首页 > 最新文献

Autophagy最新文献

英文 中文
The spatiotemporal control of ER membrane fragmentation during reticulophagy. 网状吞噬过程中ER膜破碎的时空控制
IF 14.6 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2024-01-01 Epub Date: 2023-08-31 DOI: 10.1080/15548627.2023.2252723
Xinyi Wang, Boran Li, Qiming Sun

Reticulophagy is an evolutionarily conserved mechanism essential to maintain the endoplasmic reticulum (ER) homeostasis. A series of studies identified a panel of reticulophagy receptors. However, it remains unclear how these receptors sense upstream signals for spatiotemporal control of reticulophagy and how ER is fragmented into small pieces for sequestration into phagophores. Recently, we and others showed that the oligomerization of RETREG1/FAM134B (reticulophagy regulator 1), an reticulophagy receptor, triggers the scission of ER membrane to facilitate reticulophagy. Furthermore, we demonstrated that upstream signals are transduced by sequential phosphorylation and acetylation of RETREG1, which stimulate its oligomerization, ER fragmentation and reticulophagy. Our work provides further mechanistic insights into how reticulophagy receptor conveys cellular signals to fine-tune of ER homeostasis.Abbreviations: ER, endoplasmic reticulum; MAP1LC3, microtubule-associated protein light chain 3; RETREG1, reticulophagy regulator 1; RHD, reticulon-homology domain.

网状吞噬是一种进化保守的机制,对维持内质网(ER)的平衡至关重要。一系列研究发现了一系列网状吞噬受体。然而,目前仍不清楚这些受体如何感知上游信号以控制网吞噬的时空,也不清楚内质网如何被分割成小块以固着在吞噬细胞中。最近,我们和其他人发现,网吞噬受体 RETREG1/FAM134B(网吞噬调节因子 1)的寡聚化引发了 ER 膜的裂解,从而促进了网吞噬。此外,我们还证明了上游信号是通过 RETREG1 的连续磷酸化和乙酰化传递的,从而刺激其寡聚化、ER 断裂和网状吞噬。我们的工作为网状吞噬受体如何传递细胞信号以微调ER平衡提供了进一步的机理见解:缩写:ER,内质网;MAP1LC3,微管相关蛋白轻链 3;RETREG1,网吞噬调节因子 1;RHD,网吞噬同源结构域。
{"title":"The spatiotemporal control of ER membrane fragmentation during reticulophagy.","authors":"Xinyi Wang, Boran Li, Qiming Sun","doi":"10.1080/15548627.2023.2252723","DOIUrl":"10.1080/15548627.2023.2252723","url":null,"abstract":"<p><p>Reticulophagy is an evolutionarily conserved mechanism essential to maintain the endoplasmic reticulum (ER) homeostasis. A series of studies identified a panel of reticulophagy receptors. However, it remains unclear how these receptors sense upstream signals for spatiotemporal control of reticulophagy and how ER is fragmented into small pieces for sequestration into phagophores. Recently, we and others showed that the oligomerization of RETREG1/FAM134B (reticulophagy regulator 1), an reticulophagy receptor, triggers the scission of ER membrane to facilitate reticulophagy. Furthermore, we demonstrated that upstream signals are transduced by sequential phosphorylation and acetylation of RETREG1, which stimulate its oligomerization, ER fragmentation and reticulophagy. Our work provides further mechanistic insights into how reticulophagy receptor conveys cellular signals to fine-tune of ER homeostasis.<b>Abbreviations</b>: ER, endoplasmic reticulum; MAP1LC3, microtubule-associated protein light chain 3; RETREG1, reticulophagy regulator 1; RHD, reticulon-homology domain.</p>","PeriodicalId":8722,"journal":{"name":"Autophagy","volume":null,"pages":null},"PeriodicalIF":14.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10761031/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10131482","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
AutophagyNet: high-resolution data source for the analysis of autophagy and its regulation. 自噬网:分析自噬及其调控的高分辨率数据源。
IF 13.3 1区 生物学 Q1 Biochemistry, Genetics and Molecular Biology Pub Date : 2024-01-01 Epub Date: 2023-08-17 DOI: 10.1080/15548627.2023.2247737
Luca Csabai, Balázs Bohár, Dénes Türei, Sowmya Prabhu, László Földvári-Nagy, Matthew Madgwick, Dávid Fazekas, Dezső Módos, Márton Ölbei, Themis Halka, Martina Poletti, Polina Kornilova, Tamás Kadlecsik, Amanda Demeter, Máté Szalay-Bekő, Orsolya Kapuy, Katalin Lenti, Tibor Vellai, Lejla Gul, Tamás Korcsmáros

Macroautophagy/autophagy is a highly-conserved catabolic procss eliminating dysfunctional cellular components and invading pathogens. Autophagy malfunction contributes to disorders such as cancer, neurodegenerative and inflammatory diseases. Understanding autophagy regulation in health and disease has been the focus of the last decades. We previously provided an integrated database for autophagy research, the Autophagy Regulatory Network (ARN). For the last eight years, this resource has been used by thousands of users. Here, we present a new and upgraded resource, AutophagyNet. It builds on the previous database but contains major improvements to address user feedback and novel needs due to the advancement in omics data availability. AutophagyNet contains updated interaction curation and integration of over 280,000 experimentally verified interactions between core autophagy proteins and their protein, transcriptional and post-transcriptional regulators as well as their potential upstream pathway connections. AutophagyNet provides annotations for each core protein about their role: 1) in different types of autophagy (mitophagy, xenophagy, etc.); 2) in distinct stages of autophagy (initiation, expansion, termination, etc.); 3) with subcellular and tissue-specific localization. These annotations can be used to filter the dataset, providing customizable download options tailored to the user's needs. The resource is available in various file formats (e.g. CSV, BioPAX and PSI-MI), and data can be analyzed and visualized directly in Cytoscape. The multi-layered regulation of autophagy can be analyzed by combining AutophagyNet with tissue- or cell type-specific (multi-)omics datasets (e.g. transcriptomic or proteomic data). The resource is publicly accessible at http://autophagynet.org.Abbreviations: ARN: Autophagy Regulatory Network; ATG: autophagy related; BCR: B cell receptor pathway; BECN1: beclin 1; GABARAP: GABA type A receptor-associated protein; IIP: innate immune pathway; LIR: LC3-interacting region; lncRNA: long non-coding RNA; MAP1LC3B: microtubule associated protein 1 light chain 3 beta; miRNA: microRNA; NHR: nuclear hormone receptor; PTM: post-translational modification; RTK: receptor tyrosine kinase; TCR: T cell receptor; TLR: toll like receptor.

大自噬/自噬是一种高度保守的分解代谢过程,可消除功能失调的细胞成分和入侵的病原体。自噬功能失常会导致癌症、神经退行性疾病和炎症等疾病。了解自噬在健康和疾病中的调控一直是过去几十年的研究重点。我们之前提供了一个自噬研究综合数据库,即自噬调控网络(ARN)。在过去的八年中,已有数千名用户使用了这一资源。在此,我们推出了一个全新的升级版资源--自噬网络(AutophagyNet)。它建立在以前数据库的基础上,并针对用户的反馈意见和omics数据可用性的进步所带来的新需求进行了重大改进。AutophagyNet 包含对 280,000 多种经实验验证的核心自噬蛋白与其蛋白质、转录和转录后调控因子之间的相互作用以及其潜在的上游通路连接进行的更新的相互作用整理和整合。AutophagyNet 为每个核心蛋白提供了有关其作用的注释:1)在不同类型的自噬中(有丝分裂、异噬等);2)在自噬的不同阶段(启动、扩展、终止等);3)亚细胞和组织特异性定位。这些注释可用于过滤数据集,提供符合用户需求的定制下载选项。该资源有多种文件格式(如 CSV、BioPAX 和 PSI-MI),数据可直接在 Cytoscape 中进行分析和可视化。通过将 AutophagyNet 与特定组织或细胞类型的(多)组数据集(如转录组或蛋白质组数据)相结合,可以分析自噬的多层调控。该资源可通过 http://autophagynet.org.Abbreviations 公开访问:ARN:ARN:自噬调控网络;ATG:自噬相关;BCR:B 细胞受体通路;BECN1:beclin 1;GABARAP:GABA A 型受体相关:IIP:先天免疫途径;LIR:LC3-interacting region;lncRNA:长非编码 RNA;MAP1LC3B:微管相关蛋白 1 轻链 3 beta;miRNA:微RNA;NHR:核激素受体;PTM:翻译后修饰;RTK:受体酪氨酸激酶;TCR:T 细胞受体;TLR:类收费受体。
{"title":"AutophagyNet: high-resolution data source for the analysis of autophagy and its regulation.","authors":"Luca Csabai, Balázs Bohár, Dénes Türei, Sowmya Prabhu, László Földvári-Nagy, Matthew Madgwick, Dávid Fazekas, Dezső Módos, Márton Ölbei, Themis Halka, Martina Poletti, Polina Kornilova, Tamás Kadlecsik, Amanda Demeter, Máté Szalay-Bekő, Orsolya Kapuy, Katalin Lenti, Tibor Vellai, Lejla Gul, Tamás Korcsmáros","doi":"10.1080/15548627.2023.2247737","DOIUrl":"10.1080/15548627.2023.2247737","url":null,"abstract":"<p><p>Macroautophagy/autophagy is a highly-conserved catabolic procss eliminating dysfunctional cellular components and invading pathogens. Autophagy malfunction contributes to disorders such as cancer, neurodegenerative and inflammatory diseases. Understanding autophagy regulation in health and disease has been the focus of the last decades. We previously provided an integrated database for autophagy research, the Autophagy Regulatory Network (ARN). For the last eight years, this resource has been used by thousands of users. Here, we present a new and upgraded resource, AutophagyNet. It builds on the previous database but contains major improvements to address user feedback and novel needs due to the advancement in omics data availability. AutophagyNet contains updated interaction curation and integration of over 280,000 experimentally verified interactions between core autophagy proteins and their protein, transcriptional and post-transcriptional regulators as well as their potential upstream pathway connections. AutophagyNet provides annotations for each core protein about their role: 1) in different types of autophagy (mitophagy, xenophagy, etc.); 2) in distinct stages of autophagy (initiation, expansion, termination, etc.); 3) with subcellular and tissue-specific localization. These annotations can be used to filter the dataset, providing customizable download options tailored to the user's needs. The resource is available in various file formats (e.g. CSV, BioPAX and PSI-MI), and data can be analyzed and visualized directly in Cytoscape. The multi-layered regulation of autophagy can be analyzed by combining AutophagyNet with tissue- or cell type-specific (multi-)omics datasets (e.g. transcriptomic or proteomic data). The resource is publicly accessible at http://autophagynet.org.<b>Abbreviations</b>: ARN: Autophagy Regulatory Network; ATG: autophagy related; BCR: B cell receptor pathway; BECN1: beclin 1; GABARAP: GABA type A receptor-associated protein; IIP: innate immune pathway; LIR: LC3-interacting region; lncRNA: long non-coding RNA; MAP1LC3B: microtubule associated protein 1 light chain 3 beta; miRNA: microRNA; NHR: nuclear hormone receptor; PTM: post-translational modification; RTK: receptor tyrosine kinase; TCR: T cell receptor; TLR: toll like receptor.</p>","PeriodicalId":8722,"journal":{"name":"Autophagy","volume":null,"pages":null},"PeriodicalIF":13.3,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10761021/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10011680","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
NBR1-mediated selective chloroplast autophagy is important to plant stress tolerance. NBR1 介导的叶绿体选择性自噬对植物的抗逆性非常重要。
IF 14.6 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2024-01-01 Epub Date: 2023-08-27 DOI: 10.1080/15548627.2023.2251324
Hui Zhang, Qihua Ling

Macroautophagy/autophagy is a conserved process in eukaryotes responsible for degrading unwanted or damaged macromolecules and organelles through the lysosome or vacuole for recycling and reutilization. Our previous studies revealed the degradation of chloroplast proteins through a pathway dependent on the ubiquitin proteasome system, known as CHLORAD. Recently, we demonstrated a role for selective autophagy in regulating chloroplast protein import and enhancing stress tolerance in plants. Specifically, we found that K63-ubiquitination of TOC components at the chloroplast outer envelope membrane is recognized by the selective autophagy adaptor NBR1, leading to the degradation of TOC proteins under UV-B irradiation and heat stresses in Arabidopsis. This process was shown to control chloroplast protein import and influence photosynthetic activity. Based on our results, we have, for the first time, demonstrated that selective autophagy plays a vital role in chloroplast protein degradation, specifically in response to certain abiotic stresses.

大自噬/自噬是真核生物的一种保守过程,负责通过溶酶体或液泡降解不需要的或受损的大分子和细胞器,以便回收和再利用。我们以前的研究揭示了叶绿体蛋白质的降解是通过一种依赖于泛素蛋白酶体系统的途径进行的,这种途径被称为 CHLORAD。最近,我们证明了选择性自噬在调节叶绿体蛋白导入和提高植物抗逆性方面的作用。具体来说,我们发现叶绿体外包膜上的 TOC 成分的 K63 泛素化被选择性自噬适配体 NBR1 识别,从而导致拟南芥在紫外线-B 照射和热胁迫下的 TOC 蛋白降解。这一过程被证明可以控制叶绿体蛋白质的导入并影响光合作用活性。基于我们的研究结果,我们首次证明了选择性自噬在叶绿体蛋白质降解中发挥着重要作用,特别是在应对某些非生物胁迫时。
{"title":"NBR1-mediated selective chloroplast autophagy is important to plant stress tolerance.","authors":"Hui Zhang, Qihua Ling","doi":"10.1080/15548627.2023.2251324","DOIUrl":"10.1080/15548627.2023.2251324","url":null,"abstract":"<p><p>Macroautophagy/autophagy is a conserved process in eukaryotes responsible for degrading unwanted or damaged macromolecules and organelles through the lysosome or vacuole for recycling and reutilization. Our previous studies revealed the degradation of chloroplast proteins through a pathway dependent on the ubiquitin proteasome system, known as CHLORAD. Recently, we demonstrated a role for selective autophagy in regulating chloroplast protein import and enhancing stress tolerance in plants. Specifically, we found that K63-ubiquitination of TOC components at the chloroplast outer envelope membrane is recognized by the selective autophagy adaptor NBR1, leading to the degradation of TOC proteins under UV-B irradiation and heat stresses in Arabidopsis. This process was shown to control chloroplast protein import and influence photosynthetic activity. Based on our results, we have, for the first time, demonstrated that selective autophagy plays a vital role in chloroplast protein degradation, specifically in response to certain abiotic stresses.</p>","PeriodicalId":8722,"journal":{"name":"Autophagy","volume":null,"pages":null},"PeriodicalIF":14.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10761070/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10084449","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The CTNS-MTORC1 axis couples lysosomal cystine to epithelial cell fate decisions and is a targetable pathway in cystinosis. CTNS-MTORC1 轴将溶酶体胱氨酸与上皮细胞命运决定联系在一起,是胱氨酸沉积症的一个靶向途径。
IF 13.3 1区 生物学 Q1 Biochemistry, Genetics and Molecular Biology Pub Date : 2024-01-01 Epub Date: 2023-08-24 DOI: 10.1080/15548627.2023.2250165
Alessandro Luciani, Olivier Devuyst

Differentiation and fate decisions are critical for the epithelial cells lining the proximal tubule (PT) of the kidney, but the signals involved remain unknown. Defective cystine mobilization from lysosomes through CTNS (cystinosin, lysosomal cystine transporter), which is mutated in cystinosis, triggers the dedifferentiation and dysfunction of the PT cells, causing kidney disease and severe metabolic complications. Using preclinical models and physiologically relevant cellular systems, along with functional assays and a generative artificial intelligence (AI)-powered engine, we found that cystine storage imparted by CTNS deficiency stimulates Ragulator-RRAG GTPase-dependent recruitment of MTORC1 and its constitutive activation. In turn, this diverts the catabolic trajectories and differentiating states of PT cells toward growth and proliferation, disrupting homeostasis and their specialized functions. Therapeutic MTORC1 inhibition by using low doses of rapamycin corrects lysosome function and differentiation downstream of cystine storage and ameliorates PT dysfunction in preclinical models of cystinosis. These discoveries suggest that cystine may act as a lysosomal fasting signal that tailors MTORC1 signaling to direct fate decisions in the kidney PT epithelium, highlighting novel therapeutic paradigms for cystinosis and other lysosome-related disorders.

分化和命运决定对肾脏近端小管(PT)内衬上皮细胞至关重要,但其中涉及的信号仍不清楚。胱氨酸沉积症患者的胱氨酸转运体 CTNS(胱氨酸酶,溶酶体胱氨酸转运体)发生突变,导致胱氨酸从溶酶体中转移的缺陷,从而引发肾小管上皮细胞的去分化和功能障碍,引起肾脏疾病和严重的代谢并发症。利用临床前模型和生理学相关细胞系统,以及功能测定和人工智能(AI)驱动的生成引擎,我们发现 CTNS 缺乏导致的胱氨酸储存会刺激 Ragulator-RRAG GTPase 依赖性招募 MTORC1 并使其构成性活化。反过来,这又使 PT 细胞的分解代谢轨迹和分化状态转向生长和增殖,破坏了体内平衡及其专门功能。通过使用低剂量雷帕霉素治疗性抑制 MTORC1,可以纠正胱氨酸储存下游的溶酶体功能和分化,并改善胱氨酸沉积症临床前模型中 PT 的功能障碍。这些发现表明,胱氨酸可能是一种溶酶体禁食信号,它能调整MTORC1信号,从而指导肾脏PT上皮细胞的命运决定,为胱氨酸沉着病和其他溶酶体相关疾病提供了新的治疗范例。
{"title":"The CTNS-MTORC1 axis couples lysosomal cystine to epithelial cell fate decisions and is a targetable pathway in cystinosis.","authors":"Alessandro Luciani, Olivier Devuyst","doi":"10.1080/15548627.2023.2250165","DOIUrl":"10.1080/15548627.2023.2250165","url":null,"abstract":"<p><p>Differentiation and fate decisions are critical for the epithelial cells lining the proximal tubule (PT) of the kidney, but the signals involved remain unknown. Defective cystine mobilization from lysosomes through CTNS (cystinosin, lysosomal cystine transporter), which is mutated in cystinosis, triggers the dedifferentiation and dysfunction of the PT cells, causing kidney disease and severe metabolic complications. Using preclinical models and physiologically relevant cellular systems, along with functional assays and a generative artificial intelligence (AI)-powered engine, we found that cystine storage imparted by CTNS deficiency stimulates Ragulator-RRAG GTPase-dependent recruitment of MTORC1 and its constitutive activation. In turn, this diverts the catabolic trajectories and differentiating states of PT cells toward growth and proliferation, disrupting homeostasis and their specialized functions. Therapeutic MTORC1 inhibition by using low doses of rapamycin corrects lysosome function and differentiation downstream of cystine storage and ameliorates PT dysfunction in preclinical models of cystinosis. These discoveries suggest that cystine may act as a lysosomal fasting signal that tailors MTORC1 signaling to direct fate decisions in the kidney PT epithelium, highlighting novel therapeutic paradigms for cystinosis and other lysosome-related disorders.</p>","PeriodicalId":8722,"journal":{"name":"Autophagy","volume":null,"pages":null},"PeriodicalIF":13.3,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10761040/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10423133","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Autophagy preserves hematopoietic stem cells by restraining MTORC1-mediated cellular anabolism. 自噬通过抑制MTORC1介导的细胞合成代谢来保存造血干细胞。
IF 13.3 1区 生物学 Q1 Biochemistry, Genetics and Molecular Biology Pub Date : 2024-01-01 Epub Date: 2023-08-23 DOI: 10.1080/15548627.2023.2247310
Mariana Borsa, Sandrine Obba, Felix C Richter, Hanlin Zhang, Thomas Riffelmacher, Joana Carrelha, Ghada Alsaleh, Sten Eirik W Jacobsen, Anna Katharina Simon

Adult stem cells are long-lived and quiescent with unique metabolic requirements. Macroautophagy/autophagy is a fundamental survival mechanism that allows cells to adapt to metabolic changes by degrading and recycling intracellular components. Here we address why autophagy depletion leads to a drastic loss of the stem cell compartment. Using inducible deletion of autophagy specifically in adult hematopoietic stem cells (HSCs) and in mice chimeric for autophagy-deficient and normal HSCs, we demonstrate that the stem cell loss is cell-intrinsic. Mechanistically, autophagy-deficient HSCs showed higher expression of several amino acid transporters (AAT) when compared to autophagy-competent cells, resulting in increased amino acid (AA) uptake. This was followed by sustained MTOR (mechanistic target of rapamycin) activation, with enlarged cell size, glucose uptake and translation, which is detrimental to the quiescent HSCs. MTOR inhibition by rapamycin treatment in vivo was able to rescue autophagy-deficient HSC loss and bone marrow failure and resulted in better reconstitution after transplantation. Our results suggest that targeting MTOR may improve aged stem cell function, promote reprogramming and stem cell transplantation.List of abbreviations: 5FU: fluoracil; AA: amino acids; AKT/PKB: thymoma viral proto-oncogene 1; ATF4: activating transcription factor 4; BafA: bafilomycin A1; BM: bone marrow; EIF2: eukaryotic initiation factor 2; EIF4EBP1/4EBP1: eukaryotic translation initiation factor 4E binding protein 1; KIT/CD117/c-Kit: KIT proto-oncogene receptor tyrosine kinase; HSCs: hematopoietic stem cells; HSPCs: hematopoietic stem and progenitor cells; Kyn: kynurenine; LSK: lineage- (Lin-), LY6A/Sca-1+, KIT/c-Kit/CD117+; LY6A/Sca-1: lymphocyte antigen 6 family member A; MTOR: mechanistic target of rapamycin kinase; MTORC1: MTOR complex 1; MTORC2: MTOR complex 2; OPP: O-propargyl-puromycin; PI3K: phosphoinositide 3-kinase; poly(I:C): polyinosinic:polycytidylic acid; RPS6/S6: ribosomal protein S6; tam: tamoxifen; TCA: tricarboxylic acid; TFEB: transcription factor EB; PTPRC/CD45: Protein Tyrosine Phosphatase Receptor Type C, CD45 antigen.

成体干细胞寿命长且静止,具有独特的代谢需求。大自噬/自噬是一种基本的生存机制,允许细胞通过降解和回收细胞内成分来适应代谢变化。在这里,我们讨论了为什么自噬耗竭会导致干细胞区室的急剧丧失。通过在成人造血干细胞(HSC)和嵌合自噬缺陷和正常HSC的小鼠中特异性地诱导性缺失自噬,我们证明了干细胞的损失是细胞固有的。从机制上讲,与自噬能力细胞相比,自噬缺陷的HSC表现出几种氨基酸转运蛋白(AAT)的更高表达,导致氨基酸(AA)摄取增加。随后是持续的MTOR(雷帕霉素的机制靶点)激活,细胞大小、葡萄糖摄取和翻译增加,这对静止的HSC有害。雷帕霉素在体内抑制MTOR能够挽救自噬缺陷的HSC丢失和骨髓衰竭,并导致移植后更好的重建。我们的研究结果表明,靶向MTOR可以改善老年干细胞功能,促进重编程和干细胞移植。缩写列表:5FU:氟;AA:氨基酸;AKT/PKB:胸腺瘤病毒原癌基因1;ATF4:激活转录因子4;巴非霉素A1;BM:骨髓;EIF2:真核起始因子2;EIF4EBP1/4EBP1:真核翻译起始因子4E结合蛋白1;KIT/CD117/c-KIT:KIT原癌基因受体酪氨酸激酶;造血干细胞:造血干细胞;HSPCs:造血干细胞和祖细胞;Kyn:犬尿氨酸;LSK:谱系-(Lin-),LY6A/Sca-1+,KIT/c-KIT/CD117+;LY6A/Sca-1:淋巴细胞抗原6家族成员A;MTOR:雷帕霉素激酶的机制靶点;MTORC1:MTOR复合体1;MTORC2:MTOR复合体2;OPP:O-炔丙基嘌呤霉素;PI3K:磷酸肌醇3-激酶;聚(I:C):聚肌苷酸:聚胞苷酸;RPS6/S6:核糖体蛋白S6;tam:三苯氧胺;TCA:三羧酸;TFEB:转录因子EB;PTPRC/CD45:蛋白酪氨酸磷酸酶受体C型,CD45抗原。
{"title":"Autophagy preserves hematopoietic stem cells by restraining MTORC1-mediated cellular anabolism.","authors":"Mariana Borsa, Sandrine Obba, Felix C Richter, Hanlin Zhang, Thomas Riffelmacher, Joana Carrelha, Ghada Alsaleh, Sten Eirik W Jacobsen, Anna Katharina Simon","doi":"10.1080/15548627.2023.2247310","DOIUrl":"10.1080/15548627.2023.2247310","url":null,"abstract":"<p><p>Adult stem cells are long-lived and quiescent with unique metabolic requirements. Macroautophagy/autophagy is a fundamental survival mechanism that allows cells to adapt to metabolic changes by degrading and recycling intracellular components. Here we address why autophagy depletion leads to a drastic loss of the stem cell compartment. Using inducible deletion of autophagy specifically in adult hematopoietic stem cells (HSCs) and in mice chimeric for autophagy-deficient and normal HSCs, we demonstrate that the stem cell loss is cell-intrinsic. Mechanistically, autophagy-deficient HSCs showed higher expression of several amino acid transporters (AAT) when compared to autophagy-competent cells, resulting in increased amino acid (AA) uptake. This was followed by sustained MTOR (mechanistic target of rapamycin) activation, with enlarged cell size, glucose uptake and translation, which is detrimental to the quiescent HSCs. MTOR inhibition by rapamycin treatment <i>in vivo</i> was able to rescue autophagy-deficient HSC loss and bone marrow failure and resulted in better reconstitution after transplantation. Our results suggest that targeting MTOR may improve aged stem cell function, promote reprogramming and stem cell transplantation.<b>List of abbreviations:</b> 5FU: fluoracil; AA: amino acids; AKT/PKB: thymoma viral proto-oncogene 1; ATF4: activating transcription factor 4; BafA: bafilomycin A<sub>1</sub>; BM: bone marrow; EIF2: eukaryotic initiation factor 2; EIF4EBP1/4EBP1: eukaryotic translation initiation factor 4E binding protein 1; KIT/CD117/c-Kit: KIT proto-oncogene receptor tyrosine kinase; HSCs: hematopoietic stem cells; HSPCs: hematopoietic stem and progenitor cells; Kyn: kynurenine; LSK: lineage<sup>-</sup> (Lin<sup>-</sup>), LY6A/Sca-1<sup>+</sup>, KIT/c-Kit/CD117<sup>+</sup>; LY6A/Sca-1: lymphocyte antigen 6 family member A; MTOR: mechanistic target of rapamycin kinase; MTORC1: MTOR complex 1; MTORC2: MTOR complex 2; OPP: O-propargyl-puromycin; PI3K: phosphoinositide 3-kinase; poly(I:C): polyinosinic:polycytidylic acid; RPS6/S6: ribosomal protein S6; tam: tamoxifen; TCA: tricarboxylic acid; TFEB: transcription factor EB; PTPRC/CD45: Protein Tyrosine Phosphatase Receptor Type C, CD45 antigen.</p>","PeriodicalId":8722,"journal":{"name":"Autophagy","volume":null,"pages":null},"PeriodicalIF":13.3,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10761185/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10116425","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mammalian phagophores with finger-like shapes emerge from recycling endosomes 哺乳动物具有指状形状的吞噬细胞从循环内体中出现
IF 13.3 1区 生物学 Q1 Biochemistry, Genetics and Molecular Biology Pub Date : 2023-12-14 DOI: 10.1080/15548627.2023.2293439
Claudia Puri, David C Rubinsztein
Autophagosomes are double-membraned vesicles that engulf cytoplasmic contents, which are ultimately degraded after autophagosome-lysosome fusion. The prevailing view, largely inferred from EM-based...
自噬体是吞噬细胞质内容物的双膜囊泡,这些内容物在自噬体与溶酶体融合后最终被降解。自噬体是一种双膜囊泡,吞噬细胞质内容物,最终在自噬体与溶酶体融合后降解。
{"title":"Mammalian phagophores with finger-like shapes emerge from recycling endosomes","authors":"Claudia Puri, David C Rubinsztein","doi":"10.1080/15548627.2023.2293439","DOIUrl":"https://doi.org/10.1080/15548627.2023.2293439","url":null,"abstract":"Autophagosomes are double-membraned vesicles that engulf cytoplasmic contents, which are ultimately degraded after autophagosome-lysosome fusion. The prevailing view, largely inferred from EM-based...","PeriodicalId":8722,"journal":{"name":"Autophagy","volume":null,"pages":null},"PeriodicalIF":13.3,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138684641","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Senecavirus a induces mitophagy to promote self-replication through direct interaction of 2C protein with K27-linked ubiquitinated TUFM catalyzed by RNF185 森纳卡病毒 a 通过 2C 蛋白与 RNF185 催化的 K27 链接泛素化 TUFM 的直接相互作用,诱导有丝分裂以促进自我复制
IF 13.3 1区 生物学 Q1 Biochemistry, Genetics and Molecular Biology Pub Date : 2023-12-12 DOI: 10.1080/15548627.2023.2293442
Meirong Chen, Xin Zhang, Fanshu Kong, Peng Gao, Xinna Ge, Lei Zhou, Jun Han, Xin Guo, Yongning Zhang, Hanchun Yang
Senecavirus A (SVA) is a newly emerging picornavirus associated with swine vesicular lesions and neonatal mortality, threatening the global pig industry. Despite sustained efforts, the molecular me...
塞内卡病毒 A(SVA)是一种新出现的皮卡病毒,与猪水泡病和新生儿死亡有关,威胁着全球养猪业。尽管做出了不懈的努力,但分子生物学...
{"title":"Senecavirus a induces mitophagy to promote self-replication through direct interaction of 2C protein with K27-linked ubiquitinated TUFM catalyzed by RNF185","authors":"Meirong Chen, Xin Zhang, Fanshu Kong, Peng Gao, Xinna Ge, Lei Zhou, Jun Han, Xin Guo, Yongning Zhang, Hanchun Yang","doi":"10.1080/15548627.2023.2293442","DOIUrl":"https://doi.org/10.1080/15548627.2023.2293442","url":null,"abstract":"Senecavirus A (SVA) is a newly emerging picornavirus associated with swine vesicular lesions and neonatal mortality, threatening the global pig industry. Despite sustained efforts, the molecular me...","PeriodicalId":8722,"journal":{"name":"Autophagy","volume":null,"pages":null},"PeriodicalIF":13.3,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138579794","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The hookup model of the HOPS complex in autophagosome-lysosome fusion 自噬体-溶酶体融合过程中的 HOPS 复合物挂钩模型
IF 13.3 1区 生物学 Q1 Biochemistry, Genetics and Molecular Biology Pub Date : 2023-12-11 DOI: 10.1080/15548627.2023.2291938
Shen Zhang, Linsen Li, Xiaoxia Liu, Qing Zhong
Macroautophagy/autophagy is a highly conserved process that involves the degradation of proteins, damaged organelles, and other cytoplasmic macromolecules. Autophagosome-lysosome fusion is critical...
大自噬/自噬是一个高度保守的过程,涉及蛋白质、受损细胞器和其他细胞质大分子的降解。自噬体与溶酶体的融合至关重要...
{"title":"The hookup model of the HOPS complex in autophagosome-lysosome fusion","authors":"Shen Zhang, Linsen Li, Xiaoxia Liu, Qing Zhong","doi":"10.1080/15548627.2023.2291938","DOIUrl":"https://doi.org/10.1080/15548627.2023.2291938","url":null,"abstract":"Macroautophagy/autophagy is a highly conserved process that involves the degradation of proteins, damaged organelles, and other cytoplasmic macromolecules. Autophagosome-lysosome fusion is critical...","PeriodicalId":8722,"journal":{"name":"Autophagy","volume":null,"pages":null},"PeriodicalIF":13.3,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138579845","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
LTN1 promotes RLR degradation to inhibit immune response to RNA virus through the ESCRT pathway LTN1 通过 ESCRT 途径促进 RLR 降解,抑制对 RNA 病毒的免疫反应
IF 13.3 1区 生物学 Q1 Biochemistry, Genetics and Molecular Biology Pub Date : 2023-12-07 DOI: 10.1080/15548627.2023.2291939
Fei Qin, Baoshan Cai, Peng Wang, Runyu Cao, Yuling Zhang, Hongling Wen, Yi Zheng, Wei Zhao, Chengjiang Gao, Bingyu Liu
The excessive activation of immune responses will trigger autoimmune diseases or inflammatory injury. The endosomal sorting complexes required for transport (ESCRT) system can capture and mediate u...
免疫反应的过度激活会引发自身免疫性疾病或炎症损伤。转运所需的内体分拣复合物(ESCRT)系统可以捕获和介导免疫反应,并将其转化为免疫细胞。
{"title":"LTN1 promotes RLR degradation to inhibit immune response to RNA virus through the ESCRT pathway","authors":"Fei Qin, Baoshan Cai, Peng Wang, Runyu Cao, Yuling Zhang, Hongling Wen, Yi Zheng, Wei Zhao, Chengjiang Gao, Bingyu Liu","doi":"10.1080/15548627.2023.2291939","DOIUrl":"https://doi.org/10.1080/15548627.2023.2291939","url":null,"abstract":"The excessive activation of immune responses will trigger autoimmune diseases or inflammatory injury. The endosomal sorting complexes required for transport (ESCRT) system can capture and mediate u...","PeriodicalId":8722,"journal":{"name":"Autophagy","volume":null,"pages":null},"PeriodicalIF":13.3,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138554653","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Activated STING1 rides the Rafeesome. 激活的STING1乘坐Rafeesome。
IF 14.6 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2023-12-01 Epub Date: 2023-08-06 DOI: 10.1080/15548627.2023.2240154
Yaping Han, Jianfei Zheng, Liang Ge

Over the past decade, accumulated studies have reported the presence of non-canonical macroautophagy/autophagy characterized by the shared usage of the autophagy machinery and distinct components that function in multiple scenarios but do not involve lysosomal degradation. One type of non-canonical autophagy is secretory autophagy, which facilitates the secretion of various cargoes. In a recent work from Gao et al. the ER-membrane protein STING1 has been identified as a novel substrate of secretory autophagy. The secretion of activated STING1 is mediated by its packing into the rafeesome, a newly identified organelle formed upon the fusion of RAB22A-mediated non-canonical autophagosome with an early endosome. Moreover, extracellular vesicles containing activated STING1 induce antitumor immunity in recipient cells, a process potentially promoted by RAB22A.

在过去的十年里,积累的研究报告了非典型的大自噬/自噬的存在,其特征是共同使用自噬机制和在多种情况下发挥作用但不涉及溶酶体降解的不同成分。一种非典型的自噬是分泌性自噬,它促进各种货物的分泌。在Gao等人最近的一项工作中,ER膜蛋白STING1已被鉴定为分泌性自噬的新底物。活化的STING1的分泌是通过其堆积到rafeesome中来介导的,Rafeesomes是一种新鉴定的细胞器,由RAB22A介导的非典型自噬体与早期内体融合而形成。此外,含有活化STING1的细胞外小泡在受体细胞中诱导抗肿瘤免疫,这一过程可能由RAB22A促进。
{"title":"Activated STING1 rides the Rafeesome.","authors":"Yaping Han, Jianfei Zheng, Liang Ge","doi":"10.1080/15548627.2023.2240154","DOIUrl":"10.1080/15548627.2023.2240154","url":null,"abstract":"<p><p>Over the past decade, accumulated studies have reported the presence of non-canonical macroautophagy/autophagy characterized by the shared usage of the autophagy machinery and distinct components that function in multiple scenarios but do not involve lysosomal degradation. One type of non-canonical autophagy is secretory autophagy, which facilitates the secretion of various cargoes. In a recent work from Gao et al. the ER-membrane protein STING1 has been identified as a novel substrate of secretory autophagy. The secretion of activated STING1 is mediated by its packing into the rafeesome, a newly identified organelle formed upon the fusion of RAB22A-mediated non-canonical autophagosome with an early endosome. Moreover, extracellular vesicles containing activated STING1 induce antitumor immunity in recipient cells, a process potentially promoted by RAB22A.</p>","PeriodicalId":8722,"journal":{"name":"Autophagy","volume":null,"pages":null},"PeriodicalIF":14.6,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10621249/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10302375","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Autophagy
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1