首页 > 最新文献

Autophagy最新文献

英文 中文
A paradigm shift: AMPK negatively regulates ULK1 activity. 范式转变:AMPK 负向调节 ULK1 的活性。
IF 14.6 1区 生物学 Q1 Biochemistry, Genetics and Molecular Biology Pub Date : 2024-04-01 Epub Date: 2023-06-20 DOI: 10.1080/15548627.2023.2223465
Ji-Man Park, Do-Hyung Kim

In glucose-starved cells, macroautophagy (hereafter referred to as autophagy) is considered to serve as an energy-generating process contributing to cell survival. AMPK (adenosine monophosphate-activated protein kinase) is the primary cellular energy sensor that is activated during glucose starvation. According to the current paradigm in the field, AMPK promotes autophagy in response to energy deprivation by binding and phosphorylating ULK1 (UNC-51 like kinase 1), the protein kinase responsible for autophagy initiation. However, conflicting findings have been reported casting doubts about the current established model. In our recent study, we have thoroughly reevaluated the role of AMPK in autophagy. Contrary to the current paradigm, our study revealed that AMPK functions as a negative regulator of ULK1 activity. The study has elucidated the underlying mechanism and demonstrated the significance of the negative role in controlling autophagy and maintaining cellular resilience during energy depletion.Abbreviations: AMPK: adenosine monophosphate-activated protein kinase; ULK1: UNC-51 like kinase 1; MTORC1: mechanistic target of rapamycin complex 1; ATG14: autophagy-related protein 14; PIK3C3: phosphatidylinositol 3-kinase catalytic subunit type 3; ATP: adenosine triphosphate; VPS34: vacuolar protein sorting 34; BECN1: Beclin 1; AMPKα: AMPK catalytic subunit α; LKB1: liver kinase B1; PIK3R4: phosphatidylinositol 3-kinase regulatory subunit 4.

在葡萄糖饥饿的细胞中,大自噬(以下简称自噬)被认为是一种有助于细胞存活的能量生成过程。AMPK(单磷酸腺苷激活的蛋白激酶)是葡萄糖饥饿时激活的主要细胞能量传感器。根据目前的研究范例,AMPK 通过结合并磷酸化 ULK1(UNC-51 类似激酶 1)(一种负责启动自噬的蛋白激酶)来促进自噬,以应对能量匮乏。然而,一些相互矛盾的研究结果使人们对目前已建立的模型产生了怀疑。在我们最近的研究中,我们彻底重新评估了 AMPK 在自噬中的作用。与目前的模式相反,我们的研究发现 AMPK 对 ULK1 的活性起着负向调节作用。该研究阐明了其潜在机制,并证明了其在控制自噬和维持细胞在能量耗竭时的恢复能力方面的重要作用:缩写:AMPK:单磷酸腺苷激活的蛋白激酶;ULK1:UNC-51 like kinase 1;MTORC1:雷帕霉素复合体1的机制靶标;ATG14:自噬相关蛋白14;PIK3C3:磷脂酰肌醇3-激酶催化亚基3型;ATP:三磷酸腺苷;VPS34:空泡蛋白分选34;BECN1:Beclin 1;AMPKα:LKB1:肝激酶 B1;PIK3R4:磷脂酰肌醇 3-激酶调节亚基 4。
{"title":"A paradigm shift: AMPK negatively regulates ULK1 activity.","authors":"Ji-Man Park, Do-Hyung Kim","doi":"10.1080/15548627.2023.2223465","DOIUrl":"10.1080/15548627.2023.2223465","url":null,"abstract":"<p><p>In glucose-starved cells, macroautophagy (hereafter referred to as autophagy) is considered to serve as an energy-generating process contributing to cell survival. AMPK (adenosine monophosphate-activated protein kinase) is the primary cellular energy sensor that is activated during glucose starvation. According to the current paradigm in the field, AMPK promotes autophagy in response to energy deprivation by binding and phosphorylating ULK1 (UNC-51 like kinase 1), the protein kinase responsible for autophagy initiation. However, conflicting findings have been reported casting doubts about the current established model. In our recent study, we have thoroughly reevaluated the role of AMPK in autophagy. Contrary to the current paradigm, our study revealed that AMPK functions as a negative regulator of ULK1 activity. The study has elucidated the underlying mechanism and demonstrated the significance of the negative role in controlling autophagy and maintaining cellular resilience during energy depletion.<b>Abbreviations:</b> AMPK: adenosine monophosphate-activated protein kinase; ULK1: UNC-51 like kinase 1; MTORC1: mechanistic target of rapamycin complex 1; ATG14: autophagy-related protein 14; PIK3C3: phosphatidylinositol 3-kinase catalytic subunit type 3; ATP: adenosine triphosphate; VPS34: vacuolar protein sorting 34; BECN1: Beclin 1; AMPKα: AMPK catalytic subunit α; LKB1: liver kinase B1; PIK3R4: phosphatidylinositol 3-kinase regulatory subunit 4.</p>","PeriodicalId":8722,"journal":{"name":"Autophagy","volume":null,"pages":null},"PeriodicalIF":14.6,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11062351/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10042888","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An emerging role of non-canonical conjugation of ATG8 proteins in plant response to heat stress. ATG8 蛋白的非典型共轭作用在植物应对热胁迫中的新作用。
IF 13.3 1区 生物学 Q1 Biochemistry, Genetics and Molecular Biology Pub Date : 2024-04-01 Epub Date: 2023-05-31 DOI: 10.1080/15548627.2023.2219161
Xuanang Zheng, Siyu Chen, Caiji Gao, Jun Zhou

Members of the ATG8 (autophagy-related protein 8) protein family can be non-canonically conjugated to single membrane-bound organelles. The exact function of ATG8 on these single membranes remains poorly understood. Recently, using Arabidopsis thaliana as a model system, we identified a non-canonical conjugation of ATG8 pathway involved in the reconstruction of the Golgi apparatus upon heat stress. Short acute heat stress resulted in rapid vesiculation of the Golgi, which was accompanied with the translocation of ATG8 proteins (ATG8a to ATG8i) to the dilated cisternae. More importantly, we found that ATG8 proteins can recruit clathrin to facilitate Golgi reassembly by stimulating the budding of ATG8-positive vesicles from dilated cisternae. These findings provide new insight into one of the possible functions of ATG8 translocation onto single membrane organelles, and will contribute to a better understanding of non-canonical conjugation of ATG8 in eukaryotic cells.Abbreviations: ADS, AIMs docking site; AIM, ATG8-interacting motif; ATG, autophagy-related; CLC2, Clathrin light chain 2; ConcA, concanamycin A; HS, heat stress; PE, phosphatidylethanolamine; PM, plasma membrane; PS, phosphatidylserine; TGN, trans-Golgi network; V-ATPase, vacuolar-type ATPase.

ATG8(自噬相关蛋白8)蛋白家族的成员可与单个膜结合的细胞器非共轭。人们对 ATG8 在这些单层膜上的确切功能仍然知之甚少。最近,我们以拟南芥为模型系统,发现了ATG8在热胁迫时参与高尔基体重建的非规范共轭途径。短时间的急性热胁迫导致高尔基体迅速泡化,并伴随着 ATG8 蛋白(ATG8a 至 ATG8i)向扩张的细胞器转位。更重要的是,我们发现 ATG8 蛋白可以招募凝集素,通过刺激 ATG8 阳性囊泡从扩张的贮液器中出芽来促进高尔基体的重新组装。这些发现为了解 ATG8 易位到单个膜细胞器上的可能功能之一提供了新的视角,并将有助于更好地理解 ATG8 在真核细胞中的非经典共轭作用:缩写:ADS,AIMs对接位点;AIM,ATG8-interacting motif;ATG,自噬相关;CLC2,Clathrin轻链2;ConcA,康那霉素A;HS,热应激;PE,磷脂酰乙醇胺;PM,质膜;PS,磷脂酰丝氨酸;TGN,跨高尔基网络;V-ATPase,空泡型ATPase。
{"title":"An emerging role of non-canonical conjugation of ATG8 proteins in plant response to heat stress.","authors":"Xuanang Zheng, Siyu Chen, Caiji Gao, Jun Zhou","doi":"10.1080/15548627.2023.2219161","DOIUrl":"10.1080/15548627.2023.2219161","url":null,"abstract":"<p><p>Members of the ATG8 (autophagy-related protein 8) protein family can be non-canonically conjugated to single membrane-bound organelles. The exact function of ATG8 on these single membranes remains poorly understood. Recently, using Arabidopsis thaliana as a model system, we identified a non-canonical conjugation of ATG8 pathway involved in the reconstruction of the Golgi apparatus upon heat stress. Short acute heat stress resulted in rapid vesiculation of the Golgi, which was accompanied with the translocation of ATG8 proteins (ATG8a to ATG8i) to the dilated cisternae. More importantly, we found that ATG8 proteins can recruit clathrin to facilitate Golgi reassembly by stimulating the budding of ATG8-positive vesicles from dilated cisternae. These findings provide new insight into one of the possible functions of ATG8 translocation onto single membrane organelles, and will contribute to a better understanding of non-canonical conjugation of ATG8 in eukaryotic cells.<b>Abbreviations:</b> ADS, AIMs docking site; AIM, ATG8-interacting motif; ATG, autophagy-related; CLC2, Clathrin light chain 2; ConcA, concanamycin A; HS, heat stress; PE, phosphatidylethanolamine; PM, plasma membrane; PS, phosphatidylserine; TGN, trans-Golgi network; V-ATPase, vacuolar-type ATPase.</p>","PeriodicalId":8722,"journal":{"name":"Autophagy","volume":null,"pages":null},"PeriodicalIF":13.3,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11062355/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9545950","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Metamorphosis by ATG13 and ATG101 in human autophagy initiation. ATG13 和 ATG101 在人类自噬启动过程中的变态反应
IF 13.3 1区 生物学 Q1 Biochemistry, Genetics and Molecular Biology Pub Date : 2024-04-01 Epub Date: 2023-07-02 DOI: 10.1080/15548627.2023.2230054
Anoshi Patel, Alex C Faesen

Abbreviations: ATG, Autophagy-related, HORMA, protein domain named after HOP1-MAD2-REV7; RB1CC1, RB1 inducible coiled-coil 1; ULK, Unc-51-like kinase.

缩写:缩写:ATG,自噬相关;HORMA,以 HOP1-MAD2-REV7 命名的蛋白结构域;RB1CC1,RB1 诱导盘绕线圈 1;ULK,Unc-51 样激酶。
{"title":"Metamorphosis by ATG13 and ATG101 in human autophagy initiation.","authors":"Anoshi Patel, Alex C Faesen","doi":"10.1080/15548627.2023.2230054","DOIUrl":"10.1080/15548627.2023.2230054","url":null,"abstract":"<p><strong>Abbreviations: </strong>ATG, Autophagy-related, HORMA, protein domain named after HOP1-MAD2-REV7; RB1CC1, RB1 inducible coiled-coil 1; ULK, Unc-51-like kinase.</p>","PeriodicalId":8722,"journal":{"name":"Autophagy","volume":null,"pages":null},"PeriodicalIF":13.3,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11062386/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9742995","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
PHAF1/MYTHO is a novel autophagy regulator that controls muscle integrity. PHAF1/MYTHO 是一种新型自噬调节因子,可控制肌肉的完整性。
IF 13.3 1区 生物学 Q1 Biochemistry, Genetics and Molecular Biology Pub Date : 2024-04-01 Epub Date: 2023-06-12 DOI: 10.1080/15548627.2023.2224206
Anais Franco-Romero, Jean Philippe Leduc-Gaudet, Sabah Na Hussain, Gilles Gouspillou, Marco Sandri

Skeletal muscles play key roles in movement, posture, thermogenesis, and whole-body metabolism. Autophagy plays essential roles in the regulation of muscle mass, function and integrity. However, the molecular machinery that regulates autophagy is still incompletely understood. In our recent study, we identified and characterized a novel Forkhead Box O (FoxO)-dependent gene, PHAF1/MYTHO (phagophore assembly factor 1/macro-autophagy and youth optimizer), as a novel autophagy regulator that controls muscle integrity. MYTHO/PHAF1 is upregulated in multiple conditions leading to muscle atrophy, and downregulation of its expression spares muscle atrophy triggered by fasting, denervation, cachexia and sepsis. Overexpression of PHAF1/MYTHO is sufficient to induce muscle atrophy. Prolonged downregulation of PHAF1/MYTHO causes a severe myopathic phenotype, which is characterized by impaired autophagy, muscle weakness, myofiber degeneration, mammalian target of rapamycin complex 1 (mTORC1) hyperactivation and extensive ultrastructural defects, such as accumulation of proteinaceous and membranous structures and tubular aggregates. This myopathic phenotype is attenuated upon administration of the mTORC1 inhibitor rapamycin. These findings position PHAF1/MYTHO as a novel regulator of skeletal muscle autophagy and tissue integrity.

骨骼肌在运动、姿势、产热和全身新陈代谢中发挥着关键作用。自噬在调节肌肉质量、功能和完整性方面发挥着至关重要的作用。然而,人们对调控自噬的分子机制仍然知之甚少。在最近的研究中,我们发现并鉴定了一种新型叉头框 O(FoxO)依赖基因 PHAF1/MYTHO(吞噬细胞组装因子 1/宏观自噬和青年优化因子),它是一种新型自噬调节因子,可控制肌肉的完整性。MYTHO/PHAF1在多种导致肌肉萎缩的情况下上调,而下调其表达则可避免因禁食、去神经、恶病质和败血症引发的肌肉萎缩。PHAF1/MYTHO 的过表达足以诱发肌肉萎缩。PHAF1/MYTHO 的长期下调会导致严重的肌病表型,其特征是自噬功能受损、肌肉无力、肌纤维变性、雷帕霉素靶点复合体 1(mTORC1)过度激活和广泛的超微结构缺陷,如蛋白质和膜结构的堆积以及管状聚集。这种肌病表型在服用 mTORC1 抑制剂雷帕霉素后有所减轻。这些发现使 PHAF1/MYTHO 成为骨骼肌自噬和组织完整性的新型调节因子。
{"title":"PHAF1/MYTHO is a novel autophagy regulator that controls muscle integrity.","authors":"Anais Franco-Romero, Jean Philippe Leduc-Gaudet, Sabah Na Hussain, Gilles Gouspillou, Marco Sandri","doi":"10.1080/15548627.2023.2224206","DOIUrl":"10.1080/15548627.2023.2224206","url":null,"abstract":"<p><p>Skeletal muscles play key roles in movement, posture, thermogenesis, and whole-body metabolism. Autophagy plays essential roles in the regulation of muscle mass, function and integrity. However, the molecular machinery that regulates autophagy is still incompletely understood. In our recent study, we identified and characterized a novel Forkhead Box O (FoxO)-dependent gene, PHAF1/MYTHO (phagophore assembly factor 1/macro-autophagy and youth optimizer), as a novel autophagy regulator that controls muscle integrity. MYTHO/PHAF1 is upregulated in multiple conditions leading to muscle atrophy, and downregulation of its expression spares muscle atrophy triggered by fasting, denervation, cachexia and sepsis. Overexpression of PHAF1/MYTHO is sufficient to induce muscle atrophy. Prolonged downregulation of PHAF1/MYTHO causes a severe myopathic phenotype, which is characterized by impaired autophagy, muscle weakness, myofiber degeneration, mammalian target of rapamycin complex 1 (mTORC1) hyperactivation and extensive ultrastructural defects, such as accumulation of proteinaceous and membranous structures and tubular aggregates. This myopathic phenotype is attenuated upon administration of the mTORC1 inhibitor rapamycin. These findings position PHAF1/MYTHO as a novel regulator of skeletal muscle autophagy and tissue integrity.</p>","PeriodicalId":8722,"journal":{"name":"Autophagy","volume":null,"pages":null},"PeriodicalIF":13.3,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11062385/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9624752","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Endophilin-A/SH3GL2 calcium switch for synaptic autophagy induction is impaired by a Parkinson's risk variant. 帕金森氏症风险变体会损害突触自噬诱导的嗜内蛋白-A/SH3GL2钙离子开关。
IF 13.3 1区 生物学 Q1 Biochemistry, Genetics and Molecular Biology Pub Date : 2024-04-01 Epub Date: 2023-04-17 DOI: 10.1080/15548627.2023.2200627
Marianna Decet, Sandra-Fausia Soukup

At the synapse, proteins are reused several times during neuronal activity, causing a decline in protein function over time. Although emerging evidence supports a role of autophagy in synaptic function, the precise molecular mechanisms linking neuronal activity, autophagy and synaptic dysfunction are vastly unknown. We show how extracellular calcium influx in the pre-synaptic terminal constitutes the initial stimulus for autophagosome formation in response to neuronal activity. This mechanism likely acts to rapidly support synaptic homeostasis and protein quality control when intense neuronal activity challenges the synaptic proteome. We identified a residue in the flexible region of EndoA (Endophilin A) that dictates calcium-dependent EndoA mobility from the plasma membrane to the cytosol, where this protein interacts with autophagic membranes to promote autophagosome formation. We discovered that a novel Parkinson's disease-risk mutation in SH3GL2 (SH3 domain containing GRB2 like 2, endophilin A1) disrupts the calcium sensing of SH3GL2, leading to an immobile protein that cannot respond to calcium influx and therefore disrupting autophagy induction at synapses. Our work shows how neuronal activity is connected with autophagy to maintain synaptic homeostasis and survival.

在突触中,蛋白质在神经元活动过程中会被多次重复使用,从而导致蛋白质功能随着时间的推移而下降。尽管新的证据支持自噬在突触功能中的作用,但连接神经元活动、自噬和突触功能障碍的确切分子机制却鲜为人知。我们展示了突触前末端的细胞外钙流入如何构成自噬体形成的最初刺激,以应对神经元活动。当神经元的剧烈活动对突触蛋白质组提出挑战时,这种机制可能会迅速支持突触的平衡和蛋白质质量控制。我们确定了 EndoA(嗜内蛋白 A)柔性区域中的一个残基,该残基决定了钙依赖性 EndoA 从质膜到细胞质的移动,在细胞质中,该蛋白与自噬膜相互作用,促进自噬体的形成。我们发现,SH3GL2(SH3 domain containing GRB2 like 2,endophilin A1)中的一种新型帕金森病风险突变破坏了 SH3GL2 的钙传感功能,导致蛋白无法移动,无法对钙流入做出反应,从而破坏了突触处的自噬诱导。我们的工作表明了神经元活动如何与自噬联系在一起,以维持突触的平衡和存活。
{"title":"Endophilin-A/SH3GL2 calcium switch for synaptic autophagy induction is impaired by a Parkinson's risk variant.","authors":"Marianna Decet, Sandra-Fausia Soukup","doi":"10.1080/15548627.2023.2200627","DOIUrl":"10.1080/15548627.2023.2200627","url":null,"abstract":"<p><p>At the synapse, proteins are reused several times during neuronal activity, causing a decline in protein function over time. Although emerging evidence supports a role of autophagy in synaptic function, the precise molecular mechanisms linking neuronal activity, autophagy and synaptic dysfunction are vastly unknown. We show how extracellular calcium influx in the pre-synaptic terminal constitutes the initial stimulus for autophagosome formation in response to neuronal activity. This mechanism likely acts to rapidly support synaptic homeostasis and protein quality control when intense neuronal activity challenges the synaptic proteome. We identified a residue in the flexible region of EndoA (Endophilin A) that dictates calcium-dependent EndoA mobility from the plasma membrane to the cytosol, where this protein interacts with autophagic membranes to promote autophagosome formation. We discovered that a novel Parkinson's disease-risk mutation in SH3GL2 (SH3 domain containing GRB2 like 2, endophilin A1) disrupts the calcium sensing of SH3GL2, leading to an immobile protein that cannot respond to calcium influx and therefore disrupting autophagy induction at synapses. Our work shows how neuronal activity is connected with autophagy to maintain synaptic homeostasis and survival.</p>","PeriodicalId":8722,"journal":{"name":"Autophagy","volume":null,"pages":null},"PeriodicalIF":13.3,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11062392/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9303417","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
FGF21 and autophagy coordinately counteract kidney disease progression during aging and obesity. FGF21和自噬协同对抗衰老和肥胖期间的肾脏疾病进展。
IF 13.3 1区 生物学 Q1 Biochemistry, Genetics and Molecular Biology Pub Date : 2024-03-01 Epub Date: 2023-09-24 DOI: 10.1080/15548627.2023.2259282
Satoshi Minami, Shinsuke Sakai, Takeshi Yamamoto, Yoshitsugu Takabatake, Tomoko Namba-Hamano, Atsushi Takahashi, Jun Matsuda, Hiroaki Yonishi, Jun Nakamura, Shihomi Maeda, Sho Matsui, Isao Matsui, Yoshitaka Isaka

Chronic kidney disease (CKD) has reached epidemic proportions worldwide, partly due to the increasing population of elderly and obesity. Macroautophagy/autophagy counteracts CKD progression, whereas autophagy is stagnated owing to lysosomal overburden during aging and obesity, which promotes CKD progression. Therefore, for preventing CKD progression during aging and obesity, it is important to elucidate the compensation mechanisms of autophagy stagnation. We recently showed that FGF21 (fibroblast growth factor 21), which is a prolongevity and metabolic hormone, is induced by autophagy deficiency in kidney proximal tubular epithelial cells (PTECs); however, its pathophysiological role remains uncertain. Here, we investigated the interplay between FGF21 and autophagy and the direct contribution of endogenous FGF21 in the kidney during aging and obesity using PTEC-specific fgf21- and/or atg5-deficient mice at 24 months (aged) or under high-fat diet (obese) conditions. PTEC-specific FGF21 deficiency in young mice increased autophagic flux due to increased demand of autophagy, whereas fgf21-deficient aged or obese mice exacerbated autophagy stagnation due to severer lysosomal overburden caused by aberrant autophagy. FGF21 was robustly induced by autophagy deficiency, and aged or obese PTEC-specific fgf21- and atg5-double deficient mice deteriorated renal histology compared with atg5-deficient mice. Mitochondrial function was severely disturbed concomitant with exacerbated oxidative stress and downregulated TFAM (transcription factor A, mitochondrial) in double-deficient mice. These results indicate that FGF21 is robustly induced by autophagy disturbance and protects against CKD progression during aging and obesity by alleviating autophagy stagnation and maintaining mitochondrial homeostasis, which will pave the way to a novel treatment for CKD.

慢性肾脏病(CKD)已在全球范围内流行,部分原因是老年人和肥胖人口的增加。大细胞自噬/自噬抵消CKD进展,而自噬由于衰老和肥胖期间溶酶体负担过重而停滞,从而促进CKD进展。因此,为了预防CKD在衰老和肥胖过程中的进展,阐明自噬停滞的补偿机制很重要。我们最近发现,FGF21(成纤维细胞生长因子21)是一种延长寿命和代谢激素,是由肾近端小管上皮细胞(PTECs)的自噬缺陷诱导的;然而,其病理生理作用仍不确定。在这里,我们研究了FGF21和自噬之间的相互作用,以及衰老和肥胖期间肾脏中内源性FGF21的直接作用,使用24岁时PTEC特异性FGF21-和/或atg5缺陷小鼠 月(年龄)或在高脂肪饮食(肥胖)条件下。年轻小鼠中PTEC特异性FGF21的缺乏由于自噬需求的增加而增加了自噬流量,而FGF21缺乏的老年或肥胖小鼠由于异常自噬引起的溶酶体负担加重而加剧了自噬停滞。FGF21由自噬缺陷强烈诱导,与atg5缺陷小鼠相比,衰老或肥胖的PTEC特异性FGF21-和atg5双重缺陷小鼠的肾脏组织学恶化。双缺陷小鼠的线粒体功能受到严重干扰,同时氧化应激加剧,TFAM(转录因子A,线粒体)下调。这些结果表明,FGF21是由自噬障碍强烈诱导的,并通过减轻自噬停滞和维持线粒体稳态来防止CKD在衰老和肥胖过程中的进展,这将为CKD的新治疗铺平道路。
{"title":"FGF21 and autophagy coordinately counteract kidney disease progression during aging and obesity.","authors":"Satoshi Minami, Shinsuke Sakai, Takeshi Yamamoto, Yoshitsugu Takabatake, Tomoko Namba-Hamano, Atsushi Takahashi, Jun Matsuda, Hiroaki Yonishi, Jun Nakamura, Shihomi Maeda, Sho Matsui, Isao Matsui, Yoshitaka Isaka","doi":"10.1080/15548627.2023.2259282","DOIUrl":"10.1080/15548627.2023.2259282","url":null,"abstract":"<p><p>Chronic kidney disease (CKD) has reached epidemic proportions worldwide, partly due to the increasing population of elderly and obesity. Macroautophagy/autophagy counteracts CKD progression, whereas autophagy is stagnated owing to lysosomal overburden during aging and obesity, which promotes CKD progression. Therefore, for preventing CKD progression during aging and obesity, it is important to elucidate the compensation mechanisms of autophagy stagnation. We recently showed that FGF21 (fibroblast growth factor 21), which is a prolongevity and metabolic hormone, is induced by autophagy deficiency in kidney proximal tubular epithelial cells (PTECs); however, its pathophysiological role remains uncertain. Here, we investigated the interplay between FGF21 and autophagy and the direct contribution of endogenous FGF21 in the kidney during aging and obesity using PTEC-specific <i>fgf21</i>- and/or <i>atg5</i>-deficient mice at 24 months (<i>aged</i>) or under high-fat diet (<i>obese</i>) conditions. PTEC-specific FGF21 deficiency in <i>young</i> mice increased autophagic flux due to increased demand of autophagy, whereas <i>fgf21</i>-deficient <i>aged</i> or <i>obese</i> mice exacerbated autophagy stagnation due to severer lysosomal overburden caused by aberrant autophagy. FGF21 was robustly induced by autophagy deficiency, and <i>aged</i> or <i>obese</i> PTEC-specific <i>fgf21</i>- and <i>atg5</i>-double deficient mice deteriorated renal histology compared with <i>atg5</i>-deficient mice. Mitochondrial function was severely disturbed concomitant with exacerbated oxidative stress and downregulated TFAM (transcription factor A, mitochondrial) in double-deficient mice. These results indicate that FGF21 is robustly induced by autophagy disturbance and protects against CKD progression during aging and obesity by alleviating autophagy stagnation and maintaining mitochondrial homeostasis, which will pave the way to a novel treatment for CKD.</p>","PeriodicalId":8722,"journal":{"name":"Autophagy","volume":null,"pages":null},"PeriodicalIF":13.3,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10936614/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10656878","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Selective degradation of ribosomes during oncogene-induced senescence: molecular insights and biological perspectives 癌基因诱导衰老过程中核糖体的选择性降解:分子见解和生物学视角
IF 13.3 1区 生物学 Q1 Biochemistry, Genetics and Molecular Biology Pub Date : 2024-02-21 DOI: 10.1080/15548627.2024.2319022
Aida Rodríguez López, Lisa B. Frankel
Ribosomes are conserved macromolecular machines that are responsible for protein synthesis in all cells. While our knowledge of ribosome biogenesis and function has increased significantly in recen...
核糖体是一种保守的大分子机器,负责所有细胞中的蛋白质合成。虽然我们对核糖体生物发生和功能的了解在近些年有了显著的增长,但我们对核糖体功能的了解还远远不够。
{"title":"Selective degradation of ribosomes during oncogene-induced senescence: molecular insights and biological perspectives","authors":"Aida Rodríguez López, Lisa B. Frankel","doi":"10.1080/15548627.2024.2319022","DOIUrl":"https://doi.org/10.1080/15548627.2024.2319022","url":null,"abstract":"Ribosomes are conserved macromolecular machines that are responsible for protein synthesis in all cells. While our knowledge of ribosome biogenesis and function has increased significantly in recen...","PeriodicalId":8722,"journal":{"name":"Autophagy","volume":null,"pages":null},"PeriodicalIF":13.3,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139924140","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
KPT330 promotes the sensitivity of glioblastoma to olaparib by retaining SQSTM1 in the nucleus and disrupting lysosomal function. KPT330通过将SQSTM1保留在细胞核中并破坏溶酶体功能,促进胶质母细胞瘤对奥拉帕尼的敏感性。
IF 13.3 1区 生物学 Q1 Biochemistry, Genetics and Molecular Biology Pub Date : 2024-02-01 Epub Date: 2023-09-15 DOI: 10.1080/15548627.2023.2252301
Li-Hong Wang, Sen Wei, Ye Yuan, Ming-Jun Zhong, Jiao Wang, Ze-Xuan Yan, Kai Zhou, Tao Luo, Li Liang, Xiu-Wu Bian

Abbreviations: AO: acridine orange; ATM: ATM serine/threonine kinase; CHEK1: checkpoint kinase 1; CHEK2: checkpoint kinase 2; CI: combination index; DMSO: dimethyl sulfoxide; DSBs: double-strand breaks; GBM: glioblastoma; HR: homologous recombination; H2AX: H2A.X variant histone; IHC: immunohistochemistry; LAPTM4B: lysosomal protein transmembrane 4 beta; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; PARP: poly(ADP-ribose) polymerase; RAD51: RAD51 recombinase; SQSTM1: sequestosome 1; SSBs: single-strand breaks; RNF168: ring finger protein 168; XPO1: exportin 1.

缩写:AO:吖啶橙;ATM:ATM丝氨酸/苏氨酸激酶;CHEK1:检查点激酶1;CHEK2:检查点激酶2;CI:组合指数;DMSO:二甲基亚砜;DSBs:双股断裂;GBM:胶质母细胞瘤;HR:同源重组;H2AX:H2A.X变体组蛋白;IHC:免疫组织化学;LAPTM4B:溶酶体蛋白跨膜4β;MAP1LC3/LC3:微管相关蛋白1轻链3;PARP:聚ADP核糖聚合酶;RAD51:RAD51重组酶;SQSTM1:螯合体1;SSBs:单链断裂;RNF168:环指蛋白168;XPO1:在1中导出。
{"title":"KPT330 promotes the sensitivity of glioblastoma to olaparib by retaining SQSTM1 in the nucleus and disrupting lysosomal function.","authors":"Li-Hong Wang, Sen Wei, Ye Yuan, Ming-Jun Zhong, Jiao Wang, Ze-Xuan Yan, Kai Zhou, Tao Luo, Li Liang, Xiu-Wu Bian","doi":"10.1080/15548627.2023.2252301","DOIUrl":"10.1080/15548627.2023.2252301","url":null,"abstract":"<p><strong>Abbreviations: </strong>AO: acridine orange; ATM: ATM serine/threonine kinase; CHEK1: checkpoint kinase 1; CHEK2: checkpoint kinase 2; CI: combination index; DMSO: dimethyl sulfoxide; DSBs: double-strand breaks; GBM: glioblastoma; HR: homologous recombination; H2AX: H2A.X variant histone; IHC: immunohistochemistry; LAPTM4B: lysosomal protein transmembrane 4 beta; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; PARP: poly(ADP-ribose) polymerase; RAD51: RAD51 recombinase; SQSTM1: sequestosome 1; SSBs: single-strand breaks; RNF168: ring finger protein 168; XPO1: exportin 1.</p>","PeriodicalId":8722,"journal":{"name":"Autophagy","volume":null,"pages":null},"PeriodicalIF":13.3,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10813631/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10298217","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CSNK1A1/CK1α suppresses autoimmunity by restraining the CGAS-STING1 signaling. CSNK1A1/CK1α 通过抑制 CGAS-STING1 信号传导抑制自身免疫。
IF 13.3 1区 生物学 Q1 Biochemistry, Genetics and Molecular Biology Pub Date : 2024-02-01 Epub Date: 2024-01-25 DOI: 10.1080/15548627.2023.2256135
Mingyu Pan, Tongyu Hu, Jiao Lyu, Yue Yin, Jing Sun, Quanyi Wang, Lingxiao Xu, Haiyang Hu, Chen Wang

STING1 (stimulator of interferon response cGAMP interactor 1) is the quintessential protein in the CGAS-STING1 signaling pathway, crucial for the induction of type I IFN (interferon) production and eliciting innate immunity. Nevertheless, the overactivation or sustained activation of STING1 has been closely associated with the onset of autoimmune disorders. Notably, the majority of these disorders manifest as an upregulated expression of type I interferons and IFN-stimulated genes (ISGs). Hence, strict regulation of STING1 activity is paramount to preserve immune homeostasis. Here, we reported that CSNK1A1/CK1α, a serine/threonine protein kinase, was essential to prevent the overactivation of STING1-mediated type I IFN signaling through autophagic degradation of STING1. Mechanistically, CSNK1A1 interacted with STING1 upon the CGAS-STING1 pathway activation and promoted STING1 autophagic degradation by enhancing the phosphorylation of SQSTM1/p62 at serine 351 (serine 349 in human), which was critical for SQSTM1-mediated STING1 autophagic degradation. Consistently, SSTC3, a selective CSNK1A1 agonist, significantly attenuated the response of the CGAS-STING1 signaling by promoting STING1 autophagic degradation. Importantly, pharmacological activation of CSNK1A1 using SSTC3 markedly repressed the systemic autoinflammatory responses in the trex1-/- mouse autoimmune disease model and effectively suppressed the production of IFNs and ISGs in the PBMCs of SLE patients. Taken together, our study reveals a novel regulatory role of CSNK1A1 in the autophagic degradation of STING1 to maintain immune homeostasis. Manipulating CSNK1A1 through SSTC3 might be a potential therapeutic strategy for alleviating STING1-mediated aberrant type I IFNs in autoimmune diseases.Abbreviations: BMDMs: bone marrow-derived macrophages; cGAMP: cyclic GMP-AMP; CGAS: cyclic GMP-AMP synthase; HTDNA: herring testes DNA; IFIT1: interferon induced protein with tetratricopeptide repeats 1; IFNA4: interferon alpha 4; IFNB: interferon beta; IRF3: interferon regulatory factor 3; ISD: interferon stimulatory DNA; ISGs: IFN-stimulated genes; MEFs: mouse embryonic fibroblasts; PBMCs: peripheral blood mononuclear cells; RSAD2: radical S-adenosyl methionine domain containing 2; SLE: systemic lupus erythematosus; STING1: stimulator of interferon response cGAMP interactor 1; TBK1: TANK binding kinase 1.

STING1(cGAMP 干扰素反应刺激因子 1)是 CGAS-STING1 信号通路中的重要蛋白,对于诱导 I 型 IFN(干扰素)的产生和激发先天性免疫至关重要。然而,STING1 的过度激活或持续激活与自身免疫性疾病的发病密切相关。值得注意的是,这些疾病大多表现为 I 型干扰素和 IFN 刺激基因(ISGs)的表达上调。因此,严格调控 STING1 的活性对于维护免疫平衡至关重要。在这里,我们报道了丝氨酸/苏氨酸蛋白激酶 CSNK1A1/CK1α 对于通过 STING1 的自噬降解防止 STING1 介导的 I 型干扰素信号过度激活至关重要。从机制上看,CSNK1A1在CGAS-STING1通路激活后与STING1相互作用,并通过增强SQSTM1/p62在丝氨酸351(人类为丝氨酸349)处的磷酸化促进STING1的自噬降解,而丝氨酸351对SQSTM1介导的STING1自噬降解至关重要。与此相一致,选择性 CSNK1A1 激动剂 SSTC3 通过促进 STING1 自噬降解,显著减弱了 CGAS-STING1 信号传导的反应。重要的是,使用 SSTC3 对 CSNK1A1 进行药理激活能明显抑制 trex1-/- 小鼠自身免疫疾病模型中的全身自身炎症反应,并有效抑制系统性红斑狼疮患者 PBMC 中 IFNs 和 ISGs 的产生。综上所述,我们的研究揭示了 CSNK1A1 在 STING1 自噬降解过程中维持免疫稳态的新型调控作用。通过 SSTC3 操纵 CSNK1A1 可能是缓解 STING1 介导的自身免疫性疾病中 I 型 IFNs 异常的潜在治疗策略:缩写:BMDMs:骨髓衍生巨噬细胞;cGAMP:环 GMP-AMP;CGAS:环 GMP-AMP 合成酶;HTDNA:鲱鱼睾丸 DNA;IFIT1:具有四肽重复序列 1 的干扰素诱导蛋白;IFNA4:α 4 型干扰素;IFNB:β 型干扰素;IRF3:干扰素调节因子 3;ISD:干扰素刺激 DNA;ISGs:IFN 刺激基因:MEFs:小鼠胚胎成纤维细胞;PBMCs:外周血单核细胞;RSAD2:含 S-腺苷蛋氨酸自由基结构域 2;SLE:系统性红斑狼疮;STING1:干扰素反应 cGAMP 干扰素刺激因子 1;TBK1:TANK 结合激酶 1。
{"title":"CSNK1A1/CK1α suppresses autoimmunity by restraining the CGAS-STING1 signaling.","authors":"Mingyu Pan, Tongyu Hu, Jiao Lyu, Yue Yin, Jing Sun, Quanyi Wang, Lingxiao Xu, Haiyang Hu, Chen Wang","doi":"10.1080/15548627.2023.2256135","DOIUrl":"10.1080/15548627.2023.2256135","url":null,"abstract":"<p><p>STING1 (stimulator of interferon response cGAMP interactor 1) is the quintessential protein in the CGAS-STING1 signaling pathway, crucial for the induction of type I IFN (interferon) production and eliciting innate immunity. Nevertheless, the overactivation or sustained activation of STING1 has been closely associated with the onset of autoimmune disorders. Notably, the majority of these disorders manifest as an upregulated expression of type I interferons and IFN-stimulated genes (ISGs). Hence, strict regulation of STING1 activity is paramount to preserve immune homeostasis. Here, we reported that CSNK1A1/CK1α, a serine/threonine protein kinase, was essential to prevent the overactivation of STING1-mediated type I IFN signaling through autophagic degradation of STING1. Mechanistically, CSNK1A1 interacted with STING1 upon the CGAS-STING1 pathway activation and promoted STING1 autophagic degradation by enhancing the phosphorylation of SQSTM1/p62 at serine 351 (serine 349 in human), which was critical for SQSTM1-mediated STING1 autophagic degradation. Consistently, SSTC3, a selective CSNK1A1 agonist, significantly attenuated the response of the CGAS-STING1 signaling by promoting STING1 autophagic degradation. Importantly, pharmacological activation of CSNK1A1 using SSTC3 markedly repressed the systemic autoinflammatory responses in the <i>trex1</i><sup><i>-/-</i></sup> mouse autoimmune disease model and effectively suppressed the production of IFNs and ISGs in the PBMCs of SLE patients. Taken together, our study reveals a novel regulatory role of CSNK1A1 in the autophagic degradation of STING1 to maintain immune homeostasis. Manipulating CSNK1A1 through SSTC3 might be a potential therapeutic strategy for alleviating STING1-mediated aberrant type I IFNs in autoimmune diseases.<b>Abbreviations:</b> BMDMs: bone marrow-derived macrophages; cGAMP: cyclic GMP-AMP; CGAS: cyclic GMP-AMP synthase; HTDNA: herring testes DNA; IFIT1: interferon induced protein with tetratricopeptide repeats 1; IFNA4: interferon alpha 4; IFNB: interferon beta; IRF3: interferon regulatory factor 3; ISD: interferon stimulatory DNA; ISGs: IFN-stimulated genes; MEFs: mouse embryonic fibroblasts; PBMCs: peripheral blood mononuclear cells; RSAD2: radical S-adenosyl methionine domain containing 2; SLE: systemic lupus erythematosus; STING1: stimulator of interferon response cGAMP interactor 1; TBK1: TANK binding kinase 1.</p>","PeriodicalId":8722,"journal":{"name":"Autophagy","volume":null,"pages":null},"PeriodicalIF":13.3,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10314125","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Autophagy in colitis-associated colon cancer: exploring its potential role in reducing initiation and preventing IBD-Related CAC development. 大肠杆菌相关结肠癌癌症中的自噬:探讨其在减少IBD相关CAC发生和预防中的潜在作用。
IF 13.3 1区 生物学 Q1 Biochemistry, Genetics and Molecular Biology Pub Date : 2024-02-01 Epub Date: 2024-01-25 DOI: 10.1080/15548627.2023.2259214
Xuanhong Jin, Liangkun You, Jincheng Qiao, Weidong Han, Hongming Pan

Abbreviations: A. muciniphila: Akkermansia muciniphila; AIEC: adherent invasive Escherichia coli; AOM/DSS: azoxymethane-dextran sodium sulfate; ATG: autophagy related; BECN1: beclin1, autophagy related; CAC: colitis-associated colon cancer; CCDC50: coiled-coil domain containing 50; CLDN2: claudin 2; CoPEC: colibactin-producing Escherichia coli; CRC: colorectal cancer; DAMPs: danger/damage-associated molecular patterns; DC: dendritic cell; DSS: dextran sulfate sodium; DTP: drug-resistant persistent; ER: endoplasmic reticulum; ERN1/IRE1α: endoplasmic reticulum to nucleus signaling 1; IBD: inflammatory bowel disease; IECs: intestinal epithelial cells; IKK: IkappaB kinase; IL: interleukin; IRGM1: immunity-related GTPase family M member 1; ISC: intestinal stem cell; LPS: lipopolysaccharide; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MAPK: mitogen-activated protein kinase; MDP: muramyl dipeptide; MELK: maternal embryonic leucine zipper kinase; MHC: major histocompatibility complex; miRNA: microRNA; MTOR: mechanistic target of rapamycin kinase; NLRP3: NLR family, pyrin domain containing 3; NOD2: nucleotide-binding oligomerization domain containing 2; NRBF2: nuclear receptor binding factor 2; PAMPs: pathogen-associated molecular patterns; PI3K: class I phosphoinositide 3-kinase; PtdIns3K: class III phosphatidylinositol 3-kinase; PYCARD/ASC: PYD and CARD domain containing; RALGAPA2/RalGAPα2: Ral GTPase activating protein protein, alpha subunit 2 (catalytic); RIPK2/CARD3: receptor (TNFRSF)-interacting serine-threonine kinase 2; RIPK3: receptor-interacting serine-threonine kinase 3; ROS: reactive oxygen species; sCRC: sporadic colorectal cancer; SMARCA4/BRG1: SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily a, member 4; SQSTM1: sequestosome 1; STAT3: signal transducer and activator of transcription 3; TNF/TNFA: tumor necrosis factor; ULK1: unc-51 like autophagy activating kinase 1; UPR: unfolded protein response; WT: wild-type.

缩写:A.muciniphila:Akkermansia muciniphilla;AIEC:粘附性侵袭性大肠杆菌;AOM/DSS:偶氮甲烷葡聚糖硫酸钠;ATG:自噬相关;BECN1:beclin1,自噬相关;CAC:大肠杆菌相关结肠癌;CCDC50:包含50的线圈域;CLDN2:claudin 2;CoPEC:产大肠杆菌素的大肠杆菌;结直肠癌:癌症;DAMP:与危险/损害相关的分子模式;DC:树突状细胞;DSS:葡聚糖硫酸钠;DTP:耐药持久性;ER:内质网;ERN1/IRE1α:内质网-细胞核信号传导1;IBD:炎症性肠病;IECs:肠上皮细胞;IKK:IkappaB激酶;IL:白细胞介素;IRGM1:免疫相关GTP酶家族M成员1;ISC:肠干细胞;LPS:脂多糖;MAP1LC3/LC3:微管相关蛋白1轻链3;MAPK:丝裂原活化蛋白激酶;MDP:壁酰二肽;MELK:母体胚胎亮氨酸拉链激酶;MHC:主要组织相容性复合体;miRNA:微小RNA;MTOR:雷帕霉素激酶的机制靶点;NLRP3:NLR家族,pyrin结构域包含3个;NOD2:包含2的核苷酸结合寡聚化结构域;NRBF2:核受体结合因子2;PAMPs:病原体相关分子模式;PI3K:I类磷酸肌醇3-激酶;PtdIns3K:III类磷脂酰肌醇3-激酶;PYCARD/ASC:包含PYD和CARD域;RALGAPA2/RalGAPα2:Ral GTP酶激活蛋白,α亚基2(催化);RIPK2/CARD3:受体(TNFRSF)相互作用的丝氨酸-苏氨酸激酶2;RIPK3:受体相互作用丝氨酸-苏氨酸激酶3;ROS:活性氧;sCRC:散发性癌症;SMARCA4/BRG1:SWI/SNF相关,基质相关,染色质肌动蛋白依赖性调节因子,亚家族a,成员4;SQSTM1:螯合体1;STAT3:信号转导子和转录激活子3;TNF/TNFA:肿瘤坏死因子;ULK1:unc-51样自噬激活激酶1;UPR:未折叠蛋白反应;野生型。
{"title":"Autophagy in colitis-associated colon cancer: exploring its potential role in reducing initiation and preventing IBD-Related CAC development.","authors":"Xuanhong Jin, Liangkun You, Jincheng Qiao, Weidong Han, Hongming Pan","doi":"10.1080/15548627.2023.2259214","DOIUrl":"10.1080/15548627.2023.2259214","url":null,"abstract":"<p><strong>Abbreviations: </strong>A. muciniphila: Akkermansia muciniphila; AIEC: adherent invasive Escherichia coli; AOM/DSS: azoxymethane-dextran sodium sulfate; ATG: autophagy related; BECN1: beclin1, autophagy related; CAC: colitis-associated colon cancer; CCDC50: coiled-coil domain containing 50; CLDN2: claudin 2; CoPEC: colibactin-producing Escherichia coli; CRC: colorectal cancer; DAMPs: danger/damage-associated molecular patterns; DC: dendritic cell; DSS: dextran sulfate sodium; DTP: drug-resistant persistent; ER: endoplasmic reticulum; ERN1/IRE1α: endoplasmic reticulum to nucleus signaling 1; IBD: inflammatory bowel disease; IECs: intestinal epithelial cells; IKK: IkappaB kinase; IL: interleukin; IRGM1: immunity-related GTPase family M member 1; ISC: intestinal stem cell; LPS: lipopolysaccharide; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MAPK: mitogen-activated protein kinase; MDP: muramyl dipeptide; MELK: maternal embryonic leucine zipper kinase; MHC: major histocompatibility complex; miRNA: microRNA; MTOR: mechanistic target of rapamycin kinase; NLRP3: NLR family, pyrin domain containing 3; NOD2: nucleotide-binding oligomerization domain containing 2; NRBF2: nuclear receptor binding factor 2; PAMPs: pathogen-associated molecular patterns; PI3K: class I phosphoinositide 3-kinase; PtdIns3K: class III phosphatidylinositol 3-kinase; PYCARD/ASC: PYD and CARD domain containing; RALGAPA2/RalGAPα2: Ral GTPase activating protein protein, alpha subunit 2 (catalytic); RIPK2/CARD3: receptor (TNFRSF)-interacting serine-threonine kinase 2; RIPK3: receptor-interacting serine-threonine kinase 3; ROS: reactive oxygen species; sCRC: sporadic colorectal cancer; SMARCA4/BRG1: SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily a, member 4; SQSTM1: sequestosome 1; STAT3: signal transducer and activator of transcription 3; TNF/TNFA: tumor necrosis factor; ULK1: unc-51 like autophagy activating kinase 1; UPR: unfolded protein response; WT: wild-type.</p>","PeriodicalId":8722,"journal":{"name":"Autophagy","volume":null,"pages":null},"PeriodicalIF":13.3,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10813649/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10314126","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Autophagy
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1