Neuston includes animals and plants inhabiting the surface layer of the water column. The neustonic area is an accumulation zone for bacteria, organic molecules but also terrestrial debris. The surface layer is also the air/water exchange region. Therefore, neustonic organisms are directly exposed to several constraints such as wind stress and turbulence. The present study aims to characterize the zooneuston in terms of abundance and biodiversity and to evaluate the impacts of wind stress on neustonic abundance. Zooneustonic and zooplanktonic (depth of 5 meters) samples were collected twice a month between 30th August 2011 and 10th July 2012 in Calvi Bay, Corsica. Zooneustonic biodiversity was high and, notably, twenty-eight copepod genera were identified. Among these copepods, several organisms, belonging to the Pontellidae family, were much more frequent in neuston than in underlying plankton and their abundance depended on wind direction. Taxon-specific trends in seasonal abundance variation were present. For example, individuals of the Acantharia Lithoptera spp. were found in summer whereas the Pontellidae Anomalocera patersoni appeared in winter. Overall, our data provide a first step towards a better knowledge of neuston community structure in the Mediterranean Sea.
{"title":"Biodiversity and seasonal variations of zooneuston in the northwestern Mediterranean Sea","authors":"A. Collignon, J. Hecq, L. Michel, A. Goffart","doi":"10.26496/BJZ.2015.56","DOIUrl":"https://doi.org/10.26496/BJZ.2015.56","url":null,"abstract":"Neuston includes animals and plants inhabiting the surface layer of the water column. The neustonic area is an accumulation zone for bacteria, organic molecules but also terrestrial debris. The surface layer is also the air/water exchange region. Therefore, neustonic organisms are directly exposed to several constraints such as wind stress and turbulence. The present study aims to characterize the zooneuston in terms of abundance and biodiversity and to evaluate the impacts of wind stress on neustonic abundance. Zooneustonic and zooplanktonic (depth of 5 meters) samples were collected twice a month between 30th August 2011 and 10th July 2012 in Calvi Bay, Corsica. Zooneustonic biodiversity was high and, notably, twenty-eight copepod genera were identified. Among these copepods, several organisms, belonging to the Pontellidae family, were much more frequent in neuston than in underlying plankton and their abundance depended on wind direction. Taxon-specific trends in seasonal abundance variation were present. For example, individuals of the Acantharia Lithoptera spp. were found in summer whereas the Pontellidae Anomalocera patersoni appeared in winter. Overall, our data provide a first step towards a better knowledge of neuston community structure in the Mediterranean Sea.","PeriodicalId":8750,"journal":{"name":"Belgian Journal of Zoology","volume":"145 1","pages":"40-48"},"PeriodicalIF":1.0,"publicationDate":"2020-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44836850","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Many epiphytes grow on Posidonia oceanica (L.) Delile leaves but early stages of that colonization are not well known. To study this early colonization without destroying the plant, Artificial Seagrass Units (ASUs) were utilised. The first nine days of colonization by macroscopic eukaryotic organisms on natural P. oceanica leaves and on AsUs were studied. the capability of those AsUs to mimic P. oceanica in the long term was also evaluated. Indeed, early colonists of a substrate can influence the settling of later ones by “priority effects”. thus if the pioneer community is the same on both substrates, they will more likely be the same after a longer exposure time. On both substrates, colonization began by the settling of crustose-calcareous algae and foraminiferans. the number of organisms increased more quickly on AsUs than on natural leaves but shannon-Wiener diversity index was higher for P. oceanica leaves. the low colonization rate on natural leaves may have been due to different microclimatic conditions on the two substrates and to a less developed biofilm than on ASUs. The high diversity observed on natural leaves was mainly related to the presence of bryozoan ancestrulae, which were absent on AsUs. Different microhabitats on each substrate (different algae morphotypes) can explain this difference. thus, at such an early colonization stage, pioneer communities were different on the two substrates, suggesting that later communities would be different too. However, AsUs could be used in environmental perturbation studies instead of natural leaves, thanks to their high colonization rate. KEy WORDs: seagrass, artificial substrata, epiphytes, colonization, substrate preferences.
{"title":"Early colonization on Artificial Seagrass Units and on Posidonia oceanica (L.) Delile leaves","authors":"D. Pete, G. Lepoint, J. Bouquegneau, S. Gobert","doi":"10.26496/bjz.2015.58","DOIUrl":"https://doi.org/10.26496/bjz.2015.58","url":null,"abstract":"Many epiphytes grow on Posidonia oceanica (L.) Delile leaves but early stages of that colonization are not well known. To study this early colonization without destroying the plant, Artificial Seagrass Units (ASUs) were utilised. The first nine days of colonization by macroscopic eukaryotic organisms on natural P. oceanica leaves and on AsUs were studied. the capability of those AsUs to mimic P. oceanica in the long term was also evaluated. Indeed, early colonists of a substrate can influence the settling of later ones by “priority effects”. thus if the pioneer community is the same on both substrates, they will more likely be the same after a longer exposure time. On both substrates, colonization began by the settling of crustose-calcareous algae and foraminiferans. the number of organisms increased more quickly on AsUs than on natural leaves but shannon-Wiener diversity index was higher for P. oceanica leaves. the low colonization rate on natural leaves may have been due to different microclimatic conditions on the two substrates and to a less developed biofilm than on ASUs. The high diversity observed on natural leaves was mainly related to the presence of bryozoan ancestrulae, which were absent on AsUs. Different microhabitats on each substrate (different algae morphotypes) can explain this difference. thus, at such an early colonization stage, pioneer communities were different on the two substrates, suggesting that later communities would be different too. However, AsUs could be used in environmental perturbation studies instead of natural leaves, thanks to their high colonization rate. KEy WORDs: seagrass, artificial substrata, epiphytes, colonization, substrate preferences.","PeriodicalId":8750,"journal":{"name":"Belgian Journal of Zoology","volume":"145 1","pages":"59-68"},"PeriodicalIF":1.0,"publicationDate":"2020-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43159526","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Eobania vermiculata (O.F. Müller, 1774) is a large land snail species, with a maximum shell width of 33 mm. The species occurs in a variety of habitats, usually in dry vegetation, in hedgerows, gardens, vineyards and agricultural fields, often in coastal areas. Reproduction takes place in autumn. About 60 to 80 eggs are laid in the soil. The snails reach maturity two years after hatching. Adult snails hibernate in a hole in the soil and develop an epiphragma. Juveniles usually hibernate under stones or leaves [1,2]. Eobania vermiculata is a circum-Mediterranean species. Its native range extends from Spain to Turkey in Europe and along the North-African coast at least from Morocco to Libya, although it is absent as a native species in the SE of the Mediterranean region. The species has been introduced into several European countries, including Germany, Hungary, and The Netherlands. Introduced populations also occur in the USA, Australia, Japan, South Africa, Egypt, Israel, Saudi Arabia, Jordan, and Iran [1-9].
{"title":"A persistent population of the chocolate-band snail Eobania vermiculata (Gastropoda: Helicidae) in Belgium","authors":"Jelle Ronsmans, Tom Van den Neucker","doi":"10.26496/BJZ.2016.41","DOIUrl":"https://doi.org/10.26496/BJZ.2016.41","url":null,"abstract":"Eobania vermiculata (O.F. Müller, 1774) is a large land snail species, with a maximum shell width of 33 mm. The species occurs in a variety of habitats, usually in dry vegetation, in hedgerows, gardens, vineyards and agricultural fields, often in coastal areas. Reproduction takes place in autumn. About 60 to 80 eggs are laid in the soil. The snails reach maturity two years after hatching. Adult snails hibernate in a hole in the soil and develop an epiphragma. Juveniles usually hibernate under stones or leaves [1,2]. Eobania vermiculata is a circum-Mediterranean species. Its native range extends from Spain to Turkey in Europe and along the North-African coast at least from Morocco to Libya, although it is absent as a native species in the SE of the Mediterranean region. The species has been introduced into several European countries, including Germany, Hungary, and The Netherlands. Introduced populations also occur in the USA, Australia, Japan, South Africa, Egypt, Israel, Saudi Arabia, Jordan, and Iran [1-9].","PeriodicalId":8750,"journal":{"name":"Belgian Journal of Zoology","volume":"146 1","pages":"66-68"},"PeriodicalIF":1.0,"publicationDate":"2020-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44137713","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Julian HUXLEY (1924) came to the conclusion that intra-specific growth usually follows a sequence of power curves. So HUXLEY claimed that during growth sudden changes in the growth rate can occur. The restudy of his material, however, reveals that his observations closely follow single quadratic curves. As a result the intra-specific allometry studied by HUXLEY is comparable to ontogenetic allometry. The quadratic factor of the quadratic equations obtained, represents the growth rate; it shows the constant increase (positive factor) or decrease (minus factor) of one of the measurements for a constant increase in the other measurement with which it is compared. The quadratic factor explains the entire growth process and is the same for the smaller (younger) and larger (older) specimens. It could probably permit the prediction of the shape of larger and/or smaller animals not yet found, or give a clue to some evolutionary changes. By using the quadratic parabola there is no need to postulate "sudden changes in the growth curve" and so it appears that HUXLEY's power curve can be abandoned.
{"title":"A quadratic approach to allometry yields promising results for the study of growth","authors":"E. Geraert","doi":"10.26496/BJZ.2016.35","DOIUrl":"https://doi.org/10.26496/BJZ.2016.35","url":null,"abstract":"Julian HUXLEY (1924) came to the conclusion that intra-specific growth usually follows a sequence of power curves. So HUXLEY claimed that during growth sudden changes in the growth rate can occur. The restudy of his material, however, reveals that his observations closely follow single quadratic curves. As a result the intra-specific allometry studied by HUXLEY is comparable to ontogenetic allometry. The quadratic factor of the quadratic equations obtained, represents the growth rate; it shows the constant increase (positive factor) or decrease (minus factor) of one of the measurements for a constant increase in the other measurement with which it is compared. The quadratic factor explains the entire growth process and is the same for the smaller (younger) and larger (older) specimens. It could probably permit the prediction of the shape of larger and/or smaller animals not yet found, or give a clue to some evolutionary changes. By using the quadratic parabola there is no need to postulate \"sudden changes in the growth curve\" and so it appears that HUXLEY's power curve can be abandoned.","PeriodicalId":8750,"journal":{"name":"Belgian Journal of Zoology","volume":"146 1","pages":"14-20"},"PeriodicalIF":1.0,"publicationDate":"2020-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46600797","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
I. Kitowski, A. Sujak, D. Wiącek, W. Strobel, A. Komosa, M. Stobiński
Concentrations of Pb, Cd, Ni, Cr and Hg were determined in livers of six species of raptors collected in the area of Eastern Poland. Redundancy analysis (RDA) showed that elevated Hg and Cr concentrations were directly related to feeding on passerines. Raptors that specialised in seizing small mammals as a source of food revealed higher hepatic concentrations of Pb and Cd in comparison with other raptors. Unlike Cd, we found statistically significant differences in the Pb concentrations in livers of Common buzzards as compared to Sparrowhawks. In spite of the fact that both Goshawks and Sparrowhawks hunt birds, only the latter species had accumulated significantly more mercury. The high concentrations of Hg in Sparrowhawks could be related to the use of mercury in antifungal substances for seed dressing.
{"title":"Heavy metals in livers of raptors from Eastern Poland – the importance of diet composition","authors":"I. Kitowski, A. Sujak, D. Wiącek, W. Strobel, A. Komosa, M. Stobiński","doi":"10.26496/bjz.2016.34","DOIUrl":"https://doi.org/10.26496/bjz.2016.34","url":null,"abstract":"Concentrations of Pb, Cd, Ni, Cr and Hg were determined in livers of six species of raptors collected in the area of Eastern Poland. Redundancy analysis (RDA) showed that elevated Hg and Cr concentrations were directly related to feeding on passerines. Raptors that specialised in seizing small mammals as a source of food revealed higher hepatic concentrations of Pb and Cd in comparison with other raptors. Unlike Cd, we found statistically significant differences in the Pb concentrations in livers of Common buzzards as compared to Sparrowhawks. In spite of the fact that both Goshawks and Sparrowhawks hunt birds, only the latter species had accumulated significantly more mercury. The high concentrations of Hg in Sparrowhawks could be related to the use of mercury in antifungal substances for seed dressing.","PeriodicalId":8750,"journal":{"name":"Belgian Journal of Zoology","volume":" ","pages":""},"PeriodicalIF":1.0,"publicationDate":"2020-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44642613","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shallow-water antipatharians host many symbiotic species, which spend their adult life with their host and/or use them to have access to food. Here we determine the trophic relationships between four common macrosymbionts observed on/in Cirripathes anguina , Cirrhipathes densiflora and Stichopathes maldivensis in SW Madagascar. These include the myzostomid Eenymeenymyzostoma nigrocorallium , the gobiid fish Bryaninops yongei , and two palaemonid shrimps, Pontonides unciger and Periclimenes sp. The first is an endosymbiont living in the digestive tract, while the others are ectosymbionts. The analyses show that most likely (i) none of the symbionts uses the host as a main food source, (ii) nocturnal plankton represents a main part of the diet of antipatharians while the symbionts feed preferentially on diurnal plankton, (iii) the myzostomid has the narrowest trophic niche, (iv) the two shrimps have distinct trophic niches and feed at lower trophic level than do the other symbionts. Concerning the myzostomids, they had the same δ13C values but had significantly higher δ15N values than the hosts. TEFs (Trophic Enrichment Factors) recorded were Δ13C = 0.28 ± 0.25 ‰ and Δ15N = 0.51 ± 0.37 ‰, but these were not high enough to explain a predator-prey relationship. These worms rely on the coral diet but may also ingest host fluids explaining the slight enrichment in heavier nitrogen isotopes. On the other hand, the ectosymbionts use the coral as a pathway to have access to food from the midwater: they feed from the water passing nearby the black corals, but a kleptoparasitic behaviour cannot be excluded.
{"title":"Assessing trophic relationships between shallow-water black corals (Antipatharia) and their symbionts using stable isotopes","authors":"Lucas Terrana, G. Lepoint, I. Eeckhaut","doi":"10.26496/bjz.2019.33","DOIUrl":"https://doi.org/10.26496/bjz.2019.33","url":null,"abstract":"Shallow-water antipatharians host many symbiotic species, which spend their adult life with their host and/or use them to have access to food. Here we determine the trophic relationships between four common macrosymbionts observed on/in Cirripathes anguina , Cirrhipathes densiflora and Stichopathes maldivensis in SW Madagascar. These include the myzostomid Eenymeenymyzostoma nigrocorallium , the gobiid fish Bryaninops yongei , and two palaemonid shrimps, Pontonides unciger and Periclimenes sp. The first is an endosymbiont living in the digestive tract, while the others are ectosymbionts. The analyses show that most likely (i) none of the symbionts uses the host as a main food source, (ii) nocturnal plankton represents a main part of the diet of antipatharians while the symbionts feed preferentially on diurnal plankton, (iii) the myzostomid has the narrowest trophic niche, (iv) the two shrimps have distinct trophic niches and feed at lower trophic level than do the other symbionts. Concerning the myzostomids, they had the same δ13C values but had significantly higher δ15N values than the hosts. TEFs (Trophic Enrichment Factors) recorded were Δ13C = 0.28 ± 0.25 ‰ and Δ15N = 0.51 ± 0.37 ‰, but these were not high enough to explain a predator-prey relationship. These worms rely on the coral diet but may also ingest host fluids explaining the slight enrichment in heavier nitrogen isotopes. On the other hand, the ectosymbionts use the coral as a pathway to have access to food from the midwater: they feed from the water passing nearby the black corals, but a kleptoparasitic behaviour cannot be excluded.","PeriodicalId":8750,"journal":{"name":"Belgian Journal of Zoology","volume":"149 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2019-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49630852","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-07-30DOI: 10.35513/21658005.2019.2.6
Amirhossein Dadashi-Jourdehi, Bahman Shams-Esfandabad, A. Ahmadi, H. Rezaei, H. Toranjzar
Predictive potential distribution modelling is crucial in outlining habitat usage and establishing conservation management priorities. Association among species occurrence and environmental and spatial characteristics has been calculated with species distribution models. Herein, we used maximum entropy distribution modelling (MaxEnt) for predicting the potential distribution of striped hyena Hyaena hyaena in the entire country of Iran, using a number of occurrence records (i.e., 118) and environmental variables derived from remote sensing. The MaxEnt model showed a high rate of success according to AUC test scores (0.97). Our results are roughly congruent with previous studies suggesting that mountainous re-gions in northern and western Iran, and the plains in central and eastern Iran are a suitable habitat for H. hyaena.
{"title":"Predicting the potential distribution of striped hyena Hyaena hyaena in Iran","authors":"Amirhossein Dadashi-Jourdehi, Bahman Shams-Esfandabad, A. Ahmadi, H. Rezaei, H. Toranjzar","doi":"10.35513/21658005.2019.2.6","DOIUrl":"https://doi.org/10.35513/21658005.2019.2.6","url":null,"abstract":"Predictive potential distribution modelling is crucial in outlining habitat usage and establishing conservation management priorities. Association among species occurrence and environmental and spatial characteristics has been calculated with species distribution models. Herein, we used maximum entropy distribution modelling (MaxEnt) for predicting the potential distribution of striped hyena Hyaena hyaena in the entire country of Iran, using a number of occurrence records (i.e., 118) and environmental variables derived from remote sensing. The MaxEnt model showed a high rate of success according to AUC test scores (0.97). Our results are roughly congruent with previous studies suggesting that mountainous re-gions in northern and western Iran, and the plains in central and eastern Iran are a suitable habitat for H. hyaena.","PeriodicalId":8750,"journal":{"name":"Belgian Journal of Zoology","volume":" ","pages":""},"PeriodicalIF":1.0,"publicationDate":"2019-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46956823","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Among the fauna inhabiting the Posidonia oceanica seagrass meadow, holothurians are particularly abundant and provide essential ecological roles, including organic matter recycling within seagrass sediments. This study aimed to investigate the trophic niche of four holothurians of the order Holothuriida [Holothuria poli (Delle Chiaje, 1824), Holothuria tubulosa (Gmelin, 1791), Holothuria sanctori (Delle Chiaje, 1823) and Holothuria forskali (Delle Chiaje, 1823)] inhabiting P. oceanica meadows, through the measurement of nitrogen and carbon stable isotope ratios. Two shallow and contrasting sites of the littoral region of Mostaganem (North West Algeria) were chosen. The first site, located in Stidia, is weakly impacted by human activities. The second site, located in Salamandre, is highly impacted by human activities (industries, harbor facilities). High values of δ15N in holothurians and their food sources were observed at both sites. The δ13C values showed a lower contribution from detritic Posidonia than in other areas. This could be a consequence of P. oceanica bed degradation in the studied area. The stable isotope approach did not reveal dietary differences between species, and the four holothurians species exhibited significant isotopic niche overlap. However, niche sizes differed between species showing more variable individual trophic diversity in some species (H. tubulosa and H. sanctori in Salamandre; H. forskali in Stidia). If niche segregation does occur, it is not in terms of general resource use. More likely, it would be the abundance of food sources, the different life habits and their micro-habitats that may explain their co-existence in the P. oceanica seagrass meadow.
{"title":"Comparison of isotopic niches of four sea cucumbers species (Holothuroidea: Echinodermata) inhabiting two seagrass meadows in the southwestern Mediterranean Sea (Mostaganem, Algeria)","authors":"Nor-Eddine Belbachir, G. Lepoint, K. Mezali","doi":"10.26496/bjz.2019.32","DOIUrl":"https://doi.org/10.26496/bjz.2019.32","url":null,"abstract":"Among the fauna inhabiting the Posidonia oceanica seagrass meadow, holothurians are particularly abundant and provide essential ecological roles, including organic matter recycling within seagrass sediments. This study aimed to investigate the trophic niche of four holothurians of the order Holothuriida [Holothuria poli (Delle Chiaje, 1824), Holothuria tubulosa (Gmelin, 1791), Holothuria sanctori (Delle Chiaje, 1823) and Holothuria forskali (Delle Chiaje, 1823)] inhabiting P. oceanica meadows, through the measurement of nitrogen and carbon stable isotope ratios. Two shallow and contrasting sites of the littoral region of Mostaganem (North West Algeria) were chosen. The first site, located in Stidia, is weakly impacted by human activities. The second site, located in Salamandre, is highly impacted by human activities (industries, harbor facilities). High values of δ15N in holothurians and their food sources were observed at both sites. The δ13C values showed a lower contribution from detritic Posidonia than in other areas. This could be a consequence of P. oceanica bed degradation in the studied area. The stable isotope approach did not reveal dietary differences between species, and the four holothurians species exhibited significant isotopic niche overlap. However, niche sizes differed between species showing more variable individual trophic diversity in some species (H. tubulosa and H. sanctori in Salamandre; H. forskali in Stidia). If niche segregation does occur, it is not in terms of general resource use. More likely, it would be the abundance of food sources, the different life habits and their micro-habitats that may explain their co-existence in the P. oceanica seagrass meadow.","PeriodicalId":8750,"journal":{"name":"Belgian Journal of Zoology","volume":" ","pages":""},"PeriodicalIF":1.0,"publicationDate":"2019-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47899147","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chemical communication is probably the oldest, most ubiquitous form of information exchange in the natural world, spanning all three domains of life. While excellent sociobiological and behavioral ecological research has been conducted on the form and function of chemical signals in animals, we still know remarkably little on their evolution. Besides, much of our understanding of chemical signal diversity is restricted to insects, since studies on chemical communication in vertebrates are relatively scarce. In this review, I introduce the key concepts of animal communication and expand on the past, present, and future of research in chemical communication. When doing so, I highlight the current gaps in our knowledge on the evolution of the chemical communication system in animals, whilst emphasizing the heavy research bias towards lepidopterans. Here, I detail the benefits of using phylogenetic comparative methods to identify the motors and brakes that guide the evolution of chemical signals and chemical sensory systems. Moreover, I point out that focusing on non-model species in chemical ecology, specifically lizards, can provide valuable insights into how vertebrate chemical signals evolve, and how biological systems responsible for sending and receiving signals co-evolve with signal design. Lastly, I present a case study on lacertid lizards, demonstrating the possibilities of the phylogenetic comparative approach and the use of non-model species to study the evolution of animal chemical communication systems.
{"title":"Evolution of animal chemical communication: Insights from non-model species and phylogenetic comparative methods","authors":"S. Baeckens","doi":"10.26496/BJZ.2019.31","DOIUrl":"https://doi.org/10.26496/BJZ.2019.31","url":null,"abstract":"Chemical communication is probably the oldest, most ubiquitous form of information exchange in the natural world, spanning all three domains of life. While excellent sociobiological and behavioral ecological research has been conducted on the form and function of chemical signals in animals, we still know remarkably little on their evolution. Besides, much of our understanding of chemical signal diversity is restricted to insects, since studies on chemical communication in vertebrates are relatively scarce. In this review, I introduce the key concepts of animal communication and expand on the past, present, and future of research in chemical communication. When doing so, I highlight the current gaps in our knowledge on the evolution of the chemical communication system in animals, whilst emphasizing the heavy research bias towards lepidopterans. Here, I detail the benefits of using phylogenetic comparative methods to identify the motors and brakes that guide the evolution of chemical signals and chemical sensory systems. Moreover, I point out that focusing on non-model species in chemical ecology, specifically lizards, can provide valuable insights into how vertebrate chemical signals evolve, and how biological systems responsible for sending and receiving signals co-evolve with signal design. Lastly, I present a case study on lacertid lizards, demonstrating the possibilities of the phylogenetic comparative approach and the use of non-model species to study the evolution of animal chemical communication systems.","PeriodicalId":8750,"journal":{"name":"Belgian Journal of Zoology","volume":" ","pages":""},"PeriodicalIF":1.0,"publicationDate":"2019-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49038366","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In Poland, the number of feral mink (Neovison vison) and the size of the fur-farming industry are growing. There is a concern that the gene pool of the wild living mink is being infiltrated by that of ranch animals. Three populations were analyzed: Polish ranch mink, feral animals from Poland, and, they were for the first time in Poland, compared with wild individuals from North America. The breeding history of the species and the main ways of introducing the American mink into new areas on different continents were considered. The final research included analysis of the polymorphism of 12 Mustelidae-specific microsatellite loci. It showed a similar level of genetic diversity in all the investigated populations. The research revealed the existence of geographically-specific subpopulations of feral mink in Poland, characterized by different origins, and indicated a small degree of introgression between Polish ranch and wild living populations in the past although the assignment simulation makes it clear that they are genetically distinct groups. The results are in accordance with previously reported models of colonization of Poland by this species and help to explain the influence of anthropogenic factors on the current status of this invasive species. Mixing of two separate genetic pools from the native range in Poland is a newly identified factor, shaping the genetic structure of ranch and feral populations of Neovison vison.
{"title":"Genetic diversity of ranch and feral American mink (Neovison vison Schreber, 1777) in Poland in relation to the natural population of the species","authors":"B. Horecka","doi":"10.26496/BJZ.2019.30","DOIUrl":"https://doi.org/10.26496/BJZ.2019.30","url":null,"abstract":"In Poland, the number of feral mink (Neovison vison) and the size of the fur-farming industry are growing. There is a concern that the gene pool of the wild living mink is being infiltrated by that of ranch animals. Three populations were analyzed: Polish ranch mink, feral animals from Poland, and, they were for the first time in Poland, compared with wild individuals from North America. The breeding history of the species and the main ways of introducing the American mink into new areas on different continents were considered. The final research included analysis of the polymorphism of 12 Mustelidae-specific microsatellite loci. It showed a similar level of genetic diversity in all the investigated populations. The research revealed the existence of geographically-specific subpopulations of feral mink in Poland, characterized by different origins, and indicated a small degree of introgression between Polish ranch and wild living populations in the past although the assignment simulation makes it clear that they are genetically distinct groups. The results are in accordance with previously reported models of colonization of Poland by this species and help to explain the influence of anthropogenic factors on the current status of this invasive species. Mixing of two separate genetic pools from the native range in Poland is a newly identified factor, shaping the genetic structure of ranch and feral populations of Neovison vison.","PeriodicalId":8750,"journal":{"name":"Belgian Journal of Zoology","volume":" ","pages":""},"PeriodicalIF":1.0,"publicationDate":"2019-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48621936","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}