Pub Date : 2024-04-01Epub Date: 2024-03-12DOI: 10.1007/s00395-024-01038-0
Michiel R L Tubeeckx, Gilles W De Keulenaer, Hein Heidbuchel, Vincent F M Segers
Atrial myopathy is a condition that consists of electrical, structural, contractile, and autonomic remodeling of the atria and is the substrate for development of atrial fibrillation, the most common arrhythmia. Pathophysiologic mechanisms driving atrial myopathy are inflammation, oxidative stress, atrial stretch, and neurohormonal signals, e.g., angiotensin-II and aldosterone. These mechanisms initiate the structural and functional remodeling of the atrial myocardium. Novel therapeutic strategies are being developed that target the pathophysiologic mechanisms of atrial myopathy. In this review, we will discuss the pathophysiology of atrial myopathy, as well as diagnostic and therapeutic strategies.
心房肌病是一种由心房的电学、结构、收缩和自主神经重塑组成的疾病,是最常见的心律失常--心房颤动的发病基础。导致心房肌病的病理生理机制包括炎症、氧化应激、心房拉伸和神经激素信号(如血管紧张素 II 和醛固酮)。这些机制启动了心房心肌的结构和功能重塑。目前正在针对心房肌病的病理生理机制开发新的治疗策略。在本综述中,我们将讨论心房肌病的病理生理学以及诊断和治疗策略。
{"title":"Pathophysiology and clinical relevance of atrial myopathy.","authors":"Michiel R L Tubeeckx, Gilles W De Keulenaer, Hein Heidbuchel, Vincent F M Segers","doi":"10.1007/s00395-024-01038-0","DOIUrl":"10.1007/s00395-024-01038-0","url":null,"abstract":"<p><p>Atrial myopathy is a condition that consists of electrical, structural, contractile, and autonomic remodeling of the atria and is the substrate for development of atrial fibrillation, the most common arrhythmia. Pathophysiologic mechanisms driving atrial myopathy are inflammation, oxidative stress, atrial stretch, and neurohormonal signals, e.g., angiotensin-II and aldosterone. These mechanisms initiate the structural and functional remodeling of the atrial myocardium. Novel therapeutic strategies are being developed that target the pathophysiologic mechanisms of atrial myopathy. In this review, we will discuss the pathophysiology of atrial myopathy, as well as diagnostic and therapeutic strategies.</p>","PeriodicalId":8723,"journal":{"name":"Basic Research in Cardiology","volume":" ","pages":"215-242"},"PeriodicalIF":7.5,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140108987","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-01Epub Date: 2024-03-04DOI: 10.1007/s00395-024-01035-3
Nadine Gladow, Claudia Hollmann, Johannes Weirather, Xin Ding, Matthias Burkard, Sabrina Uehlein, Richa Bharti, Konrad Förstner, Thomas Kerkau, Niklas Beyersdorf, Stefan Frantz, Gustavo Ramos, Ulrich Hofmann
Myocardial infarction (MI) induces the generation of proinflammatory Ly6Chigh monocytes in the spleen and the recruitment of these cells to the myocardium. CD4+ Foxp3+ CD25+ T-cells (Tregs) promote the healing process after myocardial infarction by engendering a pro-healing differentiation state in myocardial monocyte-derived macrophages. We aimed to study the effects of CD4+ T-cells on splenic myelopoiesis and monocyte differentiation. We instigated MI in mice and found that MI-induced splenic myelopoiesis is abrogated in CD4+ T-cell deficient animals. Conventional CD4+ T-cells promoted myelopoiesis in vitro by cell-cell-contact and paracrine mechanisms, including interferon-gamma (IFN-γ) signalling. Depletion of regulatory T-cells enhanced myelopoiesis in vivo, as evidenced by increases in progenitor cell numbers and proliferative activity in the spleen 5 days after MI. The frequency of CD4+ T-cells-producing factors that promote myelopoiesis increased within the spleen of Treg-depleted mice. Moreover, depletion of Tregs caused a proinflammatory bias in splenic Ly6Chigh monocytes, which showed predominantly upregulated expression of IFN-γ responsive genes after MI. Our results indicate that conventional CD4+ T-cells promote and Tregs attenuate splenic myelopoiesis and proinflammatory differentiation of monocytes.
心肌梗塞(MI)会诱导脾脏产生促炎症的 Ly6Chigh 单核细胞,并将这些细胞募集到心肌。CD4+ Foxp3+ CD25+ T细胞(Tregs)通过在心肌单核细胞衍生的巨噬细胞中产生促进愈合的分化状态来促进心肌梗死后的愈合过程。我们的目的是研究 CD4+ T 细胞对脾脏骨髓造血和单核细胞分化的影响。我们在小鼠体内诱发了心肌缺血,并发现心肌缺血诱导的脾骨髓造血在 CD4+ T 细胞缺乏的动物体内会减弱。传统的 CD4+ T 细胞通过细胞接触和旁分泌机制(包括干扰素-γ(IFN-γ)信号)促进体外骨髓造血。调节性T细胞的耗竭增强了体内的骨髓造血功能,这体现在心肌梗死5天后脾脏中祖细胞数量和增殖活性的增加。在Treg耗竭的小鼠脾脏中,CD4+ T细胞产生促进骨髓造血的因子的频率增加了。此外,Tregs 的耗竭导致脾脏中的 Ly6Chigh 单核细胞出现促炎偏向,它们在心肌梗死后主要表现为 IFN-γ 响应基因的表达上调。我们的研究结果表明,传统的 CD4+ T 细胞能促进脾骨髓造血和单核细胞的促炎分化,而 Tregs 则能减弱脾骨髓造血和单核细胞的促炎分化。
{"title":"Role of CD4<sup>+</sup> T-cells for regulating splenic myelopoiesis and monocyte differentiation after experimental myocardial infarction.","authors":"Nadine Gladow, Claudia Hollmann, Johannes Weirather, Xin Ding, Matthias Burkard, Sabrina Uehlein, Richa Bharti, Konrad Förstner, Thomas Kerkau, Niklas Beyersdorf, Stefan Frantz, Gustavo Ramos, Ulrich Hofmann","doi":"10.1007/s00395-024-01035-3","DOIUrl":"10.1007/s00395-024-01035-3","url":null,"abstract":"<p><p>Myocardial infarction (MI) induces the generation of proinflammatory Ly6C<sup>high</sup> monocytes in the spleen and the recruitment of these cells to the myocardium. CD4<sup>+</sup> Foxp3<sup>+</sup> CD25<sup>+</sup> T-cells (Tregs) promote the healing process after myocardial infarction by engendering a pro-healing differentiation state in myocardial monocyte-derived macrophages. We aimed to study the effects of CD4<sup>+</sup> T-cells on splenic myelopoiesis and monocyte differentiation. We instigated MI in mice and found that MI-induced splenic myelopoiesis is abrogated in CD4<sup>+</sup> T-cell deficient animals. Conventional CD4<sup>+</sup> T-cells promoted myelopoiesis in vitro by cell-cell-contact and paracrine mechanisms, including interferon-gamma (IFN-γ) signalling. Depletion of regulatory T-cells enhanced myelopoiesis in vivo, as evidenced by increases in progenitor cell numbers and proliferative activity in the spleen 5 days after MI. The frequency of CD4<sup>+</sup> T-cells-producing factors that promote myelopoiesis increased within the spleen of Treg-depleted mice. Moreover, depletion of Tregs caused a proinflammatory bias in splenic Ly6C<sup>high</sup> monocytes, which showed predominantly upregulated expression of IFN-γ responsive genes after MI. Our results indicate that conventional CD4<sup>+</sup> T-cells promote and Tregs attenuate splenic myelopoiesis and proinflammatory differentiation of monocytes.</p>","PeriodicalId":8723,"journal":{"name":"Basic Research in Cardiology","volume":" ","pages":"261-275"},"PeriodicalIF":7.5,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11008073/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140020821","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-01Epub Date: 2024-03-02DOI: 10.1007/s00395-024-01037-1
Gemma Arderiu, Maria Teresa Bejar, Anna Civit-Urgell, Esther Peña, Lina Badimon
The coronary perivascular adipose tissue (cPVAT) has been associated to the burden of cardiovascular risk factors and to the underlying vessel atherosclerotic plaque severity. Although the "outside to inside" hypothesis of PVAT-derived-adipokine regulation of vessel function is currently accepted, whether the resident mesenchymal stem cells (ASCs) in PVAT have a regulatory role on the underlying vascular arterial smooth muscle cells (VSMCs) is not known. Here, we investigated the interactions between resident PVAT-ASCs and VSMCs. ASCs were obtained from PVAT overlying the left anterior descending (LAD) coronary artery of hearts removed at heart transplant operations. PVAT was obtained both from patients with non-ischemic and ischemic heart disease as the cause of heart transplant. ASCs were isolated from PVAT, phenotypically characterized by flow cytometry, functionally tested for proliferation, and differentiation. Crosstalk between ASCs and VSMCs was investigated by co-culture studies. ASCs were detected in the adventitia of the LAD-PVAT showing differentiation capacity and angiogenic potential. ASCs obtained from PVAT of non-ischemic and ischemic hearts showed different tissue factor (TF) expression levels, different VSMCs recruitment capacity through the axis ERK1/2-ETS1 signaling and different angiogenic potential. Induced upregulation of TF in ASCs isolated from ischemic PVAT rescued their angiogenic capacity in subcutaneously implanted plugs in mice, whereas silencing TF in ASCs decreased the proangiogenic capacity of non-ischemic ASCs. The results indicate for the first time a novel mechanism of regulation of VSMCs by PVAT-ASCs in angiogenesis, mediated by TF expression in ASCs. Regulation of TF in ASCs may become a therapeutic intervention to increase cardiac protection.
{"title":"Crosstalk of human coronary perivascular adipose-derived stem cells with vascular cells: role of tissue factor.","authors":"Gemma Arderiu, Maria Teresa Bejar, Anna Civit-Urgell, Esther Peña, Lina Badimon","doi":"10.1007/s00395-024-01037-1","DOIUrl":"10.1007/s00395-024-01037-1","url":null,"abstract":"<p><p>The coronary perivascular adipose tissue (cPVAT) has been associated to the burden of cardiovascular risk factors and to the underlying vessel atherosclerotic plaque severity. Although the \"outside to inside\" hypothesis of PVAT-derived-adipokine regulation of vessel function is currently accepted, whether the resident mesenchymal stem cells (ASCs) in PVAT have a regulatory role on the underlying vascular arterial smooth muscle cells (VSMCs) is not known. Here, we investigated the interactions between resident PVAT-ASCs and VSMCs. ASCs were obtained from PVAT overlying the left anterior descending (LAD) coronary artery of hearts removed at heart transplant operations. PVAT was obtained both from patients with non-ischemic and ischemic heart disease as the cause of heart transplant. ASCs were isolated from PVAT, phenotypically characterized by flow cytometry, functionally tested for proliferation, and differentiation. Crosstalk between ASCs and VSMCs was investigated by co-culture studies. ASCs were detected in the adventitia of the LAD-PVAT showing differentiation capacity and angiogenic potential. ASCs obtained from PVAT of non-ischemic and ischemic hearts showed different tissue factor (TF) expression levels, different VSMCs recruitment capacity through the axis ERK1/2-ETS1 signaling and different angiogenic potential. Induced upregulation of TF in ASCs isolated from ischemic PVAT rescued their angiogenic capacity in subcutaneously implanted plugs in mice, whereas silencing TF in ASCs decreased the proangiogenic capacity of non-ischemic ASCs. The results indicate for the first time a novel mechanism of regulation of VSMCs by PVAT-ASCs in angiogenesis, mediated by TF expression in ASCs. Regulation of TF in ASCs may become a therapeutic intervention to increase cardiac protection.</p>","PeriodicalId":8723,"journal":{"name":"Basic Research in Cardiology","volume":" ","pages":"291-307"},"PeriodicalIF":7.5,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140012073","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-01Epub Date: 2024-02-08DOI: 10.1007/s00395-024-01032-6
Daniela Fraccarollo, Robert Geffers, Paolo Galuppo, Johann Bauersachs
Inflammaging, a pro-inflammatory status that characterizes aging and primarily involving macrophages, is a master driver of age-related diseases. Mineralocorticoid receptor (MR) activation in macrophages critically regulates inflammatory and fibrotic processes. However, macrophage-specific mechanisms and the role of the macrophage MR for the regulation of inflammation and fibrotic remodeling in the aging heart have not yet been elucidated. Transcriptome profiling of cardiac macrophages from male/female young (4 months-old), middle (12 months-old) and old (18 and 24 months-old) mice revealed that myeloid cell-restricted MR deficiency prevents macrophage differentiation toward a pro-inflammatory phenotype. Pathway enrichment analysis showed that several biological processes related to inflammation and cell metabolism were modulated by the MR in aged macrophages. Further, transcriptome analysis of aged cardiac fibroblasts revealed that macrophage MR deficiency reduced the activation of pathways related to inflammation and upregulation of ZBTB16, a transcription factor involved in fibrosis. Phenotypic characterization of macrophages showed a progressive replacement of the TIMD4+MHC-IIneg/low macrophage population by TIMD4+MHC-IIint/high and TIMD4-MHC-IIint/high macrophages in the aging heart. By integrating cell sorting and transwell experiments with TIMD4+/TIMD4-macrophages and fibroblasts from old MRflox/MRLysMCre hearts, we showed that the inflammatory crosstalk between TIMD4- macrophages and fibroblasts may imply the macrophage MR and the release of mitochondrial superoxide anions. Macrophage MR deficiency reduced the expansion of the TIMD4- macrophage population and the emergence of fibrotic niches in the aging heart, thereby protecting against cardiac inflammation, fibrosis, and dysfunction. This study highlights the MR as an important mediator of cardiac macrophage inflammaging and age-related fibrotic remodeling.
{"title":"Mineralocorticoid receptor promotes cardiac macrophage inflammaging.","authors":"Daniela Fraccarollo, Robert Geffers, Paolo Galuppo, Johann Bauersachs","doi":"10.1007/s00395-024-01032-6","DOIUrl":"10.1007/s00395-024-01032-6","url":null,"abstract":"<p><p>Inflammaging, a pro-inflammatory status that characterizes aging and primarily involving macrophages, is a master driver of age-related diseases. Mineralocorticoid receptor (MR) activation in macrophages critically regulates inflammatory and fibrotic processes. However, macrophage-specific mechanisms and the role of the macrophage MR for the regulation of inflammation and fibrotic remodeling in the aging heart have not yet been elucidated. Transcriptome profiling of cardiac macrophages from male/female young (4 months-old), middle (12 months-old) and old (18 and 24 months-old) mice revealed that myeloid cell-restricted MR deficiency prevents macrophage differentiation toward a pro-inflammatory phenotype. Pathway enrichment analysis showed that several biological processes related to inflammation and cell metabolism were modulated by the MR in aged macrophages. Further, transcriptome analysis of aged cardiac fibroblasts revealed that macrophage MR deficiency reduced the activation of pathways related to inflammation and upregulation of ZBTB16, a transcription factor involved in fibrosis. Phenotypic characterization of macrophages showed a progressive replacement of the TIMD4<sup>+</sup>MHC-II<sup>neg/low</sup> macrophage population by TIMD4<sup>+</sup>MHC-II<sup>int/high</sup> and TIMD4<sup>-</sup>MHC-II<sup>int/high</sup> macrophages in the aging heart. By integrating cell sorting and transwell experiments with TIMD4<sup>+</sup>/TIMD4<sup>-</sup>macrophages and fibroblasts from old MR<sup>flox</sup>/MR<sup>LysMCre</sup> hearts, we showed that the inflammatory crosstalk between TIMD4<sup>-</sup> macrophages and fibroblasts may imply the macrophage MR and the release of mitochondrial superoxide anions. Macrophage MR deficiency reduced the expansion of the TIMD4<sup>-</sup> macrophage population and the emergence of fibrotic niches in the aging heart, thereby protecting against cardiac inflammation, fibrosis, and dysfunction. This study highlights the MR as an important mediator of cardiac macrophage inflammaging and age-related fibrotic remodeling.</p>","PeriodicalId":8723,"journal":{"name":"Basic Research in Cardiology","volume":" ","pages":"243-260"},"PeriodicalIF":7.5,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11008080/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139701648","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-01Epub Date: 2024-02-13DOI: 10.1007/s00395-023-01030-0
Nesrine Bouhrira, Alexia Vite, Kenneth B Margulies
Recognizing that cells "feel" and respond to their mechanical environment, recent studies demonstrate that many cells exhibit a phenomenon of "mechanical memory" in which features induced by prior mechanical cues persist after the mechanical stimulus has ceased. While there is a general recognition that different cell types exhibit different responses to changes in extracellular matrix stiffening, the phenomenon of mechanical memory within myocardial cell types has received little attention to date. To probe the dynamics of mechanical memory in cardiac fibroblasts (CFs) and cardiomyocytes derived from human induced pluripotent stem cells (iPSC-CMs), we employed a magnetorheological elastomer (MRE) cell culture substrate with tunable and reversible stiffness spanning the range from normal to diseased myocardium. In CFs, using increased cell area and increases in α-smooth muscle actin as markers of cellular responses to matrix stiffening, we found that induction of mechanical memory required seven days of stiff priming. Both induction and maintenance of persistent CF activation were blocked with the F-actin inhibitor cytochalasin D, while inhibitors of microtubule detyrosination had no impact on CFs. In iPSC-CMs, mechanical memory was invoked after only 24 h of stiff priming. Moreover, mechanical memory induction and maintenance were microtubule-dependent in CMs with no dependence on F-actin. Overall, these results identify the distinct temporal dynamics of mechanical memory in CFs and iPSC-CMs with different cytoskeletal mediators responsible for inducing and maintaining the stiffness-activated phenotype. Due to its flexibility, this model is broadly applicable to future studies interrogating mechanotransduction and mechanical memory in the heart and might inform strategies for attenuating the impact of load-induced pathology and excess myocardial stiffness.
{"title":"Distinct cytoskeletal regulators of mechanical memory in cardiac fibroblasts and cardiomyocytes.","authors":"Nesrine Bouhrira, Alexia Vite, Kenneth B Margulies","doi":"10.1007/s00395-023-01030-0","DOIUrl":"10.1007/s00395-023-01030-0","url":null,"abstract":"<p><p>Recognizing that cells \"feel\" and respond to their mechanical environment, recent studies demonstrate that many cells exhibit a phenomenon of \"mechanical memory\" in which features induced by prior mechanical cues persist after the mechanical stimulus has ceased. While there is a general recognition that different cell types exhibit different responses to changes in extracellular matrix stiffening, the phenomenon of mechanical memory within myocardial cell types has received little attention to date. To probe the dynamics of mechanical memory in cardiac fibroblasts (CFs) and cardiomyocytes derived from human induced pluripotent stem cells (iPSC-CMs), we employed a magnetorheological elastomer (MRE) cell culture substrate with tunable and reversible stiffness spanning the range from normal to diseased myocardium. In CFs, using increased cell area and increases in α-smooth muscle actin as markers of cellular responses to matrix stiffening, we found that induction of mechanical memory required seven days of stiff priming. Both induction and maintenance of persistent CF activation were blocked with the F-actin inhibitor cytochalasin D, while inhibitors of microtubule detyrosination had no impact on CFs. In iPSC-CMs, mechanical memory was invoked after only 24 h of stiff priming. Moreover, mechanical memory induction and maintenance were microtubule-dependent in CMs with no dependence on F-actin. Overall, these results identify the distinct temporal dynamics of mechanical memory in CFs and iPSC-CMs with different cytoskeletal mediators responsible for inducing and maintaining the stiffness-activated phenotype. Due to its flexibility, this model is broadly applicable to future studies interrogating mechanotransduction and mechanical memory in the heart and might inform strategies for attenuating the impact of load-induced pathology and excess myocardial stiffness.</p>","PeriodicalId":8723,"journal":{"name":"Basic Research in Cardiology","volume":" ","pages":"277-289"},"PeriodicalIF":7.5,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139721429","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-30DOI: 10.1007/s00395-024-01045-1
Lea Strohm, Andreas Daiber, Henning Ubbens, Roopesh Krishnankutty, Matthias Oelze, Marin Kuntic, Omar Hahad, Veronique Klein, Imo E. Hoefer, Alex von Kriegsheim, Hartmut Kleinert, Dorothee Atzler, Philipp Lurz, Christian Weber, Philipp S. Wild, Thomas Münzel, Christoph Knosalla, Esther Lutgens, Steffen Daub
CD40L–CD40–TRAF signaling plays a role in atherosclerosis progression and affects the pathogenesis of coronary heart disease (CHD). We tested the hypothesis that CD40L–CD40–TRAF signaling is a potential therapeutic target in hyperlipidemia, diabetes, and hypertension. In mouse models of hyperlipidemia plus diabetes (db/db mice) or hypertension (1 mg/kg/d angiotensin-II for 7 days), TRAF6 inhibitor treatment (2.5 mg/kg/d for 7 or 14 days) normalized markers of oxidative stress and inflammation. As diabetes and hypertension are important comorbidities aggravating CHD, we explored whether the CD40L–CD40–TRAF signaling cascade and their associated inflammatory pathways are expressed in CHD patients suffering from comorbidities. Therefore, we analyzed vascular bypass material (aorta or internal mammary artery) and plasma from patients with CHD with diabetes and/or hypertension. Our Olink targeted plasma proteomic analysis using the IMMUNO-ONCOLOGY panel revealed a pattern of step-wise increase for 13/92 markers of low-grade inflammation with significant changes. CD40L or CD40 significantly correlated with 38 or 56 other inflammatory targets. In addition, specific gene clusters that correlate with the comorbidities were identified in isolated aortic mRNA of CHD patients through RNA-sequencing. These signaling clusters comprised CD40L–CD40–TRAF, immune system, hemostasis, muscle contraction, metabolism of lipids, developmental biology, and apoptosis. Finally, immunological analysis revealed key markers correlated with comorbidities in CHD patients, such as CD40L, NOX2, CD68, and 3-nitrotyrosine. These data indicate that comorbidities increase inflammatory pathways in CHD, and targeting these pathways will be beneficial in reducing cardiovascular events in CHD patients with comorbidities.
{"title":"Role of inflammatory signaling pathways involving the CD40–CD40L–TRAF cascade in diabetes and hypertension—insights from animal and human studies","authors":"Lea Strohm, Andreas Daiber, Henning Ubbens, Roopesh Krishnankutty, Matthias Oelze, Marin Kuntic, Omar Hahad, Veronique Klein, Imo E. Hoefer, Alex von Kriegsheim, Hartmut Kleinert, Dorothee Atzler, Philipp Lurz, Christian Weber, Philipp S. Wild, Thomas Münzel, Christoph Knosalla, Esther Lutgens, Steffen Daub","doi":"10.1007/s00395-024-01045-1","DOIUrl":"https://doi.org/10.1007/s00395-024-01045-1","url":null,"abstract":"<p>CD40L–CD40–TRAF signaling plays a role in atherosclerosis progression and affects the pathogenesis of coronary heart disease (CHD). We tested the hypothesis that CD40L–CD40–TRAF signaling is a potential therapeutic target in hyperlipidemia, diabetes, and hypertension. In mouse models of hyperlipidemia plus diabetes (db/db mice) or hypertension (1 mg/kg/d angiotensin-II for 7 days), TRAF6 inhibitor treatment (2.5 mg/kg/d for 7 or 14 days) normalized markers of oxidative stress and inflammation. As diabetes and hypertension are important comorbidities aggravating CHD, we explored whether the CD40L–CD40–TRAF signaling cascade and their associated inflammatory pathways are expressed in CHD patients suffering from comorbidities. Therefore, we analyzed vascular bypass material (aorta or internal mammary artery) and plasma from patients with CHD with diabetes and/or hypertension. Our Olink targeted plasma proteomic analysis using the IMMUNO-ONCOLOGY panel revealed a pattern of step-wise increase for 13/92 markers of low-grade inflammation with significant changes. CD40L or CD40 significantly correlated with 38 or 56 other inflammatory targets. In addition, specific gene clusters that correlate with the comorbidities were identified in isolated aortic mRNA of CHD patients through RNA-sequencing. These signaling clusters comprised CD40L–CD40–TRAF, immune system, hemostasis, muscle contraction, metabolism of lipids, developmental biology, and apoptosis. Finally, immunological analysis revealed key markers correlated with comorbidities in CHD patients, such as CD40L, NOX2, CD68, and 3-nitrotyrosine. These data indicate that comorbidities increase inflammatory pathways in CHD, and targeting these pathways will be beneficial in reducing cardiovascular events in CHD patients with comorbidities.</p>","PeriodicalId":8723,"journal":{"name":"Basic Research in Cardiology","volume":"114 1","pages":""},"PeriodicalIF":9.5,"publicationDate":"2024-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140329183","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-23DOI: 10.1007/s00395-024-01046-0
Panagiotis Efentakis, Angeliki Choustoulaki, Grzegorz Kwiatkowski, Aimilia Varela, Ioannis V. Kostopoulos, George Tsekenis, Ioannis Ntanasis-Stathopoulos, Anastasios Georgoulis, Constantinos E. Vorgias, Harikleia Gakiopoulou, Alexandros Briasoulis, Constantinos H. Davos, Nikolaos Kostomitsopoulos, Ourania Tsitsilonis, Meletios Athanasios Dimopoulos, Evangelos Terpos, Stefan Chłopicki, Maria Gavriatopoulou, Ioanna Andreadou
Immune checkpoint inhibitors (ICIs) exhibit remarkable antitumor activity and immune-related cardiotoxicity of unknown pathomechanism. The aim of the study was to investigate the ICI class-dependent cardiotoxicity in vitro and pembrolizumab’s (Pem’s) cardiotoxicity in vivo, seeking for translational prevention means. Cytotoxicity was investigated in primary cardiomyocytes and splenocytes, incubated with ipilimumab, Pem and avelumab. Pem’s cross-reactivity was assessed by circular dichroism (CD) on biotechnologically produced human and murine PD-1 and in silico. C57BL6/J male mice received IgG4 or Pem for 2 and 5 weeks. Echocardiography, histology, and molecular analyses were performed. Coronary blood flow velocity mapping and cardiac magnetic resonance imaging were conducted at 2 weeks. Human EA.hy926 endothelial cells were incubated with Pem-conditioned media from human mononuclear cells, in presence and absence of statins and viability and molecular signaling were assessed. Atorvastatin (20 mg/kg, daily) was administered in vivo, as prophylaxis. Only Pem exerted immune-related cytotoxicity in vitro. Pem’s cross-reactivity with the murine PD-1 was confirmed by CD and docking. In vivo, Pem initiated coronary endothelial and diastolic dysfunction at 2 weeks and systolic dysfunction at 5 weeks. At 2 weeks, Pem induced ICAM-1 and iNOS expression and intracardiac leukocyte infiltration. At 5 weeks, Pem exacerbated endothelial activation and triggered cardiac inflammation. Pem led to immune-related cytotoxicity in EA.hy926 cells, which was prevented by atorvastatin. Atorvastatin mitigated functional deficits, by inhibiting endothelial dysfunction in vivo. We established for the first time an in vivo model of Pem-induced cardiotoxicity. Coronary endothelial dysfunction precedes Pem-induced cardiotoxicity, whereas atorvastatin emerges as a novel prophylactic therapy.
{"title":"Early microvascular coronary endothelial dysfunction precedes pembrolizumab-induced cardiotoxicity. Preventive role of high dose of atorvastatin","authors":"Panagiotis Efentakis, Angeliki Choustoulaki, Grzegorz Kwiatkowski, Aimilia Varela, Ioannis V. Kostopoulos, George Tsekenis, Ioannis Ntanasis-Stathopoulos, Anastasios Georgoulis, Constantinos E. Vorgias, Harikleia Gakiopoulou, Alexandros Briasoulis, Constantinos H. Davos, Nikolaos Kostomitsopoulos, Ourania Tsitsilonis, Meletios Athanasios Dimopoulos, Evangelos Terpos, Stefan Chłopicki, Maria Gavriatopoulou, Ioanna Andreadou","doi":"10.1007/s00395-024-01046-0","DOIUrl":"https://doi.org/10.1007/s00395-024-01046-0","url":null,"abstract":"<p>Immune checkpoint inhibitors (ICIs) exhibit remarkable antitumor activity and immune-related cardiotoxicity of unknown pathomechanism. The aim of the study was to investigate the ICI class-dependent cardiotoxicity in vitro and pembrolizumab’s (Pem’s) cardiotoxicity in vivo, seeking for translational prevention means. Cytotoxicity was investigated in primary cardiomyocytes and splenocytes, incubated with ipilimumab, Pem and avelumab. Pem’s cross-reactivity was assessed by circular dichroism (CD) on biotechnologically produced human and murine PD-1 and in silico. C57BL6/J male mice received IgG4 or Pem for 2 and 5 weeks. Echocardiography, histology, and molecular analyses were performed. Coronary blood flow velocity mapping and cardiac magnetic resonance imaging were conducted at 2 weeks. Human EA.hy926 endothelial cells were incubated with Pem-conditioned media from human mononuclear cells, in presence and absence of statins and viability and molecular signaling were assessed. Atorvastatin (20 mg/kg, daily) was administered in vivo<i>,</i> as prophylaxis. Only Pem exerted immune-related cytotoxicity in vitro. Pem’s cross-reactivity with the murine PD-1 was confirmed by CD and docking. In vivo, Pem initiated coronary endothelial and diastolic dysfunction at 2 weeks and systolic dysfunction at 5 weeks. At 2 weeks, Pem induced ICAM-1 and iNOS expression and intracardiac leukocyte infiltration. At 5 weeks, Pem exacerbated endothelial activation and triggered cardiac inflammation. Pem led to immune-related cytotoxicity in EA.hy926 cells, which was prevented by atorvastatin. Atorvastatin mitigated functional deficits, by inhibiting endothelial dysfunction in vivo. We established for the first time an in vivo model of Pem-induced cardiotoxicity. Coronary endothelial dysfunction precedes Pem-induced cardiotoxicity, whereas atorvastatin emerges as a novel prophylactic therapy.</p>","PeriodicalId":8723,"journal":{"name":"Basic Research in Cardiology","volume":"38 1","pages":""},"PeriodicalIF":9.5,"publicationDate":"2024-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140192637","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-15DOI: 10.1007/s00395-024-01036-2
Florian Schnitter, Franziska Stangl, Elisabeth Noeske, Maya Bille, Anja Stadtmüller, Niklas Vogt, Florian Sicklinger, Florian Leuschner, Anna Frey, Laura Schreiber, Stefan Frantz, Niklas Beyersdorf, Gustavo Ramos, Nadine Gladow, Ulrich Hofmann
Though myocardial infarction (MI) in pigs is a well-established translational large animal model, it has not yet been widely used for immunotherapy studies, and a comprehensive description of the immune response to MI in this species is lacking. We induced MI in Landrace pigs by balloon occlusion of the left anterior descending artery over 90 min. Within 14 days, the necrotic myocardium was progressively replaced by scar tissue with involvement of myofibroblasts. We characterized the immune response in the heart ex vivo by (immuno)histology, flow cytometry, and RNA sequencing of myocardial tissue on days 3, 7, and 14 after MI. Besides a clear predominance of myeloid cells among heart-infiltrating leukocytes, we detected activated T cells and an increasing proportion of CD4+ Foxp3+ regulatory T cells (Treg), especially in the infarct core—findings that closely mirror what has been observed in mice and humans after MI. Transcriptome data indicated inflammatory activity that was persistent but markedly changing in character over time and linked to extracellular matrix biology. Analysis of lymphocytes in heart-draining lymph nodes revealed significantly higher proliferation rates of T helper cell subsets, including Treg on day 7 after MI, compared to sham controls. Elevated frequencies of myeloid progenitors in the spleen suggest that it might be a site of emergency myelopoiesis after MI in pigs, as previously shown in mice. We thus provide a first description of the immune response to MI in pigs, and our results can aid future research using the species for preclinical immunotherapy studies.
{"title":"Characterizing the immune response to myocardial infarction in pigs","authors":"Florian Schnitter, Franziska Stangl, Elisabeth Noeske, Maya Bille, Anja Stadtmüller, Niklas Vogt, Florian Sicklinger, Florian Leuschner, Anna Frey, Laura Schreiber, Stefan Frantz, Niklas Beyersdorf, Gustavo Ramos, Nadine Gladow, Ulrich Hofmann","doi":"10.1007/s00395-024-01036-2","DOIUrl":"https://doi.org/10.1007/s00395-024-01036-2","url":null,"abstract":"<p>Though myocardial infarction (MI) in pigs is a well-established translational large animal model, it has not yet been widely used for immunotherapy studies, and a comprehensive description of the immune response to MI in this species is lacking. We induced MI in Landrace pigs by balloon occlusion of the left anterior descending artery over 90 min. Within 14 days, the necrotic myocardium was progressively replaced by scar tissue with involvement of myofibroblasts. We characterized the immune response in the heart ex vivo by (immuno)histology, flow cytometry, and RNA sequencing of myocardial tissue on days 3, 7, and 14 after MI. Besides a clear predominance of myeloid cells among heart-infiltrating leukocytes, we detected activated T cells and an increasing proportion of CD4<sup>+</sup> Foxp3<sup>+</sup> regulatory T cells (T<sub>reg</sub>), especially in the infarct core—findings that closely mirror what has been observed in mice and humans after MI. Transcriptome data indicated inflammatory activity that was persistent but markedly changing in character over time and linked to extracellular matrix biology. Analysis of lymphocytes in heart-draining lymph nodes revealed significantly higher proliferation rates of T helper cell subsets, including T<sub>reg</sub> on day 7 after MI, compared to sham controls. Elevated frequencies of myeloid progenitors in the spleen suggest that it might be a site of emergency myelopoiesis after MI in pigs, as previously shown in mice. We thus provide a first description of the immune response to MI in pigs, and our results can aid future research using the species for preclinical immunotherapy studies.</p>","PeriodicalId":8723,"journal":{"name":"Basic Research in Cardiology","volume":"86 1","pages":""},"PeriodicalIF":9.5,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140139389","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-14DOI: 10.1007/s00395-024-01039-z
Abstract
Anthracyclines are highly potent anti-cancer drugs, but their clinical use is limited by severe cardiotoxic side effects. The impact of anthracycline-induced cardiotoxicity (AIC) on left ventricular (LV) microarchitecture and diffusion properties remains unknown. This study sought to characterize AIC by cardiovascular magnetic resonance diffusion tensor imaging (DTI). Mice were treated with Doxorubicin (DOX; n = 16) for induction of AIC or saline as corresponding control (n = 15). Cardiac function was assessed via echocardiography at the end of the study period. Whole hearts (n = 8 per group) were scanned ex vivo by high-resolution DTI at 7 T. Results were correlated with histopathology and mass spectrometry imaging. Mice with AIC demonstrated systolic dysfunction (LVEF 52 ± 3% vs. 43 ± 6%, P < 0.001), impaired global longitudinal strain (−19.6 ± 2.0% vs. −16.6 ± 3.0%, P < 0.01), and cardiac atrophy (LV mass index [mg/mm], 4.3 ± 0.1 vs. 3.6 ± 0.2, P < 0.01). Regional sheetlet angles were significantly lower in AIC, whereas helix angle and relative helicity remained unchanged. In AIC, fractional anisotropy was increased (0.12 ± 0.01 vs. 0.14 ± 0.02, P < 0.05). DOX-treated mice displayed higher planar and less spherical anisotropy (CPlanar 0.07 ± 0.01 vs. 0.09 ± 0.01, P < 0.01; CSpherical 0.89 ± 0.01 vs. 0.87 ± 0.02, P < 0.05). CPlanar and CSpherical yielded good discriminatory power to distinguish between mice with and without AIC (c-index 0.91 and 0.84, respectively, P for both < 0.05). AIC is associated with regional changes in sheetlet angle but no major abnormalities of global LV microarchitecture. The geometric shape of the diffusion tensor is altered in AIC. DTI may provide a new tool for myocardial characterization in patients with AIC, which warrants future clinical studies to evaluate its diagnostic utility.
{"title":"Characterization of anthracycline-induced cardiotoxicity by diffusion tensor magnetic resonance imaging","authors":"","doi":"10.1007/s00395-024-01039-z","DOIUrl":"https://doi.org/10.1007/s00395-024-01039-z","url":null,"abstract":"<h3>Abstract</h3> <p>Anthracyclines are highly potent anti-cancer drugs, but their clinical use is limited by severe cardiotoxic side effects. The impact of anthracycline-induced cardiotoxicity (AIC) on left ventricular (LV) microarchitecture and diffusion properties remains unknown. This study sought to characterize AIC by cardiovascular magnetic resonance diffusion tensor imaging (DTI). Mice were treated with Doxorubicin (DOX; <em>n</em> = 16) for induction of AIC or saline as corresponding control (<em>n</em> = 15). Cardiac function was assessed via echocardiography at the end of the study period. Whole hearts (<em>n</em> = 8 per group) were scanned ex vivo by high-resolution DTI at 7 T. Results were correlated with histopathology and mass spectrometry imaging. Mice with AIC demonstrated systolic dysfunction (LVEF 52 ± 3% vs. 43 ± 6%, <em>P</em> < 0.001), impaired global longitudinal strain (−19.6 ± 2.0% vs. −16.6 ± 3.0%, <em>P</em> < 0.01), and cardiac atrophy (LV mass index [mg/mm], 4.3 ± 0.1 vs. 3.6 ± 0.2, <em>P</em> < 0.01). Regional sheetlet angles were significantly lower in AIC, whereas helix angle and relative helicity remained unchanged. In AIC, fractional anisotropy was increased (0.12 ± 0.01 vs. 0.14 ± 0.02, <em>P</em> < 0.05). DOX-treated mice displayed higher planar and less spherical anisotropy (<em>C</em><sub>Planar</sub> 0.07 ± 0.01 vs. 0.09 ± 0.01, <em>P</em> < 0.01; <em>C</em><sub>Spherical</sub> 0.89 ± 0.01 vs. 0.87 ± 0.02, <em>P</em> < 0.05). <em>C</em><sub>Planar</sub> and <em>C</em><sub>Spherical</sub> yielded good discriminatory power to distinguish between mice with and without AIC (c-index 0.91 and 0.84, respectively, <em>P</em> for both < 0.05). AIC is associated with regional changes in sheetlet angle but no major abnormalities of global LV microarchitecture. The geometric shape of the diffusion tensor is altered in AIC. DTI may provide a new tool for myocardial characterization in patients with AIC, which warrants future clinical studies to evaluate its diagnostic utility.</p>","PeriodicalId":8723,"journal":{"name":"Basic Research in Cardiology","volume":"8 1","pages":""},"PeriodicalIF":9.5,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140123916","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-14DOI: 10.1007/s00395-024-01034-4
Simon Wernhart, Tienush Rassaf
Cardiovascular diseases and cancer are the leading causes of death in the Western world and share common risk factors. Reduced cardiorespiratory fitness (CRF) is a major determinant of cardiovascular morbidity and cancer survival. In this review we discuss cancer- induced disturbances of parenchymal, cellular, and mitochondrial function, which limit CRF and may be antagonized and attenuated through exercise training. We show the impact of CRF on cancer survival and its attenuating effects on cardiotoxicity of cancer-related treatment. Tailored exercise programs are not yet available for each tumor entity as several trials were performed in heterogeneous populations without adequate cardiopulmonary exercise testing (CPET) prior to exercise prescription and with a wide variation of exercise modalities. There is emerging evidence that exercise may be a crucial pillar in cancer treatment and a tool to mitigate cardiotoxic treatment effects. We discuss modalities of aerobic exercise and resistance training and their potential to improve CRF in cancer patients and provide an example of a periodization model for exercise training in cancer.
{"title":"Exercise, cancer, and the cardiovascular system: clinical effects and mechanistic insights.","authors":"Simon Wernhart, Tienush Rassaf","doi":"10.1007/s00395-024-01034-4","DOIUrl":"10.1007/s00395-024-01034-4","url":null,"abstract":"<p><p>Cardiovascular diseases and cancer are the leading causes of death in the Western world and share common risk factors. Reduced cardiorespiratory fitness (CRF) is a major determinant of cardiovascular morbidity and cancer survival. In this review we discuss cancer- induced disturbances of parenchymal, cellular, and mitochondrial function, which limit CRF and may be antagonized and attenuated through exercise training. We show the impact of CRF on cancer survival and its attenuating effects on cardiotoxicity of cancer-related treatment. Tailored exercise programs are not yet available for each tumor entity as several trials were performed in heterogeneous populations without adequate cardiopulmonary exercise testing (CPET) prior to exercise prescription and with a wide variation of exercise modalities. There is emerging evidence that exercise may be a crucial pillar in cancer treatment and a tool to mitigate cardiotoxic treatment effects. We discuss modalities of aerobic exercise and resistance training and their potential to improve CRF in cancer patients and provide an example of a periodization model for exercise training in cancer.</p>","PeriodicalId":8723,"journal":{"name":"Basic Research in Cardiology","volume":" ","pages":""},"PeriodicalIF":9.5,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139728833","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}