Abbreviations: ATG, Autophagy-related, HORMA, protein domain named after HOP1-MAD2-REV7; RB1CC1, RB1 inducible coiled-coil 1; ULK, Unc-51-like kinase.
Abbreviations: ATG, Autophagy-related, HORMA, protein domain named after HOP1-MAD2-REV7; RB1CC1, RB1 inducible coiled-coil 1; ULK, Unc-51-like kinase.
At the synapse, proteins are reused several times during neuronal activity, causing a decline in protein function over time. Although emerging evidence supports a role of autophagy in synaptic function, the precise molecular mechanisms linking neuronal activity, autophagy and synaptic dysfunction are vastly unknown. We show how extracellular calcium influx in the pre-synaptic terminal constitutes the initial stimulus for autophagosome formation in response to neuronal activity. This mechanism likely acts to rapidly support synaptic homeostasis and protein quality control when intense neuronal activity challenges the synaptic proteome. We identified a residue in the flexible region of EndoA (Endophilin A) that dictates calcium-dependent EndoA mobility from the plasma membrane to the cytosol, where this protein interacts with autophagic membranes to promote autophagosome formation. We discovered that a novel Parkinson's disease-risk mutation in SH3GL2 (SH3 domain containing GRB2 like 2, endophilin A1) disrupts the calcium sensing of SH3GL2, leading to an immobile protein that cannot respond to calcium influx and therefore disrupting autophagy induction at synapses. Our work shows how neuronal activity is connected with autophagy to maintain synaptic homeostasis and survival.
Skeletal muscles play key roles in movement, posture, thermogenesis, and whole-body metabolism. Autophagy plays essential roles in the regulation of muscle mass, function and integrity. However, the molecular machinery that regulates autophagy is still incompletely understood. In our recent study, we identified and characterized a novel Forkhead Box O (FoxO)-dependent gene, PHAF1/MYTHO (phagophore assembly factor 1/macro-autophagy and youth optimizer), as a novel autophagy regulator that controls muscle integrity. MYTHO/PHAF1 is upregulated in multiple conditions leading to muscle atrophy, and downregulation of its expression spares muscle atrophy triggered by fasting, denervation, cachexia and sepsis. Overexpression of PHAF1/MYTHO is sufficient to induce muscle atrophy. Prolonged downregulation of PHAF1/MYTHO causes a severe myopathic phenotype, which is characterized by impaired autophagy, muscle weakness, myofiber degeneration, mammalian target of rapamycin complex 1 (mTORC1) hyperactivation and extensive ultrastructural defects, such as accumulation of proteinaceous and membranous structures and tubular aggregates. This myopathic phenotype is attenuated upon administration of the mTORC1 inhibitor rapamycin. These findings position PHAF1/MYTHO as a novel regulator of skeletal muscle autophagy and tissue integrity.
Chronic kidney disease (CKD) has reached epidemic proportions worldwide, partly due to the increasing population of elderly and obesity. Macroautophagy/autophagy counteracts CKD progression, whereas autophagy is stagnated owing to lysosomal overburden during aging and obesity, which promotes CKD progression. Therefore, for preventing CKD progression during aging and obesity, it is important to elucidate the compensation mechanisms of autophagy stagnation. We recently showed that FGF21 (fibroblast growth factor 21), which is a prolongevity and metabolic hormone, is induced by autophagy deficiency in kidney proximal tubular epithelial cells (PTECs); however, its pathophysiological role remains uncertain. Here, we investigated the interplay between FGF21 and autophagy and the direct contribution of endogenous FGF21 in the kidney during aging and obesity using PTEC-specific fgf21- and/or atg5-deficient mice at 24 months (aged) or under high-fat diet (obese) conditions. PTEC-specific FGF21 deficiency in young mice increased autophagic flux due to increased demand of autophagy, whereas fgf21-deficient aged or obese mice exacerbated autophagy stagnation due to severer lysosomal overburden caused by aberrant autophagy. FGF21 was robustly induced by autophagy deficiency, and aged or obese PTEC-specific fgf21- and atg5-double deficient mice deteriorated renal histology compared with atg5-deficient mice. Mitochondrial function was severely disturbed concomitant with exacerbated oxidative stress and downregulated TFAM (transcription factor A, mitochondrial) in double-deficient mice. These results indicate that FGF21 is robustly induced by autophagy disturbance and protects against CKD progression during aging and obesity by alleviating autophagy stagnation and maintaining mitochondrial homeostasis, which will pave the way to a novel treatment for CKD.
Abbreviations: AO: acridine orange; ATM: ATM serine/threonine kinase; CHEK1: checkpoint kinase 1; CHEK2: checkpoint kinase 2; CI: combination index; DMSO: dimethyl sulfoxide; DSBs: double-strand breaks; GBM: glioblastoma; HR: homologous recombination; H2AX: H2A.X variant histone; IHC: immunohistochemistry; LAPTM4B: lysosomal protein transmembrane 4 beta; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; PARP: poly(ADP-ribose) polymerase; RAD51: RAD51 recombinase; SQSTM1: sequestosome 1; SSBs: single-strand breaks; RNF168: ring finger protein 168; XPO1: exportin 1.
STING1 (stimulator of interferon response cGAMP interactor 1) is the quintessential protein in the CGAS-STING1 signaling pathway, crucial for the induction of type I IFN (interferon) production and eliciting innate immunity. Nevertheless, the overactivation or sustained activation of STING1 has been closely associated with the onset of autoimmune disorders. Notably, the majority of these disorders manifest as an upregulated expression of type I interferons and IFN-stimulated genes (ISGs). Hence, strict regulation of STING1 activity is paramount to preserve immune homeostasis. Here, we reported that CSNK1A1/CK1α, a serine/threonine protein kinase, was essential to prevent the overactivation of STING1-mediated type I IFN signaling through autophagic degradation of STING1. Mechanistically, CSNK1A1 interacted with STING1 upon the CGAS-STING1 pathway activation and promoted STING1 autophagic degradation by enhancing the phosphorylation of SQSTM1/p62 at serine 351 (serine 349 in human), which was critical for SQSTM1-mediated STING1 autophagic degradation. Consistently, SSTC3, a selective CSNK1A1 agonist, significantly attenuated the response of the CGAS-STING1 signaling by promoting STING1 autophagic degradation. Importantly, pharmacological activation of CSNK1A1 using SSTC3 markedly repressed the systemic autoinflammatory responses in the trex1-/- mouse autoimmune disease model and effectively suppressed the production of IFNs and ISGs in the PBMCs of SLE patients. Taken together, our study reveals a novel regulatory role of CSNK1A1 in the autophagic degradation of STING1 to maintain immune homeostasis. Manipulating CSNK1A1 through SSTC3 might be a potential therapeutic strategy for alleviating STING1-mediated aberrant type I IFNs in autoimmune diseases.Abbreviations: BMDMs: bone marrow-derived macrophages; cGAMP: cyclic GMP-AMP; CGAS: cyclic GMP-AMP synthase; HTDNA: herring testes DNA; IFIT1: interferon induced protein with tetratricopeptide repeats 1; IFNA4: interferon alpha 4; IFNB: interferon beta; IRF3: interferon regulatory factor 3; ISD: interferon stimulatory DNA; ISGs: IFN-stimulated genes; MEFs: mouse embryonic fibroblasts; PBMCs: peripheral blood mononuclear cells; RSAD2: radical S-adenosyl methionine domain containing 2; SLE: systemic lupus erythematosus; STING1: stimulator of interferon response cGAMP interactor 1; TBK1: TANK binding kinase 1.
Abbreviations: ACOX1: acyl-CoA oxidase 1; ADH5: alcohol dehydrogenase 5 (class III), chi polypeptide; ADIPOQ: adiponectin, C1Q and collagen domain containing; ATG: autophagy related; BECN1: beclin 1; CRTC2: CREB regulated transcription coactivator 2; ER: endoplasmic reticulum; F2RL1: F2R like trypsin receptor 1; FA: fatty acid; FOXO1: forkhead box O1; GLP1R: glucagon like peptide 1 receptor; GRK2: G protein-coupled receptor kinase 2; GTPase: guanosine triphosphatase; HFD: high-fat diet; HSCs: hepatic stellate cells; HTRA2: HtrA serine peptidase 2; IRGM: immunity related GTPase M; KD: knockdown; KDM6B: lysine demethylase 6B; KO: knockout; LAMP2: lysosomal associated membrane protein 2; LAP: LC3-associated phagocytosis; LDs: lipid droplets; Li KO: liver-specific knockout; LSECs: liver sinusoidal endothelial cells; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MAP3K5: mitogen-activated protein kinase kinase kinase 5; MED1: mediator complex subunit 1; MTOR: mechanistic target of rapamycin kinase; MTORC1: mechanistic target of rapamycin complex 1; NAFLD: non-alcoholic fatty liver disease; NASH: non-alcoholic steatohepatitis; NFE2L2: NFE2 like bZIP transcription factor 2; NOS3: nitric oxide synthase 3; NR1H3: nuclear receptor subfamily 1 group H member 3; OA: oleic acid; OE: overexpression; OSBPL8: oxysterol binding protein like 8; PA: palmitic acid; RUBCNL: rubicon like autophagy enhancer; PLIN2: perilipin 2; PLIN3: perilipin 3; PPARA: peroxisome proliferator activated receptor alpha; PRKAA2/AMPK: protein kinase AMP-activated catalytic subunit alpha 2; RAB: member RAS oncogene family; RPTOR: regulatory associated protein of MTOR complex 1; SCD: stearoyl-CoA desaturase; SIRT1: sirtuin 1; SIRT3: sirtuin 3; SNARE: soluble N-ethylmaleimide-sensitive factor attachment protein receptor; SQSTM1/p62: sequestosome 1; SREBF1: sterol regulatory element binding transcription factor 1;SREBF2: sterol regulatory element binding transcription factor 2; STING1: stimulator of interferon response cGAMP interactor 1; STX17: syntaxin 17; TAGs: triacylglycerols; TFEB: transcription factor EB; TP53/p53: tumor protein p53; ULK1: unc-51 like autophagy activating kinase 1; VMP1: vacuole membrane protein 1.
Abbreviations: A. muciniphila: Akkermansia muciniphila; AIEC: adherent invasive Escherichia coli; AOM/DSS: azoxymethane-dextran sodium sulfate; ATG: autophagy related; BECN1: beclin1, autophagy related; CAC: colitis-associated colon cancer; CCDC50: coiled-coil domain containing 50; CLDN2: claudin 2; CoPEC: colibactin-producing Escherichia coli; CRC: colorectal cancer; DAMPs: danger/damage-associated molecular patterns; DC: dendritic cell; DSS: dextran sulfate sodium; DTP: drug-resistant persistent; ER: endoplasmic reticulum; ERN1/IRE1α: endoplasmic reticulum to nucleus signaling 1; IBD: inflammatory bowel disease; IECs: intestinal epithelial cells; IKK: IkappaB kinase; IL: interleukin; IRGM1: immunity-related GTPase family M member 1; ISC: intestinal stem cell; LPS: lipopolysaccharide; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MAPK: mitogen-activated protein kinase; MDP: muramyl dipeptide; MELK: maternal embryonic leucine zipper kinase; MHC: major histocompatibility complex; miRNA: microRNA; MTOR: mechanistic target of rapamycin kinase; NLRP3: NLR family, pyrin domain containing 3; NOD2: nucleotide-binding oligomerization domain containing 2; NRBF2: nuclear receptor binding factor 2; PAMPs: pathogen-associated molecular patterns; PI3K: class I phosphoinositide 3-kinase; PtdIns3K: class III phosphatidylinositol 3-kinase; PYCARD/ASC: PYD and CARD domain containing; RALGAPA2/RalGAPα2: Ral GTPase activating protein protein, alpha subunit 2 (catalytic); RIPK2/CARD3: receptor (TNFRSF)-interacting serine-threonine kinase 2; RIPK3: receptor-interacting serine-threonine kinase 3; ROS: reactive oxygen species; sCRC: sporadic colorectal cancer; SMARCA4/BRG1: SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily a, member 4; SQSTM1: sequestosome 1; STAT3: signal transducer and activator of transcription 3; TNF/TNFA: tumor necrosis factor; ULK1: unc-51 like autophagy activating kinase 1; UPR: unfolded protein response; WT: wild-type.
Macroautophagy/autophagy has been recognized as a central antiviral defense mechanism in plant, which involves complex interactions between viral proteins and host factors. Rhabdoviruses are single-stranded RNA viruses, and the infection causes serious harm to public health, livestock, and crop production. However, little is known about the role of autophagy in the defense against rhabdovirus infection by plant. In this work, we showed that Rice stripe mosaic cytorhabdovirus(RSMV) activated autophagy in plants and that autophagy served as an indispensable defense mechanism during RSMV infection. We identified RSMV glycoprotein as an autophagy inducer that interacted with OsSnRK1B and promoted the kinase activity of OsSnRK1B on OsATG6b. RSMV glycoprotein was toxic to rice cells and its targeted degradation by OsATG6b-mediated autophagy was essential to restrict the viral titer in plants. Importantly, SnRK1-glycoprotein and ATG6-glycoprotein interactions were well-conserved between several other rhabdoviruses and plants. Together, our data support a model that SnRK1 senses rhabdovirus glycoprotein for autophagy initiation, while ATG6 mediates targeted degradation of viral glycoprotein. This conserved mechanism ensures compatible infection by limiting the toxicity of viral glycoprotein and restricting the infection of rhabdoviruses.Abbreviations: AMPK: adenosine 5'-monophosphate (AMP)-activated protein kinase; ANOVA: analysis of variance; ATG: autophagy related; AZD: AZD8055; BiFC: bimolecular fluorescence complementation; BYSMV: barley yellow striate mosaic virus; Co-IP: co-immunoprecipitation; ConA: concanamycin A; CTD: C-terminal domain; DEX: dexamethasone; DMSO: dimethyl sulfoxide; G: glycoprotein; GFP: green fluorescent protein; MD: middle domain; MDC: monodansylcadaverine; NTD: N-terminal domain; OE: over expression; Os: Oryza sativa; PBS: phosphate-buffered saline; PtdIns3K: class III phosphatidylinositol-3-kinase; qRT-PCR: quantitative real-time reverse-transcription PCR; RFP: red fluorescent protein; RSMV: rice stripe mosaic virus; RSV: rice stripe virus; SGS3: suppressor of gene silencing 3; SnRK1: sucrose nonfermenting1-related protein kinase1; SYNV: sonchus yellow net virus; TEM: transmission electron microscopy; TM: transmembrane region; TOR: target of rapamycin; TRV: tobacco rattle virus; TYMaV: tomato yellow mottle-associated virus; VSV: vesicular stomatitis virus; WT: wild type; Y2H: yeast two-hybrid; YFP: yellow fluorescent protein.

