Pub Date : 2025-06-25DOI: 10.1007/s00395-025-01126-9
Johnathan D Tune,Dirk J Duncker,Adam G Goodwill,Cooper M Warne,Salman I Essajee,Selina M Tucker,Steven A Romero,Shawn B Bender,Daniel A Beard,C Alberto Figueroa,Oana Sorop,Daphne Merkus,Gregory M Dick
This study tested the hypothesis that K+ serves as an in vivo signal coupling coronary blood flow with the oxidative requirements of the myocardium. Experiments were performed in swine in which coronary parameters and arterial and coronary venous [K+] were measured under baseline conditions, during exogenous administration of K+ (1-5 mM; n = 4), during increases in myocardial oxygen consumption (MVO2) to dobutamine (n = 7) and exercise (n = 6), alterations in coronary perfusion pressure (CPP; n = 8), and systemic hypoxemia (PaO2 to ~ 30 mmHg; n = 7). Exogenous intracoronary K+ increased blood flow (~ 20%) in direct proportion to the coronary venous [K+] up to the lethal limit of ~ 10 mM. Dobutamine increased coronary flow and MVO2 ~ threefold but the coronary venous-arterial [K+] gradient (i.e., a surrogate index of myocardial release of K+ into the coronary circulation) did not change. Similarly, exercise increased coronary flow and MVO2 ~ 2.5-fold without a change in the coronary venous-arterial [K+] gradient. The coronary venous-arterial [K+] gradient did not change over the CPP range of 140-40 mmHg. Hypoxemia increased coronary blood flow ~ twofold and coronary vascular resistance was weakly associated with < 0.5 mM change in the coronary venous-arterial [K+] gradient. Intracoronary glibenclamide dose-dependently (1-3 mg/min; n = 4) increased coronary resistance but did not affect the coronary venous-arterial [K+] gradient. Intracoronary pinacidil dose-dependently (0.3-3.0 µg/kg/min; n = 3) increased coronary blood flow but did not affect the coronary venous-arterial [K+] gradient. Similarly, intravenous glibenclamide (3 mg/kg; n = 6) increased coronary resistance but did not affect the coronary venous-arterial [K+] gradient in exercising swine. These findings fail to support the concept that myocardial interstitial [K+] couples coronary blood flow to MVO2 during physiologic increases in cardiac work or when oxygen delivery is constrained.
{"title":"Potassium as an electro-metabolic signal for local coronary vasodilation.","authors":"Johnathan D Tune,Dirk J Duncker,Adam G Goodwill,Cooper M Warne,Salman I Essajee,Selina M Tucker,Steven A Romero,Shawn B Bender,Daniel A Beard,C Alberto Figueroa,Oana Sorop,Daphne Merkus,Gregory M Dick","doi":"10.1007/s00395-025-01126-9","DOIUrl":"https://doi.org/10.1007/s00395-025-01126-9","url":null,"abstract":"This study tested the hypothesis that K+ serves as an in vivo signal coupling coronary blood flow with the oxidative requirements of the myocardium. Experiments were performed in swine in which coronary parameters and arterial and coronary venous [K+] were measured under baseline conditions, during exogenous administration of K+ (1-5 mM; n = 4), during increases in myocardial oxygen consumption (MVO2) to dobutamine (n = 7) and exercise (n = 6), alterations in coronary perfusion pressure (CPP; n = 8), and systemic hypoxemia (PaO2 to ~ 30 mmHg; n = 7). Exogenous intracoronary K+ increased blood flow (~ 20%) in direct proportion to the coronary venous [K+] up to the lethal limit of ~ 10 mM. Dobutamine increased coronary flow and MVO2 ~ threefold but the coronary venous-arterial [K+] gradient (i.e., a surrogate index of myocardial release of K+ into the coronary circulation) did not change. Similarly, exercise increased coronary flow and MVO2 ~ 2.5-fold without a change in the coronary venous-arterial [K+] gradient. The coronary venous-arterial [K+] gradient did not change over the CPP range of 140-40 mmHg. Hypoxemia increased coronary blood flow ~ twofold and coronary vascular resistance was weakly associated with < 0.5 mM change in the coronary venous-arterial [K+] gradient. Intracoronary glibenclamide dose-dependently (1-3 mg/min; n = 4) increased coronary resistance but did not affect the coronary venous-arterial [K+] gradient. Intracoronary pinacidil dose-dependently (0.3-3.0 µg/kg/min; n = 3) increased coronary blood flow but did not affect the coronary venous-arterial [K+] gradient. Similarly, intravenous glibenclamide (3 mg/kg; n = 6) increased coronary resistance but did not affect the coronary venous-arterial [K+] gradient in exercising swine. These findings fail to support the concept that myocardial interstitial [K+] couples coronary blood flow to MVO2 during physiologic increases in cardiac work or when oxygen delivery is constrained.","PeriodicalId":8723,"journal":{"name":"Basic Research in Cardiology","volume":"20 1","pages":""},"PeriodicalIF":9.5,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144478761","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-06-19DOI: 10.1007/s00395-025-01124-x
Y Xiao,X Hu,C F Rudolphi,E E Nollet,R Nederlof,Q Wang,D Bakker,Panagiota Efstathia Nikolaou,J C Knol,R R Goeij-de Haas,A A Henneman,T V Pham,C R Jimenez,A E Grootemaat,N N van der Wel,S E Girardin,N Kaludercic,J van der Velden,Z Onódi,P Leszek,Z V Varga,P Ferdinandy,B Preckel,N C Weber,M W Hollmann,F Di Lisa,C J Zuurbier
NLRX1 is the only NOD-like innate immune receptor that localises to mitochondria. We previously demonstrated that NLRX1 deletion increased infarct size in isolated mouse hearts subjected to ischemia-reperfusion injury (IRI); however, underlying mechanisms are yet to be identified. Given the crucial role played by mitochondria in cardiac IRI, we here hypothesise that NLRX1 affects key mechanisms of cardiac IRI. Cardiac IRI was evaluated in isolated C57BL/6J (WT) and NLRX1 knock out (KO) mouse hearts. The following known modulators of IRI were explored in isolated hearts, isolated mitochondria; or permeabilised cardiac fibres: 1) mTOR/RISK/autophagy regulation, 2) AMPK and mitochondrial energy production, and 3) mitochondrial permeability transition pore (mPTP) opening. NLRX1 deletion increased IRI, and cardiac NLRX1 was decreased after IRI in mouse and pig hearts. NLRX1 ablation caused decreased mTOR and RISK pathway (Akt, ERK, and S6K) activation following IR, without affecting autophagy/inflammation/oxidative stress markers. The RISK activator Urocortin dissipated NLRX1 effects on mTOR, RISK pathway and IRI, indicating that increased cardiac IRI with NLRX1 deletion is, at least partly, due to impaired RISK activation. The energy sensor AMPK was activated in NLRX1 KO hearts, possibly due to slowed mitochondrial respiratory responses (impaired mitochondrial permeability) towards palmitoylcarnitine in permeabilised cardiac fibres. NLRX1 deletion completely abolished calcium-induced mPTP opening, and cyclosporine A (CsA) effects on mPTP, both before and after IR, and was associated with increased mitochondrial calcium content after IR. Mitochondrial sub-fractionation studies localised NLRX1 to the inner mitochondrial membrane. NLRX1 deletion associated with decreased phosphorylation of mitochondrial Got2, Cx43, Myl2, Ndufb7 and MICOS10. The mPTP inhibitor CsA abolished IRI differences between KO and WT hearts, suggesting that the permanent closure of mPTP due to NLRX1 deletion contributed to the increased IR sensitivity of NLRX1 KO hearts. This is the first demonstration that the mitochondrial NLRX1 is a novel factor required for mPTP opening and contributes to cardioprotection against acute IRI through RISK pathway activation and prevention of permanent mPTP closure.
{"title":"The innate immune receptor NLRX1 is a novel required modulator for mPTP opening: implications for cardioprotection.","authors":"Y Xiao,X Hu,C F Rudolphi,E E Nollet,R Nederlof,Q Wang,D Bakker,Panagiota Efstathia Nikolaou,J C Knol,R R Goeij-de Haas,A A Henneman,T V Pham,C R Jimenez,A E Grootemaat,N N van der Wel,S E Girardin,N Kaludercic,J van der Velden,Z Onódi,P Leszek,Z V Varga,P Ferdinandy,B Preckel,N C Weber,M W Hollmann,F Di Lisa,C J Zuurbier","doi":"10.1007/s00395-025-01124-x","DOIUrl":"https://doi.org/10.1007/s00395-025-01124-x","url":null,"abstract":"NLRX1 is the only NOD-like innate immune receptor that localises to mitochondria. We previously demonstrated that NLRX1 deletion increased infarct size in isolated mouse hearts subjected to ischemia-reperfusion injury (IRI); however, underlying mechanisms are yet to be identified. Given the crucial role played by mitochondria in cardiac IRI, we here hypothesise that NLRX1 affects key mechanisms of cardiac IRI. Cardiac IRI was evaluated in isolated C57BL/6J (WT) and NLRX1 knock out (KO) mouse hearts. The following known modulators of IRI were explored in isolated hearts, isolated mitochondria; or permeabilised cardiac fibres: 1) mTOR/RISK/autophagy regulation, 2) AMPK and mitochondrial energy production, and 3) mitochondrial permeability transition pore (mPTP) opening. NLRX1 deletion increased IRI, and cardiac NLRX1 was decreased after IRI in mouse and pig hearts. NLRX1 ablation caused decreased mTOR and RISK pathway (Akt, ERK, and S6K) activation following IR, without affecting autophagy/inflammation/oxidative stress markers. The RISK activator Urocortin dissipated NLRX1 effects on mTOR, RISK pathway and IRI, indicating that increased cardiac IRI with NLRX1 deletion is, at least partly, due to impaired RISK activation. The energy sensor AMPK was activated in NLRX1 KO hearts, possibly due to slowed mitochondrial respiratory responses (impaired mitochondrial permeability) towards palmitoylcarnitine in permeabilised cardiac fibres. NLRX1 deletion completely abolished calcium-induced mPTP opening, and cyclosporine A (CsA) effects on mPTP, both before and after IR, and was associated with increased mitochondrial calcium content after IR. Mitochondrial sub-fractionation studies localised NLRX1 to the inner mitochondrial membrane. NLRX1 deletion associated with decreased phosphorylation of mitochondrial Got2, Cx43, Myl2, Ndufb7 and MICOS10. The mPTP inhibitor CsA abolished IRI differences between KO and WT hearts, suggesting that the permanent closure of mPTP due to NLRX1 deletion contributed to the increased IR sensitivity of NLRX1 KO hearts. This is the first demonstration that the mitochondrial NLRX1 is a novel factor required for mPTP opening and contributes to cardioprotection against acute IRI through RISK pathway activation and prevention of permanent mPTP closure.","PeriodicalId":8723,"journal":{"name":"Basic Research in Cardiology","volume":"38 1","pages":""},"PeriodicalIF":9.5,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144320364","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ferroptosis is an important cause of cardiomyocyte loss and cardiac dysfunction. Cathelicidin-related antimicrobial peptide (CRAMP) is an endogenous polypeptide that regulates oxidative stress in the body and is involved in ferroptosis. However, its specific role and mechanism in ferroptosis are unclear. To analyze the role of CRAMP in ferroptosis, we first analyzed its expression in infarcted myocardial tissues, and verified its role in ferroptosis in vitro through overexpression and knock-down techniques. The activity and expression of cathepsin L (CTSL) and its effect on ferroptosis were analyzed to verify whether CTSL participated in ferroptosis as a downstream of CRAMP. Protein disulfide isomerase family A member 4 (PDIA4) was screened as an interacting protein of CTSL by using the database, and the role of PDIA4 in ferroptosis was analyzed by gene knockdown and overexpression. Finally, the regulatory mechanism of CRAMP in ferroptosis was verified in vivo by mouse myocardial infarction model. CRAMP levels were reduced in both infarcted cardiac tissues and cardiomyocytes exposed to ferroptosis inducers. The overexpression of CRAMP or pretreatment of LL-37 alleviated cardiomyocyte ferroptosis, whereas CRAMP knockdown exacerbated cell death. Under ferroptotic stress, the expression of CTSL was elevated. CRAMP inhibited ferroptosis by antagonizing the CTSL activity. Abnormal increase in CTSL activity and levels caused PDIA4 to decrease. Overexpression of PDIA4 inhibited ferroptosis induced by CTSL, while knocking down PDIA4 counteracted the protection of CRAMP. In vivo, both CRAMP overexpression and administration of CRAMP peptide significantly ameliorated myocardial injury and improved cardiac function. CRAMP increases PDIA4 levels by inhibiting the activity of CTSL and antagonizes ferroptosis in cardiomyocytes. Targeting CRAMP offers innovative therapeutic strategies and insights for the prevention and management of myocardial injury.
{"title":"Antimicrobial peptide CRAMP/LL-37 mediates ferroptosis resistance in cardiomyocytes by inhibiting cathepsin L.","authors":"Zhantao Liu,Qingsong Zhang,Dan Su,Hong Chen,Bowen Wang,Lin Ye,Peiyan Wang,Jingnan Wu,Wencan Jia,Lijun Liu,Jianxun Wang,Shuo Miao","doi":"10.1007/s00395-025-01122-z","DOIUrl":"https://doi.org/10.1007/s00395-025-01122-z","url":null,"abstract":"Ferroptosis is an important cause of cardiomyocyte loss and cardiac dysfunction. Cathelicidin-related antimicrobial peptide (CRAMP) is an endogenous polypeptide that regulates oxidative stress in the body and is involved in ferroptosis. However, its specific role and mechanism in ferroptosis are unclear. To analyze the role of CRAMP in ferroptosis, we first analyzed its expression in infarcted myocardial tissues, and verified its role in ferroptosis in vitro through overexpression and knock-down techniques. The activity and expression of cathepsin L (CTSL) and its effect on ferroptosis were analyzed to verify whether CTSL participated in ferroptosis as a downstream of CRAMP. Protein disulfide isomerase family A member 4 (PDIA4) was screened as an interacting protein of CTSL by using the database, and the role of PDIA4 in ferroptosis was analyzed by gene knockdown and overexpression. Finally, the regulatory mechanism of CRAMP in ferroptosis was verified in vivo by mouse myocardial infarction model. CRAMP levels were reduced in both infarcted cardiac tissues and cardiomyocytes exposed to ferroptosis inducers. The overexpression of CRAMP or pretreatment of LL-37 alleviated cardiomyocyte ferroptosis, whereas CRAMP knockdown exacerbated cell death. Under ferroptotic stress, the expression of CTSL was elevated. CRAMP inhibited ferroptosis by antagonizing the CTSL activity. Abnormal increase in CTSL activity and levels caused PDIA4 to decrease. Overexpression of PDIA4 inhibited ferroptosis induced by CTSL, while knocking down PDIA4 counteracted the protection of CRAMP. In vivo, both CRAMP overexpression and administration of CRAMP peptide significantly ameliorated myocardial injury and improved cardiac function. CRAMP increases PDIA4 levels by inhibiting the activity of CTSL and antagonizes ferroptosis in cardiomyocytes. Targeting CRAMP offers innovative therapeutic strategies and insights for the prevention and management of myocardial injury.","PeriodicalId":8723,"journal":{"name":"Basic Research in Cardiology","volume":"91 1","pages":""},"PeriodicalIF":9.5,"publicationDate":"2025-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144295699","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-05-14DOI: 10.1007/s00395-025-01115-y
Mengnan Wang,Benedikt Preckel,Coert J Zuurbier,Nina C Weber
Heart failure (HF) is a life-threatening cardiovascular disease associated with high mortality, diminished quality of life, and a significant economic burden on both patients and society. The pathogenesis of HF is closely related to the endothelium, where endothelial ion channels play an important role in regulating intracellular Ca2+ signals. These ion channels are essential to maintain vascular function, including endothelium-dependent vascular tone, inflammation response, and oxidative stress. Sodium-glucose cotransporter 2 inhibitors (SGLT2i) have shown promising cardiovascular benefits in HF patients, reducing mortality risk and hospitalization in several large clinical trials. Clinical and preclinical studies indicate that the cardioprotective effects of SGLT2i in HF are mediated by endothelial nitric oxide (NO) pathways, as well as by reducing inflammation and reactive oxygen species in cardiac endothelial cells. Additionally, SGLT2i may confer endothelial protection by lowering intracellular Ca2+ level through the inhibition of sodium-hydrogen exchanger 1 (NHE1) and sodium-calcium exchanger (NCX) in endothelial cells. In this review, we discuss present knowledge regarding the expression and role of Ca2+-related ion channels in endothelial cells in HF, focusing on the effects of SGLT2i on endothelial NHE1, NCX as well as on vascular tone.
{"title":"Effects of SGLT2 inhibitors on ion channels in heart failure: focus on the endothelium.","authors":"Mengnan Wang,Benedikt Preckel,Coert J Zuurbier,Nina C Weber","doi":"10.1007/s00395-025-01115-y","DOIUrl":"https://doi.org/10.1007/s00395-025-01115-y","url":null,"abstract":"Heart failure (HF) is a life-threatening cardiovascular disease associated with high mortality, diminished quality of life, and a significant economic burden on both patients and society. The pathogenesis of HF is closely related to the endothelium, where endothelial ion channels play an important role in regulating intracellular Ca2+ signals. These ion channels are essential to maintain vascular function, including endothelium-dependent vascular tone, inflammation response, and oxidative stress. Sodium-glucose cotransporter 2 inhibitors (SGLT2i) have shown promising cardiovascular benefits in HF patients, reducing mortality risk and hospitalization in several large clinical trials. Clinical and preclinical studies indicate that the cardioprotective effects of SGLT2i in HF are mediated by endothelial nitric oxide (NO) pathways, as well as by reducing inflammation and reactive oxygen species in cardiac endothelial cells. Additionally, SGLT2i may confer endothelial protection by lowering intracellular Ca2+ level through the inhibition of sodium-hydrogen exchanger 1 (NHE1) and sodium-calcium exchanger (NCX) in endothelial cells. In this review, we discuss present knowledge regarding the expression and role of Ca2+-related ion channels in endothelial cells in HF, focusing on the effects of SGLT2i on endothelial NHE1, NCX as well as on vascular tone.","PeriodicalId":8723,"journal":{"name":"Basic Research in Cardiology","volume":"25 1","pages":""},"PeriodicalIF":9.5,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143945457","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-05-09DOI: 10.1007/s00395-025-01114-z
Wei Ni, Xiaofeng Ge, Yang Liu, Jingyu Chen, Lin Wang, Linjian Chen, Zhaokai Li, Peng Zhang, Shufen Huang, Junhui Xu, Le Zhang, Xiabin Fan, Gang Wang, Wei Huang, Yuanchao Ye, Jiancang Zhou, Cuilian Dai, Binbin Liu
Macrophage depletion exacerbates pressure overload-induced heart failure, but therapeutic translation is hindered by macrophage subset heterogeneity. The functional role of CD163+ macrophages in heart failure remains unclear. Transverse aortic constriction (TAC) was employed to induce pressure overload. Cd163−/− mice exhibited significantly aggravated TAC-induced left ventricular systolic dysfunction, as demonstrated by reduced ejection fraction, fractional shortening, and global longitudinal strain, compared to wild-type (WT) controls. RNA sequencing of cardiac tissues revealed significant differential gene expression between TAC-treated WT and Cd163−/− mice, especially in pathways governing mitochondrial bioenergetics and homeostasis. Transmission electron microscopy confirmed greater accumulation of dysfunctional mitochondria in cardiomyocytes of Cd163−/− mice relative to WT following TAC. Additionally, the proportion of CD163+ macrophages among cardiac macrophages increased post-TAC. Serum IL-10 levels and cardiac macrophage IL-10 expression were significantly diminished in Cd163−/− mice compared to WT after TAC. IL-10 supplementation effectively reversed the TAC-induced impairment in left ventricular systolic function in both WT and Cd163−/− mice, and reduced NADH/NAD+ ratios, reduced mitochondrial dysfunction, and improved mitochondrial membrane potential in Cd163−/− mice. Cross-sectional clinical data supported these findings, showing decreased IL-10 levels as a significant risk factor for heart failure in hypertensive patients (odds ratio: 0.397; 95% CI 0.203–0.775; p = 0.007). Collectively, these results highlight the protective role of CD163+ macrophages against pressure overload-induced left ventricular dysfunction and mitochondrial dysfunction through IL-10-dependent pathways.
{"title":"CD163+ macrophages attenuate pressure overload-induced left ventricular systolic dysfunction and cardiac mitochondrial dysfunction via interleukin-10","authors":"Wei Ni, Xiaofeng Ge, Yang Liu, Jingyu Chen, Lin Wang, Linjian Chen, Zhaokai Li, Peng Zhang, Shufen Huang, Junhui Xu, Le Zhang, Xiabin Fan, Gang Wang, Wei Huang, Yuanchao Ye, Jiancang Zhou, Cuilian Dai, Binbin Liu","doi":"10.1007/s00395-025-01114-z","DOIUrl":"https://doi.org/10.1007/s00395-025-01114-z","url":null,"abstract":"<p>Macrophage depletion exacerbates pressure overload-induced heart failure, but therapeutic translation is hindered by macrophage subset heterogeneity. The functional role of CD163<sup>+</sup> macrophages in heart failure remains unclear. Transverse aortic constriction (TAC) was employed to induce pressure overload. <i>Cd163</i><sup>−/−</sup> mice exhibited significantly aggravated TAC-induced left ventricular systolic dysfunction, as demonstrated by reduced ejection fraction, fractional shortening, and global longitudinal strain, compared to wild-type (WT) controls. RNA sequencing of cardiac tissues revealed significant differential gene expression between TAC-treated WT and <i>Cd163</i><sup>−/−</sup> mice, especially in pathways governing mitochondrial bioenergetics and homeostasis. Transmission electron microscopy confirmed greater accumulation of dysfunctional mitochondria in cardiomyocytes of <i>Cd163</i><sup>−/−</sup> mice relative to WT following TAC. Additionally, the proportion of CD163<sup>+</sup> macrophages among cardiac macrophages increased post-TAC. Serum IL-10 levels and cardiac macrophage IL-10 expression were significantly diminished in <i>Cd163</i><sup>−/−</sup> mice compared to WT after TAC. IL-10 supplementation effectively reversed the TAC-induced impairment in left ventricular systolic function in both WT and <i>Cd163</i><sup>−/−</sup> mice, and reduced NADH/NAD<sup>+</sup> ratios, reduced mitochondrial dysfunction, and improved mitochondrial membrane potential in <i>Cd163</i><sup>−/−</sup> mice. Cross-sectional clinical data supported these findings, showing decreased IL-10 levels as a significant risk factor for heart failure in hypertensive patients (odds ratio: 0.397; 95% CI 0.203–0.775; p = 0.007). Collectively, these results highlight the protective role of CD163<sup>+</sup> macrophages against pressure overload-induced left ventricular dysfunction and mitochondrial dysfunction through IL-10-dependent pathways.</p>","PeriodicalId":8723,"journal":{"name":"Basic Research in Cardiology","volume":"75 1","pages":""},"PeriodicalIF":9.5,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143926602","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Our prior research demonstrated that chronic intermittent hypobaric hypoxia (CIHH) pretreatment confers cardioprotection against ischemia/reperfusion (I/R) injury in rats. However, the precise mechanisms underlying CIHH's cardioprotective effects remain insufficiently understood. This study aims to elucidate the upstream signaling pathways and dynamic regulation of BKCa channels in mediating CIHH-induced cardioprotection through coronary artery vasodilation in rats. Male Sprague-Dawley rats, matched by age and body weight, were assigned to control (Con) and CIHH groups. The CIHH group underwent 35 days of hypobaric hypoxia exposure simulating an altitude of 4000 m, for 5 h daily. Hearts were isolated, perfused using the Langendorff system, and subjected to 30 min of ischemia, followed by 60 or 120 min of reperfusion. Compared to the Con group, CIHH significantly improved left ventricular function recovery, reduced infarct size, and increased coronary flow (CF). Microvessel recording, co-immunoprecipitation, and whole-cell patch clamp techniques demonstrated that CIHH augmented CF by promoting coronary vasodilation, attributed to the inhibition of muscle RING-finger protein-1 (MuRF1)-mediated degradation of the BKCa-β1 subunit. Moreover, CIHH inhibited IKKα-induced phosphorylation and ubiquitin-mediated degradation of IκBα, thereby enhancing its cytoplasmic binding to NF-κB p65 in coronary smooth muscle cells. This process attenuated NF-κB p65 nuclear translocation and the subsequent inflammation-induced expression of MuRF1. The observed increase in coronary vasodilation, driven by the suppression of NF-κB/MuRF1-mediated BKCa-β1 degradation, contributes to enhanced CF and cardioprotection against I/R injury following CIHH.
{"title":"A new mechanism of high-altitude adaptation reducing myocardium infarction: inhibiting inflammation-induced ubiquitin degradation of BKCa to enhance coronary vasodilation.","authors":"Sen Wang,Yu Zhang,Wei-Cheng Yuan,Can-Yang Qi,Hua-Xing Zhang,Tian-Qi Wang,Hui-Jie Liu,Hai-Shuang Li,Yan-Ming Tian,Sheng Wang,Sui-Bing Miao,Li-Ping Zhang,Hui Guo,Xiang-Jian Zhang,Yi Zhang,Huijie Ma,Yue Guan","doi":"10.1007/s00395-025-01113-0","DOIUrl":"https://doi.org/10.1007/s00395-025-01113-0","url":null,"abstract":"Our prior research demonstrated that chronic intermittent hypobaric hypoxia (CIHH) pretreatment confers cardioprotection against ischemia/reperfusion (I/R) injury in rats. However, the precise mechanisms underlying CIHH's cardioprotective effects remain insufficiently understood. This study aims to elucidate the upstream signaling pathways and dynamic regulation of BKCa channels in mediating CIHH-induced cardioprotection through coronary artery vasodilation in rats. Male Sprague-Dawley rats, matched by age and body weight, were assigned to control (Con) and CIHH groups. The CIHH group underwent 35 days of hypobaric hypoxia exposure simulating an altitude of 4000 m, for 5 h daily. Hearts were isolated, perfused using the Langendorff system, and subjected to 30 min of ischemia, followed by 60 or 120 min of reperfusion. Compared to the Con group, CIHH significantly improved left ventricular function recovery, reduced infarct size, and increased coronary flow (CF). Microvessel recording, co-immunoprecipitation, and whole-cell patch clamp techniques demonstrated that CIHH augmented CF by promoting coronary vasodilation, attributed to the inhibition of muscle RING-finger protein-1 (MuRF1)-mediated degradation of the BKCa-β1 subunit. Moreover, CIHH inhibited IKKα-induced phosphorylation and ubiquitin-mediated degradation of IκBα, thereby enhancing its cytoplasmic binding to NF-κB p65 in coronary smooth muscle cells. This process attenuated NF-κB p65 nuclear translocation and the subsequent inflammation-induced expression of MuRF1. The observed increase in coronary vasodilation, driven by the suppression of NF-κB/MuRF1-mediated BKCa-β1 degradation, contributes to enhanced CF and cardioprotection against I/R injury following CIHH.","PeriodicalId":8723,"journal":{"name":"Basic Research in Cardiology","volume":"115 1","pages":""},"PeriodicalIF":9.5,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143915151","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-05-07DOI: 10.1007/s00395-025-01111-2
Jiankun Zhu, Xinjia Ruan, MariaSanta C. Mangione, Pablo Parra, Guo Chen, Xiaoping Su, Xiang Luo, Dian J. Cao
Our previous work demonstrated that the DNA-sensing receptor cyclic GMP-AMP synthase (cGAS) negatively affects post-infarct repair by promoting pro-inflammatory macrophages. However, whether cGAS and its downstream partner STING (Stimulator of Interferon Genes) regulate neutrophil production and function in the context of acute myocardial ischemia remains unclear. This study investigated the role of the cGAS-STING pathway in neutropoiesis (neutrophil production and differentiation) and examined whether ischemia primes neutrophils in the bone marrow via this pathway, enhancing their functionality and contributing to cardiac inflammatory injury. Using myocardial infarction (MI) models in wild-type (WT), Cgas−/−, and Sting−/− mice, we analyzed neutrophils from the bone marrow, peripheral blood, and infarcted tissue. Additionally, we generated neutrophil-specific conditional knockouts of Cgas and performed adoptive transfer experiments with Cgas-deficient neutrophils. RNA sequencing revealed that ischemia increased neutrophil production in the bone marrow and activated pathways involved in cytokine signaling, phagocytosis, chemotaxis, and degranulation. Inhibiting the cGAS-STING pathway reduced neutrophil production by decreasing lineage committed neutrophil precursors including early neutrophil precursors (eNP) and preNeu and downregulated ischemia-induced pathways. Neutrophil conditional Cgas deletion or adoptive transfer of Cgas-deficient neutrophils improved survival but did not significantly impact ischemia-induced remodeling. In conclusion, we demonstrate for the first time that ischemia enhanced neutrophil functionality before recruitment to infarcted tissue, and the cGAS-STING pathway played an important role in neutrophil production and priming. Furthermore, our findings demonstrate a neutrophil-specific role of cGAS in promoting cardiac rupture and mortality in MI. This study provides a more comprehensive understanding of the cGAS-STING pathway in acute ischemia and may support the translation of cGAS-STING modulators, an emerging therapeutic field.
{"title":"The cGAS-STING pathway promotes acute ischemia-induced neutropoiesis and neutrophil priming in the bone marrow","authors":"Jiankun Zhu, Xinjia Ruan, MariaSanta C. Mangione, Pablo Parra, Guo Chen, Xiaoping Su, Xiang Luo, Dian J. Cao","doi":"10.1007/s00395-025-01111-2","DOIUrl":"https://doi.org/10.1007/s00395-025-01111-2","url":null,"abstract":"<p>Our previous work demonstrated that the DNA-sensing receptor cyclic GMP-AMP synthase (cGAS) negatively affects post-infarct repair by promoting pro-inflammatory macrophages. However, whether cGAS and its downstream partner STING (Stimulator of Interferon Genes) regulate neutrophil production and function in the context of acute myocardial ischemia remains unclear. This study investigated the role of the cGAS-STING pathway in neutropoiesis (neutrophil production and differentiation) and examined whether ischemia primes neutrophils in the bone marrow via this pathway, enhancing their functionality and contributing to cardiac inflammatory injury. Using myocardial infarction (MI) models in wild-type (WT), <i>Cgas</i><sup>−/−</sup>, and <i>Sting</i><sup>−/−</sup> mice, we analyzed neutrophils from the bone marrow, peripheral blood, and infarcted tissue. Additionally, we generated neutrophil-specific conditional knockouts of <i>Cgas</i> and performed adoptive transfer experiments with <i>Cgas</i>-deficient neutrophils. RNA sequencing revealed that ischemia increased neutrophil production in the bone marrow and activated pathways involved in cytokine signaling, phagocytosis, chemotaxis, and degranulation. Inhibiting the cGAS-STING pathway reduced neutrophil production by decreasing lineage committed neutrophil precursors including early neutrophil precursors (eNP) and preNeu and downregulated ischemia-induced pathways. Neutrophil conditional <i>Cgas</i> deletion or adoptive transfer of <i>Cgas</i>-deficient neutrophils improved survival but did not significantly impact ischemia-induced remodeling. In conclusion, we demonstrate for the first time that ischemia enhanced neutrophil functionality before recruitment to infarcted tissue, and the cGAS-STING pathway played an important role in neutrophil production and priming. Furthermore, our findings demonstrate a neutrophil-specific role of cGAS in promoting cardiac rupture and mortality in MI. This study provides a more comprehensive understanding of the cGAS-STING pathway in acute ischemia and may support the translation of cGAS-STING modulators, an emerging therapeutic field.</p>","PeriodicalId":8723,"journal":{"name":"Basic Research in Cardiology","volume":"63 1","pages":""},"PeriodicalIF":9.5,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143920309","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-05-07DOI: 10.1007/s00395-025-01109-w
Nirjal Mainali,Meenakshisundaram Balasubramaniam,Sonu Pahal,W Sue T Griffin,Robert J Shmookler Reis,Srinivas Ayyadevara
Cardiovascular diseases (CVDs) are the leading cause of death worldwide. CVD is known to increase the risk of subsequent neurodegeneration but the mechanism(s) and proteins involved have yet to be elucidated. We previously showed that myocardial infarction (MI), induced in mice and compared to sham-MI mice, leads to increases in protein aggregation, endoplasmic reticulum (ER) stress in both heart and brain, and changes in proteostatic pathways. In this study, we further investigate the molecular mechanisms altered by induced MI in mice, which were also implicated by proteomics of postmortem human hippocampal aggregates from Alzheimer's disease (AD) and cardiovascular disease (CVD) patients, vs. age-matched controls (AMC). We utilized intra-aggregate crosslinking to identify protein-protein contacts or proximities, and thus to reconstruct aggregate "contactomes" (nonfunctional interactomes). We used leave-one-out analysis (LOOA) to determine the contribution of each protein to overall aggregate cohesion, and gene ontology meta-analyses of constituent proteins to define critical organelles, processes, and pathways that distinguish AD and/or CVD from AMC aggregates. We identified influential proteins in both AD and CVD aggregates, many of which are associated with pathways or processes previously implicated in neurodegeneration such as mitochondrial, oxidative, and endoplasmic-reticulum stress; protein aggregation and proteostasis; the ubiquitin proteasome system and autophagy; axonal transport; and synapses.
{"title":"Altered protein homeostasis in cardiovascular diseases contributes to Alzheimer's-like neuropathology.","authors":"Nirjal Mainali,Meenakshisundaram Balasubramaniam,Sonu Pahal,W Sue T Griffin,Robert J Shmookler Reis,Srinivas Ayyadevara","doi":"10.1007/s00395-025-01109-w","DOIUrl":"https://doi.org/10.1007/s00395-025-01109-w","url":null,"abstract":"Cardiovascular diseases (CVDs) are the leading cause of death worldwide. CVD is known to increase the risk of subsequent neurodegeneration but the mechanism(s) and proteins involved have yet to be elucidated. We previously showed that myocardial infarction (MI), induced in mice and compared to sham-MI mice, leads to increases in protein aggregation, endoplasmic reticulum (ER) stress in both heart and brain, and changes in proteostatic pathways. In this study, we further investigate the molecular mechanisms altered by induced MI in mice, which were also implicated by proteomics of postmortem human hippocampal aggregates from Alzheimer's disease (AD) and cardiovascular disease (CVD) patients, vs. age-matched controls (AMC). We utilized intra-aggregate crosslinking to identify protein-protein contacts or proximities, and thus to reconstruct aggregate \"contactomes\" (nonfunctional interactomes). We used leave-one-out analysis (LOOA) to determine the contribution of each protein to overall aggregate cohesion, and gene ontology meta-analyses of constituent proteins to define critical organelles, processes, and pathways that distinguish AD and/or CVD from AMC aggregates. We identified influential proteins in both AD and CVD aggregates, many of which are associated with pathways or processes previously implicated in neurodegeneration such as mitochondrial, oxidative, and endoplasmic-reticulum stress; protein aggregation and proteostasis; the ubiquitin proteasome system and autophagy; axonal transport; and synapses.","PeriodicalId":8723,"journal":{"name":"Basic Research in Cardiology","volume":"65 1","pages":""},"PeriodicalIF":9.5,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143915149","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-05-03DOI: 10.1007/s00395-025-01110-3
Julia Shanks, Mridula Pachen, Nigel A. Lever, Julian F. R. Paton, Rohit Ramchandra
Individuals with heart failure have significantly reduced exercise capacity, a critical life-limiting symptom for those living with the disease. Heart failure is negatively correlated with decreased heart rate variability, including the loss of heart rate variability in tune with breathing—termed respiratory heart rate variability (RespHRV). We tested the hypothesis that restoration of RespHRV would improve exercise tolerance. Heart failure was induced in adult female sheep using a microembolization technique, and the sheep were divided into two groups: RespHRV paced and monotonically paced. Following a 1-week baseline recording, the sheep underwent 2 weeks of pacing. Direct recordings of hemodynamic parameters, including arterial pressure, cardiac output, coronary artery blood flow, and heart rate, were taken at rest and during treadmill exercise. Reinstating RespHRV significantly increased resting cardiac output, a change not observed in monotonically paced sheep. Neither group showed a change in resting coronary artery blood flow. During exercise, RespHRV-paced sheep showed increased cardiac output, coronary artery blood flow, cardiac power output, and faster heart rate recovery post-exercise. In contrast, monotonically paced sheep showed no changes in exercise-induced cardiac function. A separate group of heart failure animals were studied to determine if these benefits would persist alongside heart failure medications. RespHRV pacing continued to improve resting cardiac output with concurrent heart failure medications. Our results indicate that reinstating RespHRV may be a novel approach for improving outcomes in heart failure, including exercise capacity.
{"title":"Reinstating respiratory heart rate variability improves hemodynamic responses during exercise in heart failure with reduced ejection fraction","authors":"Julia Shanks, Mridula Pachen, Nigel A. Lever, Julian F. R. Paton, Rohit Ramchandra","doi":"10.1007/s00395-025-01110-3","DOIUrl":"https://doi.org/10.1007/s00395-025-01110-3","url":null,"abstract":"<p>Individuals with heart failure have significantly reduced exercise capacity, a critical life-limiting symptom for those living with the disease. Heart failure is negatively correlated with decreased heart rate variability, including the loss of heart rate variability in tune with breathing—termed respiratory heart rate variability (RespHRV). We tested the hypothesis that restoration of RespHRV would improve exercise tolerance. Heart failure was induced in adult female sheep using a microembolization technique, and the sheep were divided into two groups: RespHRV paced and monotonically paced. Following a 1-week baseline recording, the sheep underwent 2 weeks of pacing. Direct recordings of hemodynamic parameters, including arterial pressure, cardiac output, coronary artery blood flow, and heart rate, were taken at rest and during treadmill exercise. Reinstating RespHRV significantly increased resting cardiac output, a change not observed in monotonically paced sheep. Neither group showed a change in resting coronary artery blood flow. During exercise, RespHRV-paced sheep showed increased cardiac output, coronary artery blood flow, cardiac power output, and faster heart rate recovery post-exercise. In contrast, monotonically paced sheep showed no changes in exercise-induced cardiac function. A separate group of heart failure animals were studied to determine if these benefits would persist alongside heart failure medications. RespHRV pacing continued to improve resting cardiac output with concurrent heart failure medications. Our results indicate that reinstating RespHRV may be a novel approach for improving outcomes in heart failure, including exercise capacity.</p>","PeriodicalId":8723,"journal":{"name":"Basic Research in Cardiology","volume":"15 1","pages":""},"PeriodicalIF":9.5,"publicationDate":"2025-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143901260","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-05-01DOI: 10.1007/s00395-025-01112-1
Xian-Liang Tang, Mouhamad Alloosh, Qinghui Ou, Li Luo, Devendra K. Agrawal, Dinesh K. Kalra, Michael Sturek, Roberto Bolli
A major obstacle to progress in heart failure with preserved ejection fraction (HFpEF) is the paucity of clinically relevant animal models. We developed a large, translationally relevant model in Ossabaw minipigs, which are genetically predisposed to the metabolic syndrome (MetS). Pigs were fed a “Western diet” high in calories, fructose, fat, cholesterol, and salt and received 1–2 deoxy-corticosterone acetate (DOCA) depots (n = 10). After 6 months, they exhibited liver function abnormalities and marked increases in body weight, arterial blood pressure, serum cholesterol and triglycerides, and plasma glucose and insulin levels (glucose tolerance test), indicating the development of a full MetS. Echocardiography demonstrated no change in LV ejection fraction but progressive concentric LV hypertrophy and left atrial dilatation. Doppler echocardiography showed increased E/e’ ratio and increased peak early (E) and peak late atrial (A) transmitral inflow velocities, with no change in E/A ratio. Right heart catheterization demonstrated increased central venous pressure, pulmonary arterial systolic pressure, and pulmonary capillary wedge pressure. Clinically, pigs exhibited impaired exercise capacity, assessed by treadmill tests, associated with chronotropic incompetence. Pathologic examination showed significant myocardial fibrosis, myocyte hypertrophy, and liver fibrosis. In contrast, lean pigs fed a standard diet (n = 3) did not show any changes at 6 months. The Ossabaw porcine model described herein is unique in that it recapitulates the entire constellation of major multiorgan comorbidities and hemodynamic, clinical, and metabolic features of MetS-driven human HFpEF: obesity, arterial hypertension, hyperlipidemia, glucose intolerance, insulin resistance, liver fibrosis and dysfunction, pulmonary hypertension, increased LV filling pressures, concentric LV hypertrophy, LV diastolic dysfunction with preserved systolic function, and impaired exercise capacity. Because of its high clinical relevance, this model is well-suited for exploring the pathophysiology of MetS-driven HFpEF and the efficacy of new therapies.
{"title":"A new model of heart failure with preserved ejection fraction induced by metabolic syndrome in Ossabaw miniature swine","authors":"Xian-Liang Tang, Mouhamad Alloosh, Qinghui Ou, Li Luo, Devendra K. Agrawal, Dinesh K. Kalra, Michael Sturek, Roberto Bolli","doi":"10.1007/s00395-025-01112-1","DOIUrl":"https://doi.org/10.1007/s00395-025-01112-1","url":null,"abstract":"<p>A major obstacle to progress in heart failure with preserved ejection fraction (HFpEF) is the paucity of clinically relevant animal models. We developed a large, translationally relevant model in Ossabaw minipigs, which are genetically predisposed to the metabolic syndrome (MetS). Pigs were fed a “Western diet” high in calories, fructose, fat, cholesterol, and salt and received 1–2 deoxy-corticosterone acetate (DOCA) depots (n = 10). After 6 months, they exhibited liver function abnormalities and marked increases in body weight, arterial blood pressure, serum cholesterol and triglycerides, and plasma glucose and insulin levels (glucose tolerance test), indicating the development of a full MetS. Echocardiography demonstrated no change in LV ejection fraction but progressive concentric LV hypertrophy and left atrial dilatation. Doppler echocardiography showed increased E/e’ ratio and increased peak early (E) and peak late atrial (A) transmitral inflow velocities, with no change in E/A ratio. Right heart catheterization demonstrated increased central venous pressure, pulmonary arterial systolic pressure, and pulmonary capillary wedge pressure. Clinically, pigs exhibited impaired exercise capacity, assessed by treadmill tests, associated with chronotropic incompetence. Pathologic examination showed significant myocardial fibrosis, myocyte hypertrophy, and liver fibrosis. In contrast, lean pigs fed a standard diet (n = 3) did not show any changes at 6 months. The Ossabaw porcine model described herein is unique in that it recapitulates the entire constellation of major multiorgan comorbidities and hemodynamic, clinical, and metabolic features of MetS-driven human HFpEF: obesity, arterial hypertension, hyperlipidemia, glucose intolerance, insulin resistance, liver fibrosis and dysfunction, pulmonary hypertension, increased LV filling pressures, concentric LV hypertrophy, LV diastolic dysfunction with preserved systolic function, and impaired exercise capacity. Because of its high clinical relevance, this model is well-suited for exploring the pathophysiology of MetS-driven HFpEF and the efficacy of new therapies.</p>","PeriodicalId":8723,"journal":{"name":"Basic Research in Cardiology","volume":"44 1","pages":""},"PeriodicalIF":9.5,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143898052","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}