data indicate that early aging does not negatively impact autophagic vesicle transport nor the later stages of autophagy. However, alterations in autophagic vesicle transport efficiency during late aging reveal that aging differentially impacts distinct aspects of neuronal autophagy.<b>Abbreviations:</b> ACAP3: ArfGAP with coiled-coil, ankyrin repeat and PH domains 3; ARF6: ADP-ribosylation factor 6; ATG: autophagy related; AVs: autophagic vesicles; DCTN1/p150<sup>Glued</sup>: dynactin 1; DRG: dorsal root ganglia; GAP: GTPase activating protein; GEF: guanine nucleotide exchange factor; LAMP2: lysosomal-associated protein 2; LysoT: LysoTracker; MAP1LC3B/LC3B: microtubule-associated protein 1 light chain 3 beta; MAPK8IP1/JIP1: mitogen-activated protein kinase 8 interacting protein 1; MAPK8IP3/JIP3: mitogen-activated protein kinase 8 interacting protein 3; mCh: mCherry; PE: phosphatidylethanolamine.</p>","PeriodicalId":8722,"journal":{"name":"Autophagy","volume":" ","pages":"3079-3095"},"PeriodicalIF":14.6,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10621248/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9834271","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Autophagy is regulated by endoplasmic reticulum calcium homeostasis and sphingolipid metabolism. 自噬受内质网钙稳态和鞘脂代谢的调节。
IF 14.6 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2023-12-01 Epub Date: 2023-08-23 DOI: 10.1080/15548627.2023.2249761
Shiyan Liu, Mutian Chen, Yichang Wang, Huihui Li, Shiqian Qi, Jia Geng, Kefeng Lu

Calcium is involved in a variety of cellular processes. As the crucial components of cell membranes, sphingolipids also play important roles as signaling molecules. Intracellular calcium homeostasis, autophagy initiation and sphingolipid synthesis are associated with the endoplasmic reticulum (ER). Recently, through genetic screening and lipidomics analysis in Saccharomyces cerevisiae, we found that the ER calcium channel Csg2 converts sphingolipid metabolism into macroautophagy/autophagy regulation by controlling ER calcium homeostasis. The results showed that Csg2 acts as a calcium channel to mediate ER calcium efflux into the cytoplasm, and deletion of CSG2 causes a distinct increase of ER calcium concentration, thereby disrupting the stability of the sphingolipid synthase Aur1, leading to the accumulation of the bioactive sphingolipid phytosphingosine (PHS), which specifically and completely blocks autophagy. In summary, our work links calcium homeostasis, sphingolipid metabolism, and autophagy initiation via the ER calcium channel Csg2.

钙参与多种细胞过程。鞘脂作为细胞膜的重要组成部分,也作为信号分子发挥着重要作用。细胞内钙稳态、自噬起始和鞘脂合成与内质网(ER)有关。最近,通过对酿酒酵母的基因筛选和脂质组学分析,我们发现内质网钙通道Csg2通过控制内质网钙稳态将鞘脂代谢转化为大自噬/自噬调节。结果表明,Csg2作为钙通道介导内质网钙流出到细胞质中,Csg2的缺失导致内质网钙浓度明显升高,从而破坏鞘脂合成酶Aur1的稳定性,导致生物活性鞘脂植物鞘氨醇(PHS)的积累,其特异性且完全阻断自噬。总之,我们的工作通过ER钙通道Csg2将钙稳态、鞘脂代谢和自噬启动联系起来。
{"title":"Autophagy is regulated by endoplasmic reticulum calcium homeostasis and sphingolipid metabolism.","authors":"Shiyan Liu, Mutian Chen, Yichang Wang, Huihui Li, Shiqian Qi, Jia Geng, Kefeng Lu","doi":"10.1080/15548627.2023.2249761","DOIUrl":"10.1080/15548627.2023.2249761","url":null,"abstract":"<p><p>Calcium is involved in a variety of cellular processes. As the crucial components of cell membranes, sphingolipids also play important roles as signaling molecules. Intracellular calcium homeostasis, autophagy initiation and sphingolipid synthesis are associated with the endoplasmic reticulum (ER). Recently, through genetic screening and lipidomics analysis in <i>Saccharomyces cerevisiae</i>, we found that the ER calcium channel Csg2 converts sphingolipid metabolism into macroautophagy/autophagy regulation by controlling ER calcium homeostasis. The results showed that Csg2 acts as a calcium channel to mediate ER calcium efflux into the cytoplasm, and deletion of <i>CSG2</i> causes a distinct increase of ER calcium concentration, thereby disrupting the stability of the sphingolipid synthase Aur1, leading to the accumulation of the bioactive sphingolipid phytosphingosine (PHS), which specifically and completely blocks autophagy. In summary, our work links calcium homeostasis, sphingolipid metabolism, and autophagy initiation via the ER calcium channel Csg2.</p>","PeriodicalId":8722,"journal":{"name":"Autophagy","volume":" ","pages":"3256-3257"},"PeriodicalIF":14.6,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10621283/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10060313","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mitofissin: a novel mitochondrial fission protein that facilitates mitophagy. 线粒体分裂蛋白:一种促进线粒体自噬的新型线粒体分裂蛋白。
IF 14.6 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2023-11-01 Epub Date: 2023-07-24 DOI: 10.1080/15548627.2023.2237343
Tomoyuki Fukuda, Kentaro Furukawa, Tatsuro Maruyama, Nobuo N Noda, Tomotake Kanki

Abbreviations: Atg: autophagy related; IMM: inner mitochondrial membrane; IMS: intermembrane space; PAS: phagophore assembly site; SAR: selective autophagy receptor.

缩写:Atg:自噬相关;IMM:线粒体内膜;IMS:膜间空间;PAS:吞噬细胞组装位点;选择性自噬受体。
{"title":"Mitofissin: a novel mitochondrial fission protein that facilitates mitophagy.","authors":"Tomoyuki Fukuda, Kentaro Furukawa, Tatsuro Maruyama, Nobuo N Noda, Tomotake Kanki","doi":"10.1080/15548627.2023.2237343","DOIUrl":"10.1080/15548627.2023.2237343","url":null,"abstract":"<p><strong>Abbreviations: </strong>Atg: autophagy related; IMM: inner mitochondrial membrane; IMS: intermembrane space; PAS: phagophore assembly site; SAR: selective autophagy receptor.</p>","PeriodicalId":8722,"journal":{"name":"Autophagy","volume":" ","pages":"3019-3021"},"PeriodicalIF":14.6,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10549205/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10239524","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Foot-and-mouth disease virus structural protein VP3 interacts with HDAC8 and promotes its autophagic degradation to facilitate viral replication. 口蹄疫病毒结构蛋白VP3与HDAC8相互作用,促进其自噬降解,促进病毒复制。
IF 14.6 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2023-11-01 Epub Date: 2023-07-14 DOI: 10.1080/15548627.2023.2233847
Huijun Zhang, Xiangwei Wang, Min Qu, Zhiyong Li, Xiangping Yin, Lijie Tang, Xiangtao Liu, Yuefeng Sun

Macroautophagy/autophagy has been utilized by many viruses, including foot-and-mouth disease virus (FMDV), to facilitate replication, while the underlying mechanism of the interplay between autophagy and innate immune responses is still elusive. This study showed that HDAC8 (histone deacetylase 8) inhibits FMDV replication by regulating innate immune signal transduction and antiviral response. To counteract the HDAC8 effect, FMDV utilizes autophagy to promote HDAC8 degradation. Further data showed that FMDV structural protein VP3 promotes autophagy during virus infection and interacts with and degrades HDAC8 in an AKT-MTOR-ATG5-dependent autophagy pathway. Our data demonstrated that FMDV evolved a strategy to counteract host antiviral activity by autophagic degradation of a protein that regulates innate immune response during virus infection.Abbreviations: 3-MA: 3-methyladenine; ATG: autophagy related; Baf-A1: bafilomycin A1; CCL5: C-C motif chemokine ligand 5; Co-IP: co-immunoprecipitation; CQ: chloroquine phosphate; DAPI: 4",6-diamidino-2-phenylindole; FMDV: foot-and-mouth disease virus; HDAC8: histone deacetylase 8; ISG: IFN-stimulated gene; IRF3: interferon regulatory factor 3; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MOI: multiplicity of infection; MAVS: mitochondria antiviral signaling protein; OAS: 2"-5'-oligoadenylate synthetase; RB1: RB transcriptional corepressor 1; SAHA: suberoylanilide hydroxamic acid; TBK1: TANK binding kinase 1; TCID50: 50% tissue culture infectious doses; TNF/TNF-α: tumor necrosis factor; TSA: trichostatin A; UTR: untranslated region.

包括口蹄疫病毒(FMDV)在内的许多病毒都利用大细胞自噬/自噬来促进复制,而自噬和先天免疫反应之间相互作用的潜在机制仍然难以捉摸。本研究表明HDAC8(组蛋白脱乙酰酶8)通过调节先天免疫信号转导和抗病毒反应来抑制FMDV的复制。为了抵消HDAC8效应,FMDV利用自噬促进HDAC8降解。进一步的数据显示,FMDV结构蛋白VP3在病毒感染期间促进自噬,并在AKT-MTOR-ATG5依赖性自噬途径中与HDAC8相互作用并降解HDAC8。我们的数据表明,口蹄疫病毒进化出一种策略,通过自噬降解一种在病毒感染期间调节先天免疫反应的蛋白质来对抗宿主的抗病毒活性。缩写:3-MA:3-甲基腺嘌呤;ATG:自噬相关;Baf-A1:巴非霉素A1;CCL5:C-C基序趋化因子配体5;Co-IP:共免疫沉淀;CQ:磷酸氯喹;DAPI:4“,6-二脒基-2-苯基吲哚;FMDV:口蹄疫病毒;HDAC8:组蛋白脱乙酰酶8;ISG:干扰素刺激基因;IRF3:干扰素调节因子3;MAP1LC3/LC3:微管相关蛋白1轻链3;MOI:感染多重性;MAVS:线粒体抗病毒信号蛋白;OAS:2”-5'-寡腺苷酸合成酶;RB1:RB转录辅助抑制因子1;SAHA:辛烯酰苯胺异羟肟酸;TBK1:TANK结合激酶1;TCID50:50%组织培养感染剂量;TNF-α:肿瘤坏死因子;TSA:曲霉菌素A;UTR:未翻译区域。
{"title":"Foot-and-mouth disease virus structural protein VP3 interacts with HDAC8 and promotes its autophagic degradation to facilitate viral replication.","authors":"Huijun Zhang, Xiangwei Wang, Min Qu, Zhiyong Li, Xiangping Yin, Lijie Tang, Xiangtao Liu, Yuefeng Sun","doi":"10.1080/15548627.2023.2233847","DOIUrl":"10.1080/15548627.2023.2233847","url":null,"abstract":"<p><p>Macroautophagy/autophagy has been utilized by many viruses, including foot-and-mouth disease virus (FMDV), to facilitate replication, while the underlying mechanism of the interplay between autophagy and innate immune responses is still elusive. This study showed that HDAC8 (histone deacetylase 8) inhibits FMDV replication by regulating innate immune signal transduction and antiviral response. To counteract the HDAC8 effect, FMDV utilizes autophagy to promote HDAC8 degradation. Further data showed that FMDV structural protein VP3 promotes autophagy during virus infection and interacts with and degrades HDAC8 in an AKT-MTOR-ATG5-dependent autophagy pathway. Our data demonstrated that FMDV evolved a strategy to counteract host antiviral activity by autophagic degradation of a protein that regulates innate immune response during virus infection.<b>Abbreviations</b>: 3-MA: 3-methyladenine; ATG: autophagy related; Baf-A1: bafilomycin A<sub>1</sub>; CCL5: C-C motif chemokine ligand 5; Co-IP: co-immunoprecipitation; CQ: chloroquine phosphate; DAPI: 4\",6-diamidino-2-phenylindole; FMDV: foot-and-mouth disease virus; HDAC8: histone deacetylase 8; ISG: IFN-stimulated gene; IRF3: interferon regulatory factor 3; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MOI: multiplicity of infection; MAVS: mitochondria antiviral signaling protein; OAS: 2\"-5'-oligoadenylate synthetase; RB1: RB transcriptional corepressor 1; SAHA: suberoylanilide hydroxamic acid; TBK1: TANK binding kinase 1; TCID<sub>50</sub>: 50% tissue culture infectious doses; TNF/TNF-α: tumor necrosis factor; TSA: trichostatin A; UTR: untranslated region.</p>","PeriodicalId":8722,"journal":{"name":"Autophagy","volume":" ","pages":"2869-2883"},"PeriodicalIF":14.6,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10549200/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9766425","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Autophagy regulation and protein kinase activity of PIK3C3 controls sertoli cell polarity through its negative regulation on SCIN (scinderin). PIK3C3的自噬调节和蛋白激酶活性通过其对SCIN(闪烁蛋白)的负调控来控制支持细胞的极性。
IF 14.6 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2023-11-01 Epub Date: 2023-07-14 DOI: 10.1080/15548627.2023.2235195
Kehan Wang, Feifei Kong, Yuexin Qiu, Tao Chen, Jiayi Fu, Xin Jin, Youqiang Su, Yayun Gu, Zhibin Hu, Jing Li
<p><p>Sertoli cells are highly polarized testicular cells that provide a nurturing environment for germ cell development and maturation during spermatogenesis. The class III phosphatidylinositol 3-kinase (PtdIns3K) plays core roles in macroautophagy in various cell types; however, its role in Sertoli cells remains unclear. Here, we generated a mouse line in which the gene encoding the catalytic subunit, <i>Pik3c3</i>, was specifically deleted in Sertoli cells (cKO) and found that after one round of normal spermatogenesis, the cKO mice quickly became infertile and showed disruption of Sertoli cell polarity and impaired spermiogenesis. Subsequent proteomics and phosphoproteomics analyses enriched the F-actin cytoskeleton network involved in the disorganized Sertoli-cell structure in cKO testis which we identified a significant increase of the F-actin negative regulator SCIN (scinderin) and the reduced phosphorylation of HDAC6, an α-tubulin deacetylase. Our results further demonstrated that the accumulation of SCIN in cKO Sertoli cells caused the disorder and disassembly of the F-actin cytoskeleton, which was related to the failure of SCIN degradation through the autophagy-lysosome pathway. Additionally, we found that the phosphorylation of HDAC6 at site S59 by PIK3C3 was essential for its degradation through the ubiquitin-proteasome pathway. As a result, the HDAC6 that accumulated in cKO Sertoli cells deacetylated SCIN at site K189 and led to a disorganized F-actin cytoskeleton. Taken together, our findings elucidate a new mechanism for PIK3C3 in maintaining the polarity of Sertoli cells, in which both its autophagy regulation or protein kinase activities are required for the stabilization of the actin cytoskeleton.<b>Abbreviations:</b> ACTB: actin, beta; AR: androgen receptor; ATG14: autophagy related 14; BafA1: bafilomycin A<sub>1</sub>; BECN1: beclin 1, autophagy related; BTB: blood-testis barrier; CASP3: caspase 3; CDC42: cell division cycle 42; CDH2: cadherin 2; CHX: cycloheximide; CTNNA1: catenin (cadherin associated protein), alpha 1; CYP11A1: cytochrome P450, family 11, subfamily A, polypeptide 1; EBSS: Earle's balanced salt solution; ES: ectoplasmic specialization; FITC: fluorescein isothiocyanate; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GCNA: germ cell nuclear acidic protein; GJA1: gap junction protein, alpha 1; H2AX: H2A.X variant histone; HDAC6: histone deacetylase 6; KIT: KIT proto-oncogene, receptor tyrosine kinase; LAMP1: lysosomal associated membrane protein 1; MAP3K5: mitogen-activated protein kinase kinase kinase 5; MAP1LC3B: microtubule associated protein 1 light chain 3 beta; OCLN: occludin; PIK3C3: phosphatidylinositol 3-kinase catalytic subunit type 3; PIK3R4: phosphoinositide-3-kinase regulatory subunit 4; PNA: arachis hypogaea lectin; RAC1: Rac family small GTPase 1; SCIN: scinderin; SQSTM1/p62: sequestosome 1; SSC: spermatogonia stem cell; STK11: serine/threonine kinase 11; TJP1: tight junction protein 1; TubA: tub
支持细胞是高度极化的睾丸细胞,在精子发生过程中为生殖细胞的发育和成熟提供了培养环境。III类磷脂酰肌醇3-激酶(PtdIns3K)在各种细胞类型的大自噬中发挥核心作用;然而,它在支持细胞中的作用尚不清楚。在这里,我们产生了一个小鼠系,其中编码催化亚基Pik3c3的基因在支持细胞(cKO)中被特异性缺失,并发现在一轮正常精子发生后,cKO小鼠很快变得不育,并表现出支持细胞极性的破坏和精子生成受损。随后的蛋白质组学和磷酸蛋白质组学分析丰富了参与cKO睾丸支持细胞结构紊乱的F-肌动蛋白细胞骨架网络,我们发现F-肌动蛋白负调控因子SCIN(闪烁蛋白)显著增加,HDAC6(一种α-微管蛋白脱乙酰酶)磷酸化减少。我们的结果进一步证明,SCIN在cKO支持细胞中的积累导致F-肌动蛋白细胞骨架的紊乱和分解,这与SCIN未能通过自噬-溶酶体途径降解有关。此外,我们发现PIK3C3在S59位点磷酸化HDAC6对其通过泛素-蛋白酶体途径降解至关重要。结果,在cKO支持细胞中积累的HDAC6在K189位点脱乙酰SCIN,并导致F-肌动蛋白细胞骨架紊乱。总之,我们的发现阐明了PIK3C3维持支持细胞极性的新机制,其中其自噬调节或蛋白激酶活性是肌动蛋白细胞骨架稳定所必需的。缩写:ACTB:肌动蛋白,β;AR:雄激素受体;ATG14:自噬相关14;BafA1:巴非霉素A1;BECN1:beclin 1,自噬相关;BTB:血睾丸屏障;CASP3:胱天蛋白酶3;CDC42:细胞分裂周期42;CDH2:钙粘蛋白2;CHX:环己酰亚胺;CTNNA1:连环蛋白(钙粘蛋白相关蛋白),α1;CYP11A1:细胞色素P450,家族11,亚家族A,多肽1;EBSS:厄尔平衡盐溶液;ES:胞质特化;FITC:异硫氰酸荧光素;GAPDH:甘油醛-3-磷酸脱氢酶;GCNA:生殖细胞核酸性蛋白;GJA1:间隙连接蛋白,α1;H2AX:H2A。X变体组蛋白;HDAC6:组蛋白脱乙酰酶6;KIT:KIT原癌基因,受体酪氨酸激酶;LAMP1:溶酶体相关膜蛋白1;MAP3K5:丝裂原活化蛋白激酶激酶5;MAP1LC3B:微管相关蛋白1轻链3β;OCLN:occludin;PIK3C3:磷脂酰肌醇3-激酶催化亚基3型;PIK3R4:磷酸肌醇-3-激酶调节亚单位4;PNA:花生凝集素;RAC1:Rac家族小GTPase 1;SCIN:闪烁蛋白;SQSTM1/p62:螯合体1;SSC:精原干细胞;STK11:丝氨酸/苏氨酸激酶11;TJP1:紧密连接蛋白1;TubA:tubastatin A;TUB3:微管蛋白β3 III类;TUNEL:TdT介导的dUTP缺口末端标记;UB:泛素;UVRAG:紫外线辐射抗性相关基因;VIM:波形蛋白;WT1:WT1转录因子;ZBTB16:锌指和含有16。
{"title":"Autophagy regulation and protein kinase activity of PIK3C3 controls sertoli cell polarity through its negative regulation on SCIN (scinderin).","authors":"Kehan Wang, Feifei Kong, Yuexin Qiu, Tao Chen, Jiayi Fu, Xin Jin, Youqiang Su, Yayun Gu, Zhibin Hu, Jing Li","doi":"10.1080/15548627.2023.2235195","DOIUrl":"10.1080/15548627.2023.2235195","url":null,"abstract":"&lt;p&gt;&lt;p&gt;Sertoli cells are highly polarized testicular cells that provide a nurturing environment for germ cell development and maturation during spermatogenesis. The class III phosphatidylinositol 3-kinase (PtdIns3K) plays core roles in macroautophagy in various cell types; however, its role in Sertoli cells remains unclear. Here, we generated a mouse line in which the gene encoding the catalytic subunit, &lt;i&gt;Pik3c3&lt;/i&gt;, was specifically deleted in Sertoli cells (cKO) and found that after one round of normal spermatogenesis, the cKO mice quickly became infertile and showed disruption of Sertoli cell polarity and impaired spermiogenesis. Subsequent proteomics and phosphoproteomics analyses enriched the F-actin cytoskeleton network involved in the disorganized Sertoli-cell structure in cKO testis which we identified a significant increase of the F-actin negative regulator SCIN (scinderin) and the reduced phosphorylation of HDAC6, an α-tubulin deacetylase. Our results further demonstrated that the accumulation of SCIN in cKO Sertoli cells caused the disorder and disassembly of the F-actin cytoskeleton, which was related to the failure of SCIN degradation through the autophagy-lysosome pathway. Additionally, we found that the phosphorylation of HDAC6 at site S59 by PIK3C3 was essential for its degradation through the ubiquitin-proteasome pathway. As a result, the HDAC6 that accumulated in cKO Sertoli cells deacetylated SCIN at site K189 and led to a disorganized F-actin cytoskeleton. Taken together, our findings elucidate a new mechanism for PIK3C3 in maintaining the polarity of Sertoli cells, in which both its autophagy regulation or protein kinase activities are required for the stabilization of the actin cytoskeleton.&lt;b&gt;Abbreviations:&lt;/b&gt; ACTB: actin, beta; AR: androgen receptor; ATG14: autophagy related 14; BafA1: bafilomycin A&lt;sub&gt;1&lt;/sub&gt;; BECN1: beclin 1, autophagy related; BTB: blood-testis barrier; CASP3: caspase 3; CDC42: cell division cycle 42; CDH2: cadherin 2; CHX: cycloheximide; CTNNA1: catenin (cadherin associated protein), alpha 1; CYP11A1: cytochrome P450, family 11, subfamily A, polypeptide 1; EBSS: Earle's balanced salt solution; ES: ectoplasmic specialization; FITC: fluorescein isothiocyanate; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GCNA: germ cell nuclear acidic protein; GJA1: gap junction protein, alpha 1; H2AX: H2A.X variant histone; HDAC6: histone deacetylase 6; KIT: KIT proto-oncogene, receptor tyrosine kinase; LAMP1: lysosomal associated membrane protein 1; MAP3K5: mitogen-activated protein kinase kinase kinase 5; MAP1LC3B: microtubule associated protein 1 light chain 3 beta; OCLN: occludin; PIK3C3: phosphatidylinositol 3-kinase catalytic subunit type 3; PIK3R4: phosphoinositide-3-kinase regulatory subunit 4; PNA: arachis hypogaea lectin; RAC1: Rac family small GTPase 1; SCIN: scinderin; SQSTM1/p62: sequestosome 1; SSC: spermatogonia stem cell; STK11: serine/threonine kinase 11; TJP1: tight junction protein 1; TubA: tub","PeriodicalId":8722,"journal":{"name":"Autophagy","volume":" ","pages":"2934-2957"},"PeriodicalIF":14.6,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10549198/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9781175","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SPART links autophagy machinery and lipid droplets in motor neurons. SPART将自噬机制和运动神经元中的脂滴联系起来。
IF 14.6 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2023-11-01 Epub Date: 2023-08-22 DOI: 10.1080/15548627.2023.2247311
Shree Padma Metur, Daniel J Klionsky

Autophagy, in the form of lipophagy, is an important catabolic pathway mediating the degradation of lipid droplets and mobilization of lipids for physiological function. However, the molecular mechanism and the protein receptors that link lipid droplets/LDs to the autophagy machinery remain unknown. Here, we discuss a recent study by Chung et al. that identifies SPART as the receptor for autophagy of lipid droplets that plays an important role in the turnover of triglycerides in motor neurons.

自噬,以脂吞噬的形式,是一种重要的分解代谢途径,介导脂滴的降解和脂质为生理功能的动员。然而,将脂滴/LD与自噬机制联系起来的分子机制和蛋白质受体仍然未知。在这里,我们讨论了Chung等人最近的一项研究。该研究将SPART确定为脂滴自噬的受体,在运动神经元甘油三酯的转换中起着重要作用。
{"title":"SPART links autophagy machinery and lipid droplets in motor neurons.","authors":"Shree Padma Metur, Daniel J Klionsky","doi":"10.1080/15548627.2023.2247311","DOIUrl":"10.1080/15548627.2023.2247311","url":null,"abstract":"<p><p>Autophagy, in the form of lipophagy, is an important catabolic pathway mediating the degradation of lipid droplets and mobilization of lipids for physiological function. However, the molecular mechanism and the protein receptors that link lipid droplets/LDs to the autophagy machinery remain unknown. Here, we discuss a recent study by Chung et al. that identifies SPART as the receptor for autophagy of lipid droplets that plays an important role in the turnover of triglycerides in motor neurons.</p>","PeriodicalId":8722,"journal":{"name":"Autophagy","volume":" ","pages":"2835-2836"},"PeriodicalIF":14.6,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10549182/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10045502","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Autophagy
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1