首页 > 最新文献

Autophagy最新文献

英文 中文
Phosphorylation-state dependent intraneuronal sorting of Aβ differentially impairs autophagy and the endo-lysosomal system. 磷酸化状态依赖的Aβ神经内分选不同地损害自噬和内溶酶体系统。
IF 13.3 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2024-01-01 Epub Date: 2023-08-29 DOI: 10.1080/15548627.2023.2252300
Akshay Kapadia, Sandra Theil, Sabine Opitz, Nàdia Villacampa, Hannes Beckert, Susanne Schoch, Michael T Heneka, Sathish Kumar, Jochen Walter

Abbreviations: AD: Alzheimer disease; APP: amyloid beta precursor protein; ATG: autophagy related; Aβ: amyloid-β; CTSD: cathepsin D; DAPI: 4',6-diamidino-2-phenylindole; EEA1: early endosome antigen 1; FA: formic acid; GFP: green fluorescent protein; LAMP2: lysosomal-associated membrane protein 2; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MAP2: microtubule-associated protein 2; nmAβ: non-modified amyloid-β; npAβ: non-phosphorylated amyloid-β; pAβ: phosphorylated amyloid-β; p-Ser26Aβ: amyloid-β phosphorylated at serine residue 26; p-Ser8Aβ: amyloid-β phosphorylated at serine residue 8; RAB: RAB, member RAS oncogene family; RFP: red fluorescent protein; SQSTM1/p62: sequestome 1; YFP: yellow fluorescent protein.

缩写:AD:阿尔茨海默病;APP:淀粉样蛋白β前体蛋白;ATG:自噬相关;Aβ:淀粉样蛋白-β;CTSD:组织蛋白酶D;DAPI:4’,6-二脒基-2-苯基吲哚;EEA1:早期内体抗原1;FA:甲酸;GFP:绿色荧光蛋白;LAMP2:溶酶体相关膜蛋白2;MAP1LC3/LC3:微管相关蛋白1轻链3;MAP2:微管相关蛋白2;nmAβ:非修饰淀粉样蛋白-β;npAβ:非磷酸化淀粉样蛋白-β;pAβ:磷酸化淀粉样蛋白-β;p-Ser26Aβ:丝氨酸残基26处磷酸化的淀粉样蛋白-β;p-Ser8Aβ:丝氨酸残基8磷酸化的淀粉样蛋白-β;RAB:RAB,RAS癌基因家族成员;RFP:红色荧光蛋白;SQSTM1/p62:螯合体1;YFP:黄色荧光蛋白。
{"title":"Phosphorylation-state dependent intraneuronal sorting of Aβ differentially impairs autophagy and the endo-lysosomal system.","authors":"Akshay Kapadia, Sandra Theil, Sabine Opitz, Nàdia Villacampa, Hannes Beckert, Susanne Schoch, Michael T Heneka, Sathish Kumar, Jochen Walter","doi":"10.1080/15548627.2023.2252300","DOIUrl":"10.1080/15548627.2023.2252300","url":null,"abstract":"<p><strong>Abbreviations: </strong>AD: Alzheimer disease; APP: amyloid beta precursor protein; ATG: autophagy related; Aβ: amyloid-β; CTSD: cathepsin D; DAPI: 4',6-diamidino-2-phenylindole; EEA1: early endosome antigen 1; FA: formic acid; GFP: green fluorescent protein; LAMP2: lysosomal-associated membrane protein 2; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MAP2: microtubule-associated protein 2; nmAβ: non-modified amyloid-β; npAβ: non-phosphorylated amyloid-β; pAβ: phosphorylated amyloid-β; p-Ser26Aβ: amyloid-β phosphorylated at serine residue 26; p-Ser8Aβ: amyloid-β phosphorylated at serine residue 8; RAB: RAB, member RAS oncogene family; RFP: red fluorescent protein; SQSTM1/p62: sequestome 1; YFP: yellow fluorescent protein.</p>","PeriodicalId":8722,"journal":{"name":"Autophagy","volume":" ","pages":"166-187"},"PeriodicalIF":13.3,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10761119/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10111950","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
PTEN activates chaperone-mediated autophagy to regulate metabolism. PTEN 激活伴侣介导的自噬,从而调节新陈代谢。
IF 14.6 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2024-01-01 Epub Date: 2023-09-08 DOI: 10.1080/15548627.2023.2255966
S Joseph Endicott, Richard A Miller

PTEN is a negative modulator of the INS-PI3K-AKT pathway and is an essential regulator of metabolism and cell growth. PTEN is one of the most commonly mutated tumor suppressors in cancer. However, PTEN overexpression extends the lifespan of both sexes of mice. We recently showed that PTEN is necessary and sufficient to activate chaperone-mediated autophagy (CMA) in the mouse liver and cultured cells. Selective protein degradation via CMA is required to suppress glycolysis and fatty acid synthesis when PTEN is overexpressed. Thus, activation of CMA downstream of PTEN might modulate health and metabolism through selective degradation of key metabolic enzymes.

PTEN 是 INS-PI3K-AKT 通路的负调节因子,是新陈代谢和细胞生长的重要调节因子。PTEN 是癌症中最常见的突变肿瘤抑制因子之一。然而,PTEN 的过表达可延长雌雄小鼠的寿命。我们最近发现,在小鼠肝脏和培养细胞中,PTEN 是激活伴侣介导的自噬(CMA)的必要和充分条件。当 PTEN 过表达时,通过 CMA 选择性地降解蛋白质是抑制糖酵解和脂肪酸合成所必需的。因此,激活 PTEN 下游的 CMA 可能会通过选择性降解关键代谢酶来调节健康和新陈代谢。
{"title":"PTEN activates chaperone-mediated autophagy to regulate metabolism.","authors":"S Joseph Endicott, Richard A Miller","doi":"10.1080/15548627.2023.2255966","DOIUrl":"10.1080/15548627.2023.2255966","url":null,"abstract":"<p><p>PTEN is a negative modulator of the INS-PI3K-AKT pathway and is an essential regulator of metabolism and cell growth. PTEN is one of the most commonly mutated tumor suppressors in cancer. However, PTEN overexpression extends the lifespan of both sexes of mice. We recently showed that PTEN is necessary and sufficient to activate chaperone-mediated autophagy (CMA) in the mouse liver and cultured cells. Selective protein degradation via CMA is required to suppress glycolysis and fatty acid synthesis when PTEN is overexpressed. Thus, activation of CMA downstream of PTEN might modulate health and metabolism through selective degradation of key metabolic enzymes.</p>","PeriodicalId":8722,"journal":{"name":"Autophagy","volume":" ","pages":"216-217"},"PeriodicalIF":14.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10761071/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10182627","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The separate axes of TECPR1 and ATG16L1 in CASM. CASM中TECPR1和ATG16L1的独立轴。
IF 13.3 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2024-01-01 Epub Date: 2023-09-07 DOI: 10.1080/15548627.2023.2255462
Namrita Kaur, Sven R Carlsson, Alf Håkon Lystad

Conjugation of ATG8 to single membranes (CASM) is a fundamental cellular process that entails the conjugation of mammalian Atg8 homologs, here referred to as ATG8, to phosphatidylethanolamine (PE) and phosphatidylserine (PS) on endolysosomal compartments. Our current research, together with recent reports from the Randow, Wu, and Wileman labs, has uncovered yet another layer to this process. We discovered that, in addition to ATG16L1-containing complexes, TECPR1 (tectonin beta-propeller repeat containing 1)-containing ATG12-ATG5 E3 complexes can facilitate CASM, thereby providing a broader understanding of this pathway.

ATG8与单膜(CASM)的结合是一个基本的细胞过程,需要哺乳动物ATG8同源物(此处称为ATG8)与内溶酶体区室上的磷脂酰乙醇胺(PE)和磷脂酰丝氨酸(PS)的结合。我们目前的研究,加上Randow、Wu和Wileman实验室最近的报告,揭示了这一过程的另一层。我们发现,除了含有ATG16L1的复合物外,含有TECPR1(含有1的构造蛋白β-螺旋桨重复序列)的ATG12-ATG5 E3复合物也可以促进CASM,从而对该途径有更广泛的了解。
{"title":"The separate axes of TECPR1 and ATG16L1 in CASM.","authors":"Namrita Kaur, Sven R Carlsson, Alf Håkon Lystad","doi":"10.1080/15548627.2023.2255462","DOIUrl":"10.1080/15548627.2023.2255462","url":null,"abstract":"<p><p>Conjugation of ATG8 to single membranes (CASM) is a fundamental cellular process that entails the conjugation of mammalian Atg8 homologs, here referred to as ATG8, to phosphatidylethanolamine (PE) and phosphatidylserine (PS) on endolysosomal compartments. Our current research, together with recent reports from the Randow, Wu, and Wileman labs, has uncovered yet another layer to this process. We discovered that, in addition to ATG16L1-containing complexes, TECPR1 (tectonin beta-propeller repeat containing 1)-containing ATG12-ATG5 E3 complexes can facilitate CASM, thereby providing a broader understanding of this pathway.</p>","PeriodicalId":8722,"journal":{"name":"Autophagy","volume":" ","pages":"214-215"},"PeriodicalIF":13.3,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10761082/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10161806","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Epigenetic regulation of autophagy-related genes: Implications for neurodevelopmental disorders. 自噬相关基因的表观遗传调控:对神经发育障碍的影响
IF 13.3 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2024-01-01 Epub Date: 2023-09-06 DOI: 10.1080/15548627.2023.2250217
Elly I Lewerissa, Nael Nadif Kasri, Katrin Linda

Macroautophagy/autophagy is an evolutionarily highly conserved catabolic process that is important for the clearance of cytosolic contents to maintain cellular homeostasis and survival. Recent findings point toward a critical role for autophagy in brain function, not only by preserving neuronal health, but especially by controlling different aspects of neuronal development and functioning. In line with this, mutations in autophagy-related genes are linked to various key characteristics and symptoms of neurodevelopmental disorders (NDDs), including autism, micro-/macrocephaly, and epilepsy. However, the group of NDDs caused by mutations in autophagy-related genes is relatively small. A significant proportion of NDDs are associated with mutations in genes encoding epigenetic regulatory proteins that modulate gene expression, so-called chromatinopathies. Intriguingly, several of the NDD-linked chromatinopathy genes have been shown to regulate autophagy-related genes, albeit in non-neuronal contexts. From these studies it becomes evident that tight transcriptional regulation of autophagy-related genes is crucial to control autophagic activity. This opens the exciting possibility that aberrant autophagic regulation might underly nervous system impairments in NDDs with disturbed epigenetic regulation. We here summarize NDD-related chromatinopathy genes that are known to regulate transcriptional regulation of autophagy-related genes. Thereby, we want to highlight autophagy as a candidate key hub mechanism in NDD-related chromatinopathies.Abbreviations: ADNP: activity dependent neuroprotector homeobox; ASD: autism spectrum disorder; ATG: AutTophaGy related; CpG: cytosine-guanine dinucleotide; DNMT: DNA methyltransferase; EHMT: euchromatic histone lysine methyltransferase; EP300: E1A binding protein p300; EZH2: enhancer of zeste 2 polycomb repressive complex 2 subunit; H3K4me3: histone 3 lysine 4 trimethylation; H3K9me1/2/3: histone 3 lysine 9 mono-, di-, or trimethylation; H3K27me2/3: histone 3 lysine 27 di-, or trimethylation; hiPSCs: human induced pluripotent stem cells; HSP: hereditary spastic paraplegia; ID: intellectual disability; KANSL1: KAT8 regulatory NSL complex subunit 1; KAT8: lysine acetyltransferase 8; KDM1A/LSD1: lysine demethylase 1A; MAP1LC3B: microtubule associated protein 1 light chain 3 beta; MTOR: mechanistic target of rapamycin kinase; MTORC1: mechanistic target of rapamycin complex 1; NDD: neurodevelopmental disorder; PHF8: PHD finger protein 8; PHF8-XLID: PHF8-X linked intellectual disability syndrome; PTM: post-translational modification; SESN2: sestrin 2; YY1: YY1 transcription factor; YY1AP1: YY1 associated protein 1.

大自噬/自噬是一种在进化过程中高度保守的分解代谢过程,对于清除细胞膜内容物以维持细胞平衡和存活非常重要。最近的研究结果表明,自噬在大脑功能中发挥着关键作用,它不仅能维护神经元的健康,还能控制神经元发育和功能的各个方面。因此,自噬相关基因的突变与神经发育障碍(NDDs)的各种主要特征和症状有关,包括自闭症、小头畸形/巨头畸形和癫痫。然而,由自噬相关基因突变引起的 NDDs 群体相对较小。相当一部分 NDD 与编码表观遗传调控蛋白的基因突变有关,这些蛋白可调节基因表达,即所谓的染色质病。耐人寻味的是,一些与 NDD 相关的染色质病变基因已被证明可调控自噬相关基因,尽管是在非神经元环境中。这些研究表明,自噬相关基因的紧密转录调控对控制自噬活性至关重要。这提供了一种令人兴奋的可能性,即自噬调控失常可能是表观遗传调控紊乱的 NDD 神经系统损伤的基础。我们在此总结了已知能调控自噬相关基因转录调控的 NDD 相关染色质病变基因。因此,我们希望强调自噬是 NDD 相关染色质病变的一个候选关键枢纽机制:缩写:ADNP:活性依赖性神经保护器同源框;ASD:自闭症谱系障碍;ATG:AutTophaGy related;CpG:胞嘧啶-鸟嘌呤二核苷酸;DNMT:DNA 甲基转移酶;EHMT:euchromatic 组蛋白赖氨酸甲基转移酶;EP300:E1A 结合蛋白 p300;EZH2:H3K4me3:组蛋白 3 赖氨酸 4 三甲基化;H3K9me1/2/3:组蛋白 3 赖氨酸 9 单、双或三甲基化;H3K27me2/3:组蛋白 3 赖氨酸 27 双或三甲基化;hiPSCs:人类诱导多能干细胞;HSP:遗传性痉挛性截瘫;ID:KAT8:赖氨酸乙酰转移酶 8;KDM1A/LSD1:赖氨酸去甲基化酶 1A;MAP1LC3B:微管相关蛋白 1 轻链 3 beta;MTOR:雷帕霉素激酶的机制靶点;MTORC1:NDD:神经发育障碍;PHF8:PHD 手指蛋白 8;PHF8-XLID:PHF8-X 链接智力残疾综合征;PTM:翻译后修饰;SESN2:雌蕊蛋白 2;YY1:YY1 转录因子;YY1AP1:YY1 相关蛋白 1。
{"title":"Epigenetic regulation of <i>autophagy-related</i> genes: Implications for neurodevelopmental disorders.","authors":"Elly I Lewerissa, Nael Nadif Kasri, Katrin Linda","doi":"10.1080/15548627.2023.2250217","DOIUrl":"10.1080/15548627.2023.2250217","url":null,"abstract":"<p><p>Macroautophagy/autophagy is an evolutionarily highly conserved catabolic process that is important for the clearance of cytosolic contents to maintain cellular homeostasis and survival. Recent findings point toward a critical role for autophagy in brain function, not only by preserving neuronal health, but especially by controlling different aspects of neuronal development and functioning. In line with this, mutations in autophagy-related genes are linked to various key characteristics and symptoms of neurodevelopmental disorders (NDDs), including autism, micro-/macrocephaly, and epilepsy. However, the group of NDDs caused by mutations in autophagy-related genes is relatively small. A significant proportion of NDDs are associated with mutations in genes encoding epigenetic regulatory proteins that modulate gene expression, so-called chromatinopathies. Intriguingly, several of the NDD-linked chromatinopathy genes have been shown to regulate autophagy-related genes, albeit in non-neuronal contexts. From these studies it becomes evident that tight transcriptional regulation of autophagy-related genes is crucial to control autophagic activity. This opens the exciting possibility that aberrant autophagic regulation might underly nervous system impairments in NDDs with disturbed epigenetic regulation. We here summarize NDD-related chromatinopathy genes that are known to regulate transcriptional regulation of autophagy-related genes. Thereby, we want to highlight autophagy as a candidate key hub mechanism in NDD-related chromatinopathies.<b>Abbreviations:</b> ADNP: activity dependent neuroprotector homeobox; ASD: autism spectrum disorder; ATG: AutTophaGy related; CpG: cytosine-guanine dinucleotide; DNMT: DNA methyltransferase; EHMT: euchromatic histone lysine methyltransferase; EP300: E1A binding protein p300; EZH2: enhancer of zeste 2 polycomb repressive complex 2 subunit; H3K4me3: histone 3 lysine 4 trimethylation; H3K9me1/2/3: histone 3 lysine 9 mono-, di-, or trimethylation; H3K27me2/3: histone 3 lysine 27 di-, or trimethylation; hiPSCs: human induced pluripotent stem cells; HSP: hereditary spastic paraplegia; ID: intellectual disability; KANSL1: KAT8 regulatory NSL complex subunit 1; KAT8: lysine acetyltransferase 8; KDM1A/LSD1: lysine demethylase 1A; MAP1LC3B: microtubule associated protein 1 light chain 3 beta; MTOR: mechanistic target of rapamycin kinase; MTORC1: mechanistic target of rapamycin complex 1; NDD: neurodevelopmental disorder; PHF8: PHD finger protein 8; PHF8-XLID: PHF8-X linked intellectual disability syndrome; PTM: post-translational modification; SESN2: sestrin 2; YY1: YY1 transcription factor; YY1AP1: YY1 associated protein 1.</p>","PeriodicalId":8722,"journal":{"name":"Autophagy","volume":" ","pages":"15-28"},"PeriodicalIF":13.3,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10761153/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10172965","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Targeting SARM1 improves autophagic stress-induced axonal neuropathy. 靶向 SARM1 可改善自噬应激诱导的轴索神经病变
IF 13.3 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2024-01-01 Epub Date: 2023-08-18 DOI: 10.1080/15548627.2023.2244861
Hye Ran Kim, Hye Jin Lee, Yewon Jeon, So Young Jang, Yoon Kyoung Shin, Jean Ho Yun, Hye Ji Park, Hyongjong Koh, Kyung Eun Lee, Jung Eun Shin, Hwan Tae Park

Abbreviations: AAV: adeno-associated virus; ATF3: activating transcription factor 3; ATG7: autophagy related 7; AVIL: advillin; cADPR: cyclic ADP ribose; CALC: calcitonin/calcitonin-related polypeptide; CMT: Charcot-Marie-Tooth disease; cKO: conditional knockout; DEG: differentially expressed gene; DRG: dorsal root ganglion; FE-SEM: field emission scanning electron microscopy; IF: immunofluorescence; NCV: nerve conduction velocity; PVALB: parvalbumin; RAG: regeneration-associated gene; ROS: reactive oxygen species; SARM1: sterile alpha and HEAT/Armadillo motif containing 1; SYN1: synapsin I.

缩写:缩写: AAV:腺相关病毒;ATF3:激活转录因子 3;ATG7:自噬相关 7;AVIL:advillin;cADPR:环 ADP 核糖;CALC:降钙素/降钙素相关多肽;CMT:Charcot-Marie-Tooth 病;cKO:条件性基因敲除;DEG:差异表达基因;DRG:FE-SEM:场发射扫描电子显微镜;IF:免疫荧光;NCV:神经传导速度;PVALB:parvalbumin;RAG:再生相关基因;ROS:活性氧;SARM1:不育α和 HEAT/Armadillo motif containing 1;SYN1:突触素 I。
{"title":"Targeting SARM1 improves autophagic stress-induced axonal neuropathy.","authors":"Hye Ran Kim, Hye Jin Lee, Yewon Jeon, So Young Jang, Yoon Kyoung Shin, Jean Ho Yun, Hye Ji Park, Hyongjong Koh, Kyung Eun Lee, Jung Eun Shin, Hwan Tae Park","doi":"10.1080/15548627.2023.2244861","DOIUrl":"10.1080/15548627.2023.2244861","url":null,"abstract":"<p><strong>Abbreviations: </strong>AAV: adeno-associated virus; ATF3: activating transcription factor 3; ATG7: autophagy related 7; AVIL: advillin; cADPR: cyclic ADP ribose; CALC: calcitonin/calcitonin-related polypeptide; CMT: Charcot-Marie-Tooth disease; cKO: conditional knockout; DEG: differentially expressed gene; DRG: dorsal root ganglion; FE-SEM: field emission scanning electron microscopy; IF: immunofluorescence; NCV: nerve conduction velocity; PVALB: parvalbumin; RAG: regeneration-associated gene; ROS: reactive oxygen species; SARM1: sterile alpha and HEAT/Armadillo motif containing 1; <i>SYN1</i>: synapsin I.</p>","PeriodicalId":8722,"journal":{"name":"Autophagy","volume":" ","pages":"29-44"},"PeriodicalIF":13.3,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10761069/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10016617","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tumor-derived lactate promotes resistance to bevacizumab treatment by facilitating autophagy enhancer protein RUBCNL expression through histone H3 lysine 18 lactylation (H3K18la) in colorectal cancer. 肿瘤来源的乳酸盐通过组蛋白H3赖氨酸18乳化(H3K18la)促进自噬增强蛋白RUBCNL在结直肠癌中的表达,从而增强贝伐珠单抗治疗的抗药性。
IF 13.3 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2024-01-01 Epub Date: 2023-08-29 DOI: 10.1080/15548627.2023.2249762
Weihao Li, Chi Zhou, Long Yu, Zhenlin Hou, Huashan Liu, Lingheng Kong, Yanbo Xu, Jiahua He, Jin Lan, Qingjian Ou, Yujing Fang, Zhenhai Lu, Xiaojun Wu, Zhizhong Pan, Jianhong Peng, Junzhong Lin

Bevacizumab plays an important role in the first and second line treatment for metastatic colorectal cancer (CRC). And induction of hypoxia and the tumors response to it plays an important role in determining the efficacy of antiangiogenic therapy while the connection between them remains unclear. Here, we found that lactate accumulated in the tumor environment of CRC and acted as substrates for histone lactylation, and this process was further induced by cellular enhanced glycolysis in hypoxia. We determined that CRC patients resistant to bevacizumab treatment presented with elevated levels of histone lactylation and inhibition of histone lactylation efficiently suppressed CRC tumorigenesis, progression and survival in hypoxia. Histone lactylation promoted the transcription of RUBCNL/Pacer, facilitating autophagosome maturation through interacting with BECN1 (beclin 1) and mediating the recruitment and function of the class III phosphatidylinositol 3-kinase complex, which had a crucial role in hypoxic cancer cells proliferation and survival. Moreover, combining inhibition of histone lactylation and macroautophagy/autophagy with bevacizumab treatment demonstrated remarkable treatment efficacy in bevacizumab-resistance patients-derived pre-clinical models. These findings delivered a new exploration and important supplement of metabolic reprogramming-epigenetic regulation, and provided a new strategy for improving clinical efficacy of bevacizumab in CRC by inhibition of histone lactylation.Abbreviations: 2-DG: 2-deoxy-D-glucose; BECN1: beclin 1; CQ: chloroquine; CRC: colorectal cancer; DMOG: dimethyloxalylglycine; H3K18la: histone H3 lysine 18 lactylation; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; Nala: sodium lactate; PDO: patient-derived orgnoid; PDX: patient-derived xenograft; RUBCNL/Pacer: rubicon like autophagy enhancer; SQSTM1/p62: sequestosome 1.

贝伐单抗在转移性结直肠癌(CRC)的一线和二线治疗中发挥着重要作用。而诱导缺氧和肿瘤对缺氧的反应在决定抗血管生成治疗的疗效方面起着重要作用,但它们之间的联系仍不清楚。在这里,我们发现乳酸在 CRC 的肿瘤环境中积累,并成为组蛋白乳酸化的底物,而在缺氧环境中细胞糖酵解增强进一步诱导了这一过程。我们发现,对贝伐珠单抗治疗耐药的 CRC 患者组蛋白乳化水平升高,抑制组蛋白乳化可有效抑制缺氧条件下 CRC 的肿瘤发生、进展和存活。组蛋白乳化促进了RUBCNL/Pacer的转录,通过与BECN1(beclin 1)的相互作用促进了自噬体的成熟,并介导了III类磷脂酰肌醇3-激酶复合物的招募和功能,而III类磷脂酰肌醇3-激酶复合物在缺氧癌细胞的增殖和存活中起着至关重要的作用。此外,将抑制组蛋白乳化和大自噬/自噬与贝伐珠单抗治疗相结合,在贝伐珠单抗耐药患者衍生的临床前模型中显示出显著的疗效。这些发现为代谢重编程-表观遗传调控提供了新的探索和重要补充,并为通过抑制组蛋白乳酰化提高贝伐珠单抗在 CRC 中的临床疗效提供了新的策略:缩写:2-DG:2-脱氧-D-葡萄糖;BECN1:beclin 1;CQ:氯喹;CRC:结直肠癌;DMOG:二甲基环己基甘氨酸;H3K18la:组蛋白H3赖氨酸18乳化;MAP1LC3B/LC3B:MAP1LC3B/LC3B:微管相关蛋白 1 轻链 3 beta;Nala:乳酸钠;PDO:患者来源的瘤样组织;PDX:患者来源的异种移植物;RUBCNL/Pacer:类似 rubicon 的自噬增强子;SQSTM1/p62:序列组 1。
{"title":"Tumor-derived lactate promotes resistance to bevacizumab treatment by facilitating autophagy enhancer protein RUBCNL expression through histone H3 lysine 18 lactylation (H3K18la) in colorectal cancer.","authors":"Weihao Li, Chi Zhou, Long Yu, Zhenlin Hou, Huashan Liu, Lingheng Kong, Yanbo Xu, Jiahua He, Jin Lan, Qingjian Ou, Yujing Fang, Zhenhai Lu, Xiaojun Wu, Zhizhong Pan, Jianhong Peng, Junzhong Lin","doi":"10.1080/15548627.2023.2249762","DOIUrl":"10.1080/15548627.2023.2249762","url":null,"abstract":"<p><p>Bevacizumab plays an important role in the first and second line treatment for metastatic colorectal cancer (CRC). And induction of hypoxia and the tumors response to it plays an important role in determining the efficacy of antiangiogenic therapy while the connection between them remains unclear. Here, we found that lactate accumulated in the tumor environment of CRC and acted as substrates for histone lactylation, and this process was further induced by cellular enhanced glycolysis in hypoxia. We determined that CRC patients resistant to bevacizumab treatment presented with elevated levels of histone lactylation and inhibition of histone lactylation efficiently suppressed CRC tumorigenesis, progression and survival in hypoxia. Histone lactylation promoted the transcription of RUBCNL/Pacer, facilitating autophagosome maturation through interacting with BECN1 (beclin 1) and mediating the recruitment and function of the class III phosphatidylinositol 3-kinase complex, which had a crucial role in hypoxic cancer cells proliferation and survival. Moreover, combining inhibition of histone lactylation and macroautophagy/autophagy with bevacizumab treatment demonstrated remarkable treatment efficacy in bevacizumab-resistance patients-derived pre-clinical models. These findings delivered a new exploration and important supplement of metabolic reprogramming-epigenetic regulation, and provided a new strategy for improving clinical efficacy of bevacizumab in CRC by inhibition of histone lactylation.<b>Abbreviations:</b> 2-DG: 2-deoxy-D-glucose; BECN1: beclin 1; CQ: chloroquine; CRC: colorectal cancer; DMOG: dimethyloxalylglycine; H3K18la: histone H3 lysine 18 lactylation; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; Nala: sodium lactate; PDO: patient-derived orgnoid; PDX: patient-derived xenograft; RUBCNL/Pacer: rubicon like autophagy enhancer; SQSTM1/p62: sequestosome 1.</p>","PeriodicalId":8722,"journal":{"name":"Autophagy","volume":" ","pages":"114-130"},"PeriodicalIF":13.3,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10761097/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10101364","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The spatiotemporal control of ER membrane fragmentation during reticulophagy. 网状吞噬过程中ER膜破碎的时空控制
IF 14.6 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2024-01-01 Epub Date: 2023-08-31 DOI: 10.1080/15548627.2023.2252723
Xinyi Wang, Boran Li, Qiming Sun

Reticulophagy is an evolutionarily conserved mechanism essential to maintain the endoplasmic reticulum (ER) homeostasis. A series of studies identified a panel of reticulophagy receptors. However, it remains unclear how these receptors sense upstream signals for spatiotemporal control of reticulophagy and how ER is fragmented into small pieces for sequestration into phagophores. Recently, we and others showed that the oligomerization of RETREG1/FAM134B (reticulophagy regulator 1), an reticulophagy receptor, triggers the scission of ER membrane to facilitate reticulophagy. Furthermore, we demonstrated that upstream signals are transduced by sequential phosphorylation and acetylation of RETREG1, which stimulate its oligomerization, ER fragmentation and reticulophagy. Our work provides further mechanistic insights into how reticulophagy receptor conveys cellular signals to fine-tune of ER homeostasis.Abbreviations: ER, endoplasmic reticulum; MAP1LC3, microtubule-associated protein light chain 3; RETREG1, reticulophagy regulator 1; RHD, reticulon-homology domain.

网状吞噬是一种进化保守的机制,对维持内质网(ER)的平衡至关重要。一系列研究发现了一系列网状吞噬受体。然而,目前仍不清楚这些受体如何感知上游信号以控制网吞噬的时空,也不清楚内质网如何被分割成小块以固着在吞噬细胞中。最近,我们和其他人发现,网吞噬受体 RETREG1/FAM134B(网吞噬调节因子 1)的寡聚化引发了 ER 膜的裂解,从而促进了网吞噬。此外,我们还证明了上游信号是通过 RETREG1 的连续磷酸化和乙酰化传递的,从而刺激其寡聚化、ER 断裂和网状吞噬。我们的工作为网状吞噬受体如何传递细胞信号以微调ER平衡提供了进一步的机理见解:缩写:ER,内质网;MAP1LC3,微管相关蛋白轻链 3;RETREG1,网吞噬调节因子 1;RHD,网吞噬同源结构域。
{"title":"The spatiotemporal control of ER membrane fragmentation during reticulophagy.","authors":"Xinyi Wang, Boran Li, Qiming Sun","doi":"10.1080/15548627.2023.2252723","DOIUrl":"10.1080/15548627.2023.2252723","url":null,"abstract":"<p><p>Reticulophagy is an evolutionarily conserved mechanism essential to maintain the endoplasmic reticulum (ER) homeostasis. A series of studies identified a panel of reticulophagy receptors. However, it remains unclear how these receptors sense upstream signals for spatiotemporal control of reticulophagy and how ER is fragmented into small pieces for sequestration into phagophores. Recently, we and others showed that the oligomerization of RETREG1/FAM134B (reticulophagy regulator 1), an reticulophagy receptor, triggers the scission of ER membrane to facilitate reticulophagy. Furthermore, we demonstrated that upstream signals are transduced by sequential phosphorylation and acetylation of RETREG1, which stimulate its oligomerization, ER fragmentation and reticulophagy. Our work provides further mechanistic insights into how reticulophagy receptor conveys cellular signals to fine-tune of ER homeostasis.<b>Abbreviations</b>: ER, endoplasmic reticulum; MAP1LC3, microtubule-associated protein light chain 3; RETREG1, reticulophagy regulator 1; RHD, reticulon-homology domain.</p>","PeriodicalId":8722,"journal":{"name":"Autophagy","volume":" ","pages":"210-211"},"PeriodicalIF":14.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10761031/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10131482","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
NBR1-mediated selective chloroplast autophagy is important to plant stress tolerance. NBR1 介导的叶绿体选择性自噬对植物的抗逆性非常重要。
IF 14.6 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2024-01-01 Epub Date: 2023-08-27 DOI: 10.1080/15548627.2023.2251324
Hui Zhang, Qihua Ling

Macroautophagy/autophagy is a conserved process in eukaryotes responsible for degrading unwanted or damaged macromolecules and organelles through the lysosome or vacuole for recycling and reutilization. Our previous studies revealed the degradation of chloroplast proteins through a pathway dependent on the ubiquitin proteasome system, known as CHLORAD. Recently, we demonstrated a role for selective autophagy in regulating chloroplast protein import and enhancing stress tolerance in plants. Specifically, we found that K63-ubiquitination of TOC components at the chloroplast outer envelope membrane is recognized by the selective autophagy adaptor NBR1, leading to the degradation of TOC proteins under UV-B irradiation and heat stresses in Arabidopsis. This process was shown to control chloroplast protein import and influence photosynthetic activity. Based on our results, we have, for the first time, demonstrated that selective autophagy plays a vital role in chloroplast protein degradation, specifically in response to certain abiotic stresses.

大自噬/自噬是真核生物的一种保守过程,负责通过溶酶体或液泡降解不需要的或受损的大分子和细胞器,以便回收和再利用。我们以前的研究揭示了叶绿体蛋白质的降解是通过一种依赖于泛素蛋白酶体系统的途径进行的,这种途径被称为 CHLORAD。最近,我们证明了选择性自噬在调节叶绿体蛋白导入和提高植物抗逆性方面的作用。具体来说,我们发现叶绿体外包膜上的 TOC 成分的 K63 泛素化被选择性自噬适配体 NBR1 识别,从而导致拟南芥在紫外线-B 照射和热胁迫下的 TOC 蛋白降解。这一过程被证明可以控制叶绿体蛋白质的导入并影响光合作用活性。基于我们的研究结果,我们首次证明了选择性自噬在叶绿体蛋白质降解中发挥着重要作用,特别是在应对某些非生物胁迫时。
{"title":"NBR1-mediated selective chloroplast autophagy is important to plant stress tolerance.","authors":"Hui Zhang, Qihua Ling","doi":"10.1080/15548627.2023.2251324","DOIUrl":"10.1080/15548627.2023.2251324","url":null,"abstract":"<p><p>Macroautophagy/autophagy is a conserved process in eukaryotes responsible for degrading unwanted or damaged macromolecules and organelles through the lysosome or vacuole for recycling and reutilization. Our previous studies revealed the degradation of chloroplast proteins through a pathway dependent on the ubiquitin proteasome system, known as CHLORAD. Recently, we demonstrated a role for selective autophagy in regulating chloroplast protein import and enhancing stress tolerance in plants. Specifically, we found that K63-ubiquitination of TOC components at the chloroplast outer envelope membrane is recognized by the selective autophagy adaptor NBR1, leading to the degradation of TOC proteins under UV-B irradiation and heat stresses in Arabidopsis. This process was shown to control chloroplast protein import and influence photosynthetic activity. Based on our results, we have, for the first time, demonstrated that selective autophagy plays a vital role in chloroplast protein degradation, specifically in response to certain abiotic stresses.</p>","PeriodicalId":8722,"journal":{"name":"Autophagy","volume":" ","pages":"205-206"},"PeriodicalIF":14.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10761070/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10084449","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
AutophagyNet: high-resolution data source for the analysis of autophagy and its regulation. 自噬网:分析自噬及其调控的高分辨率数据源。
IF 14.6 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2024-01-01 Epub Date: 2023-08-17 DOI: 10.1080/15548627.2023.2247737
Luca Csabai, Balázs Bohár, Dénes Türei, Sowmya Prabhu, László Földvári-Nagy, Matthew Madgwick, Dávid Fazekas, Dezső Módos, Márton Ölbei, Themis Halka, Martina Poletti, Polina Kornilova, Tamás Kadlecsik, Amanda Demeter, Máté Szalay-Bekő, Orsolya Kapuy, Katalin Lenti, Tibor Vellai, Lejla Gul, Tamás Korcsmáros

Macroautophagy/autophagy is a highly-conserved catabolic procss eliminating dysfunctional cellular components and invading pathogens. Autophagy malfunction contributes to disorders such as cancer, neurodegenerative and inflammatory diseases. Understanding autophagy regulation in health and disease has been the focus of the last decades. We previously provided an integrated database for autophagy research, the Autophagy Regulatory Network (ARN). For the last eight years, this resource has been used by thousands of users. Here, we present a new and upgraded resource, AutophagyNet. It builds on the previous database but contains major improvements to address user feedback and novel needs due to the advancement in omics data availability. AutophagyNet contains updated interaction curation and integration of over 280,000 experimentally verified interactions between core autophagy proteins and their protein, transcriptional and post-transcriptional regulators as well as their potential upstream pathway connections. AutophagyNet provides annotations for each core protein about their role: 1) in different types of autophagy (mitophagy, xenophagy, etc.); 2) in distinct stages of autophagy (initiation, expansion, termination, etc.); 3) with subcellular and tissue-specific localization. These annotations can be used to filter the dataset, providing customizable download options tailored to the user's needs. The resource is available in various file formats (e.g. CSV, BioPAX and PSI-MI), and data can be analyzed and visualized directly in Cytoscape. The multi-layered regulation of autophagy can be analyzed by combining AutophagyNet with tissue- or cell type-specific (multi-)omics datasets (e.g. transcriptomic or proteomic data). The resource is publicly accessible at http://autophagynet.org.Abbreviations: ARN: Autophagy Regulatory Network; ATG: autophagy related; BCR: B cell receptor pathway; BECN1: beclin 1; GABARAP: GABA type A receptor-associated protein; IIP: innate immune pathway; LIR: LC3-interacting region; lncRNA: long non-coding RNA; MAP1LC3B: microtubule associated protein 1 light chain 3 beta; miRNA: microRNA; NHR: nuclear hormone receptor; PTM: post-translational modification; RTK: receptor tyrosine kinase; TCR: T cell receptor; TLR: toll like receptor.

大自噬/自噬是一种高度保守的分解代谢过程,可消除功能失调的细胞成分和入侵的病原体。自噬功能失常会导致癌症、神经退行性疾病和炎症等疾病。了解自噬在健康和疾病中的调控一直是过去几十年的研究重点。我们之前提供了一个自噬研究综合数据库,即自噬调控网络(ARN)。在过去的八年中,已有数千名用户使用了这一资源。在此,我们推出了一个全新的升级版资源--自噬网络(AutophagyNet)。它建立在以前数据库的基础上,并针对用户的反馈意见和omics数据可用性的进步所带来的新需求进行了重大改进。AutophagyNet 包含对 280,000 多种经实验验证的核心自噬蛋白与其蛋白质、转录和转录后调控因子之间的相互作用以及其潜在的上游通路连接进行的更新的相互作用整理和整合。AutophagyNet 为每个核心蛋白提供了有关其作用的注释:1)在不同类型的自噬中(有丝分裂、异噬等);2)在自噬的不同阶段(启动、扩展、终止等);3)亚细胞和组织特异性定位。这些注释可用于过滤数据集,提供符合用户需求的定制下载选项。该资源有多种文件格式(如 CSV、BioPAX 和 PSI-MI),数据可直接在 Cytoscape 中进行分析和可视化。通过将 AutophagyNet 与特定组织或细胞类型的(多)组数据集(如转录组或蛋白质组数据)相结合,可以分析自噬的多层调控。该资源可通过 http://autophagynet.org.Abbreviations 公开访问:ARN:ARN:自噬调控网络;ATG:自噬相关;BCR:B 细胞受体通路;BECN1:beclin 1;GABARAP:GABA A 型受体相关:IIP:先天免疫途径;LIR:LC3-interacting region;lncRNA:长非编码 RNA;MAP1LC3B:微管相关蛋白 1 轻链 3 beta;miRNA:微RNA;NHR:核激素受体;PTM:翻译后修饰;RTK:受体酪氨酸激酶;TCR:T 细胞受体;TLR:类收费受体。
{"title":"AutophagyNet: high-resolution data source for the analysis of autophagy and its regulation.","authors":"Luca Csabai, Balázs Bohár, Dénes Türei, Sowmya Prabhu, László Földvári-Nagy, Matthew Madgwick, Dávid Fazekas, Dezső Módos, Márton Ölbei, Themis Halka, Martina Poletti, Polina Kornilova, Tamás Kadlecsik, Amanda Demeter, Máté Szalay-Bekő, Orsolya Kapuy, Katalin Lenti, Tibor Vellai, Lejla Gul, Tamás Korcsmáros","doi":"10.1080/15548627.2023.2247737","DOIUrl":"10.1080/15548627.2023.2247737","url":null,"abstract":"<p><p>Macroautophagy/autophagy is a highly-conserved catabolic procss eliminating dysfunctional cellular components and invading pathogens. Autophagy malfunction contributes to disorders such as cancer, neurodegenerative and inflammatory diseases. Understanding autophagy regulation in health and disease has been the focus of the last decades. We previously provided an integrated database for autophagy research, the Autophagy Regulatory Network (ARN). For the last eight years, this resource has been used by thousands of users. Here, we present a new and upgraded resource, AutophagyNet. It builds on the previous database but contains major improvements to address user feedback and novel needs due to the advancement in omics data availability. AutophagyNet contains updated interaction curation and integration of over 280,000 experimentally verified interactions between core autophagy proteins and their protein, transcriptional and post-transcriptional regulators as well as their potential upstream pathway connections. AutophagyNet provides annotations for each core protein about their role: 1) in different types of autophagy (mitophagy, xenophagy, etc.); 2) in distinct stages of autophagy (initiation, expansion, termination, etc.); 3) with subcellular and tissue-specific localization. These annotations can be used to filter the dataset, providing customizable download options tailored to the user's needs. The resource is available in various file formats (e.g. CSV, BioPAX and PSI-MI), and data can be analyzed and visualized directly in Cytoscape. The multi-layered regulation of autophagy can be analyzed by combining AutophagyNet with tissue- or cell type-specific (multi-)omics datasets (e.g. transcriptomic or proteomic data). The resource is publicly accessible at http://autophagynet.org.<b>Abbreviations</b>: ARN: Autophagy Regulatory Network; ATG: autophagy related; BCR: B cell receptor pathway; BECN1: beclin 1; GABARAP: GABA type A receptor-associated protein; IIP: innate immune pathway; LIR: LC3-interacting region; lncRNA: long non-coding RNA; MAP1LC3B: microtubule associated protein 1 light chain 3 beta; miRNA: microRNA; NHR: nuclear hormone receptor; PTM: post-translational modification; RTK: receptor tyrosine kinase; TCR: T cell receptor; TLR: toll like receptor.</p>","PeriodicalId":8722,"journal":{"name":"Autophagy","volume":" ","pages":"188-201"},"PeriodicalIF":14.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10761021/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10011680","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The CTNS-MTORC1 axis couples lysosomal cystine to epithelial cell fate decisions and is a targetable pathway in cystinosis. CTNS-MTORC1 轴将溶酶体胱氨酸与上皮细胞命运决定联系在一起,是胱氨酸沉积症的一个靶向途径。
IF 13.3 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2024-01-01 Epub Date: 2023-08-24 DOI: 10.1080/15548627.2023.2250165
Alessandro Luciani, Olivier Devuyst

Differentiation and fate decisions are critical for the epithelial cells lining the proximal tubule (PT) of the kidney, but the signals involved remain unknown. Defective cystine mobilization from lysosomes through CTNS (cystinosin, lysosomal cystine transporter), which is mutated in cystinosis, triggers the dedifferentiation and dysfunction of the PT cells, causing kidney disease and severe metabolic complications. Using preclinical models and physiologically relevant cellular systems, along with functional assays and a generative artificial intelligence (AI)-powered engine, we found that cystine storage imparted by CTNS deficiency stimulates Ragulator-RRAG GTPase-dependent recruitment of MTORC1 and its constitutive activation. In turn, this diverts the catabolic trajectories and differentiating states of PT cells toward growth and proliferation, disrupting homeostasis and their specialized functions. Therapeutic MTORC1 inhibition by using low doses of rapamycin corrects lysosome function and differentiation downstream of cystine storage and ameliorates PT dysfunction in preclinical models of cystinosis. These discoveries suggest that cystine may act as a lysosomal fasting signal that tailors MTORC1 signaling to direct fate decisions in the kidney PT epithelium, highlighting novel therapeutic paradigms for cystinosis and other lysosome-related disorders.

分化和命运决定对肾脏近端小管(PT)内衬上皮细胞至关重要,但其中涉及的信号仍不清楚。胱氨酸沉积症患者的胱氨酸转运体 CTNS(胱氨酸酶,溶酶体胱氨酸转运体)发生突变,导致胱氨酸从溶酶体中转移的缺陷,从而引发肾小管上皮细胞的去分化和功能障碍,引起肾脏疾病和严重的代谢并发症。利用临床前模型和生理学相关细胞系统,以及功能测定和人工智能(AI)驱动的生成引擎,我们发现 CTNS 缺乏导致的胱氨酸储存会刺激 Ragulator-RRAG GTPase 依赖性招募 MTORC1 并使其构成性活化。反过来,这又使 PT 细胞的分解代谢轨迹和分化状态转向生长和增殖,破坏了体内平衡及其专门功能。通过使用低剂量雷帕霉素治疗性抑制 MTORC1,可以纠正胱氨酸储存下游的溶酶体功能和分化,并改善胱氨酸沉积症临床前模型中 PT 的功能障碍。这些发现表明,胱氨酸可能是一种溶酶体禁食信号,它能调整MTORC1信号,从而指导肾脏PT上皮细胞的命运决定,为胱氨酸沉着病和其他溶酶体相关疾病提供了新的治疗范例。
{"title":"The CTNS-MTORC1 axis couples lysosomal cystine to epithelial cell fate decisions and is a targetable pathway in cystinosis.","authors":"Alessandro Luciani, Olivier Devuyst","doi":"10.1080/15548627.2023.2250165","DOIUrl":"10.1080/15548627.2023.2250165","url":null,"abstract":"<p><p>Differentiation and fate decisions are critical for the epithelial cells lining the proximal tubule (PT) of the kidney, but the signals involved remain unknown. Defective cystine mobilization from lysosomes through CTNS (cystinosin, lysosomal cystine transporter), which is mutated in cystinosis, triggers the dedifferentiation and dysfunction of the PT cells, causing kidney disease and severe metabolic complications. Using preclinical models and physiologically relevant cellular systems, along with functional assays and a generative artificial intelligence (AI)-powered engine, we found that cystine storage imparted by CTNS deficiency stimulates Ragulator-RRAG GTPase-dependent recruitment of MTORC1 and its constitutive activation. In turn, this diverts the catabolic trajectories and differentiating states of PT cells toward growth and proliferation, disrupting homeostasis and their specialized functions. Therapeutic MTORC1 inhibition by using low doses of rapamycin corrects lysosome function and differentiation downstream of cystine storage and ameliorates PT dysfunction in preclinical models of cystinosis. These discoveries suggest that cystine may act as a lysosomal fasting signal that tailors MTORC1 signaling to direct fate decisions in the kidney PT epithelium, highlighting novel therapeutic paradigms for cystinosis and other lysosome-related disorders.</p>","PeriodicalId":8722,"journal":{"name":"Autophagy","volume":" ","pages":"202-204"},"PeriodicalIF":13.3,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10761040/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10423133","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Autophagy
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1