Pub Date : 2023-10-01Epub Date: 2023-05-29DOI: 10.1139/bcb-2023-0116
Farhad Tabasi, Ebrahim Eskandari, Saeid Ghavmi
Professor Mohammad Hashemi was a clinical biochemist and cancer genetic scientist. He has been chair and head of Department of Clinical Biochemistry at Zahedan University of Medical Sciences, Zahedan, Iran. He has played an important role in the improvement of understanding of genetics of disease in southeast Iran. He was also a part of international team for the discovery of the role of calprotectin (S100A8/A9) in cancer biology via regulation of cell fate in tumor cells. He had over 300 peer-reviewed scientific publications and trained significant numbers of high quality personals (>40) in the field of biomedical sciences. His sudden death in 2019 shocked national and international scientific society but his scientific legacy will remain alive forever.
Mohammad Hashemi教授是一位临床生物化学家和癌症基因科学家。他曾任伊朗扎黑丹医学科学大学临床生物化学系主任。他在提高对伊朗东南部疾病遗传学的理解方面发挥了重要作用。他也是发现钙保护蛋白(S100A8/A9)通过调节肿瘤细胞的细胞命运在癌症生物学中的作用的国际团队的一员。他拥有300多份同行评审的科学出版物,并在生物医学领域培训了大量高素质的人才(>40人)。他于2019年突然去世,震惊了国家和国际科学社会,但他的科学遗产将永远存在。
{"title":"Remembering the legacy of Professor Mohammad Hashemi: a pioneer in molecular genetic studies in southeast Iran (1965-2019).","authors":"Farhad Tabasi, Ebrahim Eskandari, Saeid Ghavmi","doi":"10.1139/bcb-2023-0116","DOIUrl":"10.1139/bcb-2023-0116","url":null,"abstract":"<p><p>Professor Mohammad Hashemi was a clinical biochemist and cancer genetic scientist. He has been chair and head of Department of Clinical Biochemistry at Zahedan University of Medical Sciences, Zahedan, Iran. He has played an important role in the improvement of understanding of genetics of disease in southeast Iran. He was also a part of international team for the discovery of the role of calprotectin (S100A8/A9) in cancer biology via regulation of cell fate in tumor cells. He had over 300 peer-reviewed scientific publications and trained significant numbers of high quality personals (>40) in the field of biomedical sciences. His sudden death in 2019 shocked national and international scientific society but his scientific legacy will remain alive forever.</p>","PeriodicalId":8775,"journal":{"name":"Biochemistry and Cell Biology","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9605814","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-01Epub Date: 2023-04-12DOI: 10.1139/bcb-2023-0097
{"title":"Expression of concern: MicroRNA-518-3p suppresses cell proliferation, invasiveness, and migration in colorectal cancer via targeting <i>TRIP4</i>.","authors":"","doi":"10.1139/bcb-2023-0097","DOIUrl":"10.1139/bcb-2023-0097","url":null,"abstract":"","PeriodicalId":8775,"journal":{"name":"Biochemistry and Cell Biology","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9282915","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-01Epub Date: 2023-05-10DOI: 10.1139/bcb-2022-0249
Matheus Henrique Jantsch, Pedro Henrique Doleski, Altevir Rossato Viana, Jean Lucas Gutknecht da Silva, Daniela Ferreira Passos, Fernanda Licker Cabral, Alessandra Guedes Manzoni, Renan da Silva Ebone, Ana Bárbara Uchoa Soares, Cínthia Melazzo de Andrade, Maria Rosa Chitolina Schetinger, Daniela Bitencourt Rosa Leal
Metastatic melanoma is a very aggressive skin cancer. Platelets are constituents of the tumor microenvironment and, when activated, contribute to cancer progression, especially metastasis, and inflammation. P2Y12 is an adenosine diphosphate (ADP) receptor that triggers platelet activation. Inhibition of P2Y12 by clopidogrel bisulfate (CB) decreases platelet activation, which is also controlled by the extracellular concentration and the metabolism of purines by purinergic enzymes. We evaluated the effects of CB on the viability and proliferation of cultured B16-F10 cells. We also used a metastatic melanoma model with C57BL-6 mice to evaluate cancer development and purine metabolism modulation in platelets. B16-F10 cells were administered intraperitoneally to the mice. Two days later, the animals underwent a 12-day treatment with CB (30 mg/kg by gavage). We have found that CB reduced cell viability and proliferation in B16-F10 culture in 72h at concentrations above 30 μM. In vivo, CB decreased the tumor nodule counts and LDH levels and increased platelet purine metabolism. Our results showed that CB has significant effects on melanoma progression.
{"title":"Effects of clopidogrel bisulfate on B16-F10 cells and tumor development in a murine model of melanoma.","authors":"Matheus Henrique Jantsch, Pedro Henrique Doleski, Altevir Rossato Viana, Jean Lucas Gutknecht da Silva, Daniela Ferreira Passos, Fernanda Licker Cabral, Alessandra Guedes Manzoni, Renan da Silva Ebone, Ana Bárbara Uchoa Soares, Cínthia Melazzo de Andrade, Maria Rosa Chitolina Schetinger, Daniela Bitencourt Rosa Leal","doi":"10.1139/bcb-2022-0249","DOIUrl":"10.1139/bcb-2022-0249","url":null,"abstract":"Metastatic melanoma is a very aggressive skin cancer. Platelets are constituents of the tumor microenvironment and, when activated, contribute to cancer progression, especially metastasis, and inflammation. P2Y12 is an adenosine diphosphate (ADP) receptor that triggers platelet activation. Inhibition of P2Y12 by clopidogrel bisulfate (CB) decreases platelet activation, which is also controlled by the extracellular concentration and the metabolism of purines by purinergic enzymes. We evaluated the effects of CB on the viability and proliferation of cultured B16-F10 cells. We also used a metastatic melanoma model with C57BL-6 mice to evaluate cancer development and purine metabolism modulation in platelets. B16-F10 cells were administered intraperitoneally to the mice. Two days later, the animals underwent a 12-day treatment with CB (30 mg/kg by gavage). We have found that CB reduced cell viability and proliferation in B16-F10 culture in 72h at concentrations above 30 μM. In vivo, CB decreased the tumor nodule counts and LDH levels and increased platelet purine metabolism. Our results showed that CB has significant effects on melanoma progression.","PeriodicalId":8775,"journal":{"name":"Biochemistry and Cell Biology","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9560401","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-01Epub Date: 2023-05-29DOI: 10.1139/bcb-2023-0025
Cassaundra A White, Maria A Serrat
Insulin-like growth factor-1 (IGF-1) is a critical modulator of cell growth and survival, making it a central part of maintaining essentially every biological system in the body. Knowledge of the intricate mechanisms involved in activating IGF-1 signaling is not only key to understanding basic processes of growth and development, but also for addressing diseases, such as cancer and diabetes. This brief review explores how dysregulation of normal IGF-1 signaling can impact growth by examining its role in postnatal bone elongation. IGF-1 actions are dysregulated in autoimmune diseases, such as juvenile idiopathic arthritis and chronic kidney disease, which results in growth stunting. Conversely, childhood obesity results in growth acceleration, premature growth cessation, and ultimately, diminished bone quality, while systemic IGF-1 levels remain normal. Understanding the role of IGF-1 signaling in normal and dysregulated growth can add to other studies that address how this system regulates chronic diseases.
{"title":"Dysregulation of insulin-like growth factor-1 signaling in postnatal bone elongation.","authors":"Cassaundra A White, Maria A Serrat","doi":"10.1139/bcb-2023-0025","DOIUrl":"10.1139/bcb-2023-0025","url":null,"abstract":"<p><p>Insulin-like growth factor-1 (IGF-1) is a critical modulator of cell growth and survival, making it a central part of maintaining essentially every biological system in the body. Knowledge of the intricate mechanisms involved in activating IGF-1 signaling is not only key to understanding basic processes of growth and development, but also for addressing diseases, such as cancer and diabetes. This brief review explores how dysregulation of normal IGF-1 signaling can impact growth by examining its role in postnatal bone elongation. IGF-1 actions are dysregulated in autoimmune diseases, such as juvenile idiopathic arthritis and chronic kidney disease, which results in growth stunting. Conversely, childhood obesity results in growth acceleration, premature growth cessation, and ultimately, diminished bone quality, while systemic IGF-1 levels remain normal. Understanding the role of IGF-1 signaling in normal and dysregulated growth can add to other studies that address how this system regulates chronic diseases.</p>","PeriodicalId":8775,"journal":{"name":"Biochemistry and Cell Biology","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9534965","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-01Epub Date: 2023-04-03DOI: 10.1139/bcb-2022-0361
Zhikun Shi, Hao Yuan, Lanqing Cao, Yang Lin
Resistance to cisplatin (DDP)-based chemotherapy is an important reason for the failure of ovarian cancer treatment. However, tumor cells resistant to chemotherapy may expose vulnerability to other cell death pathways. Here, we found that DDP-resistant ovarian cancer cells are more susceptible to erastin-induced ferroptosis. It should be noted that this vulnerability does not depend on the weakening of classical ferroptosis defense proteins, but is caused by the reduction of ferritin heavy chain (FTH1). DDP-resistant ovarian cancer cells maintain a high level of autophagy to escape the pressure of chemotherapy, which ultimately leads to increased autophagic degradation of FTH1. We further revealed that the loss of AKT1 was the reason for the increased autophagy level of DDP-resistant ovarian cancer cells. Our study provides new insights into reversing DDP resistance in ovarian cancer by targeting ferroptosis pathway, and AKT1 may be a molecular marker of susceptibility to ferroptosis.
{"title":"AKT1 participates in ferroptosis vulnerability by driving autophagic degradation of FTH1 in cisplatin-resistant ovarian cancer.","authors":"Zhikun Shi, Hao Yuan, Lanqing Cao, Yang Lin","doi":"10.1139/bcb-2022-0361","DOIUrl":"10.1139/bcb-2022-0361","url":null,"abstract":"<p><p>Resistance to cisplatin (DDP)-based chemotherapy is an important reason for the failure of ovarian cancer treatment. However, tumor cells resistant to chemotherapy may expose vulnerability to other cell death pathways. Here, we found that DDP-resistant ovarian cancer cells are more susceptible to erastin-induced ferroptosis. It should be noted that this vulnerability does not depend on the weakening of classical ferroptosis defense proteins, but is caused by the reduction of ferritin heavy chain (FTH1). DDP-resistant ovarian cancer cells maintain a high level of autophagy to escape the pressure of chemotherapy, which ultimately leads to increased autophagic degradation of FTH1. We further revealed that the loss of AKT1 was the reason for the increased autophagy level of DDP-resistant ovarian cancer cells. Our study provides new insights into reversing DDP resistance in ovarian cancer by targeting ferroptosis pathway, and AKT1 may be a molecular marker of susceptibility to ferroptosis.</p>","PeriodicalId":8775,"journal":{"name":"Biochemistry and Cell Biology","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9878974","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Atrial structural remodeling takes on a critical significance to the occurrence and maintenance of atrial fibrillation (AF). As revealed by recent data, insulin-like growth factor-1 receptor (IGF-1R) plays a certain role in tissue fibrosis. In this study, the mechanism of IGF-1R in atrial structural remodeling was examined based on in vivo and in vitro experiments. First, cluster analysis of AF hub genes was conducted, and then the molecular mechanism was proposed by which IGF-1R regulates myocardial fibrosis via the PI3K/Akt/FoxO3a pathway. Subsequently, the mentioned mechanism was verified in human cardiac fibroblasts (HCFs) and rats transduced with IGF-1 overexpression type 9 adeno-associated viruses. The results indicated that IGF-1R activation up-regulated collagen Ⅰ protein expression and Akt phosphorylation in HCFs and rat atrium. The administration of LY294002 reversed the above phenomenon, improved the shortening of atrial effective refractory period, and reduced the increased incidence of AF and atrial fibrosis in rats. The transfection of FoxO3a siRNA reduced the anti-fibrotic effect of LY294002 in HCFs. The above data revealed that activation of IGF-1R takes on a vital significance to atrial structural remodeling by facilitating myocardial fibrosis and expediting the occurrence and maintenance of AF through the regulation of the PI3K/Akt/FoxO3a signaling pathway.
{"title":"Mechanism of myocardial fibrosis regulation by IGF-1R in atrial fibrillation through the PI3K/Akt/FoxO3a pathway.","authors":"Pei Zhang, Huilin Li, An Zhang, Xiao Wang, Qiyuan Song, Zhan Li, Weizong Wang, Jingwen Xu, Yinglong Hou, Yong Zhang","doi":"10.1139/bcb-2022-0199","DOIUrl":"10.1139/bcb-2022-0199","url":null,"abstract":"<p><p>Atrial structural remodeling takes on a critical significance to the occurrence and maintenance of atrial fibrillation (AF). As revealed by recent data, insulin-like growth factor-1 receptor (IGF-1R) plays a certain role in tissue fibrosis. In this study, the mechanism of IGF-1R in atrial structural remodeling was examined based on in vivo and in vitro experiments. First, cluster analysis of AF hub genes was conducted, and then the molecular mechanism was proposed by which IGF-1R regulates myocardial fibrosis via the PI3K/Akt/FoxO3a pathway. Subsequently, the mentioned mechanism was verified in human cardiac fibroblasts (HCFs) and rats transduced with IGF-1 overexpression type 9 adeno-associated viruses. The results indicated that IGF-1R activation up-regulated collagen Ⅰ protein expression and Akt phosphorylation in HCFs and rat atrium. The administration of LY294002 reversed the above phenomenon, improved the shortening of atrial effective refractory period, and reduced the increased incidence of AF and atrial fibrosis in rats. The transfection of FoxO3a siRNA reduced the anti-fibrotic effect of LY294002 in HCFs. The above data revealed that activation of IGF-1R takes on a vital significance to atrial structural remodeling by facilitating myocardial fibrosis and expediting the occurrence and maintenance of AF through the regulation of the PI3K/Akt/FoxO3a signaling pathway.</p>","PeriodicalId":8775,"journal":{"name":"Biochemistry and Cell Biology","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9827091","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-01Epub Date: 2023-05-16DOI: 10.1139/bcb-2022-0179
Shi Feng, Di Fu, Yong Zhang, Le Zhang, Yingnan Ji, Hongqiu Li, Liang A
It is critical to find efficient non-invasive prognostic factor for osteosarcoma. In this study, we demonstrated that serum protein of pro-surfactant protein B (pro-SFTPB) may be a potential diagnostic indicator in osteosarcoma. We found that serum pro-SFTPB was highly expressed in osteosarcoma patients and presented good diagnostic value to discern osteosarcoma patients from non-osteosarcoma control subjects. Serum pro-SFTPB was also significantly correlated with advanced clinical stage, distant metastasis, and shorter overall survival. In addition, serum pro-SFTPB was demonstrated to be an independent prognostic factor for osteosarcoma. Overall, our study demonstrated that serum pro-SFTPB may be a useful diagnostic factor for osteosarcoma.
{"title":"Serum pro-surfactant protein B is correlated with clinical properties in osteosarcoma patients.","authors":"Shi Feng, Di Fu, Yong Zhang, Le Zhang, Yingnan Ji, Hongqiu Li, Liang A","doi":"10.1139/bcb-2022-0179","DOIUrl":"10.1139/bcb-2022-0179","url":null,"abstract":"<p><p>It is critical to find efficient non-invasive prognostic factor for osteosarcoma. In this study, we demonstrated that serum protein of pro-surfactant protein B (pro-SFTPB) may be a potential diagnostic indicator in osteosarcoma. We found that serum pro-SFTPB was highly expressed in osteosarcoma patients and presented good diagnostic value to discern osteosarcoma patients from non-osteosarcoma control subjects. Serum pro-SFTPB was also significantly correlated with advanced clinical stage, distant metastasis, and shorter overall survival. In addition, serum pro-SFTPB was demonstrated to be an independent prognostic factor for osteosarcoma. Overall, our study demonstrated that serum pro-SFTPB may be a useful diagnostic factor for osteosarcoma.</p>","PeriodicalId":8775,"journal":{"name":"Biochemistry and Cell Biology","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9581559","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-01Epub Date: 2023-03-29DOI: 10.1139/bcb-2022-0383
Liia R Valeeva, Liliia R Abdulkina, Inna A Agabekian, Eugene V Shakirov
Telomeres are nucleoprotein structures that play a pivotal role in the protection and maintenance of eukaryotic chromosomes. Telomeres and the enzyme telomerase, which replenishes telomeric DNA lost during replication, are important factors necessary to ensure continued cell proliferation. Cell proliferation is also dependent on proper and efficient protein synthesis, which is carried out by ribosomes. Mutations in genes involved in either ribosome biogenesis or telomere biology result in cellular abnormalities and can cause human genetic diseases, defined as ribosomopathies and telomeropathies, respectively. Interestingly, recent discoveries indicate that many of the ribosome assembly and rRNA maturation factors have additional noncanonical functions in telomere biology. Similarly, several key proteins and enzymes involved in telomere biology, including telomerase, have unexpected roles in rRNA transcription and maturation. These observations point to an intriguing cross-talk mechanism potentially explaining the multiple pleiotropic symptoms of mutations in many causal genes identified in various telomeropathy and ribosomopathy diseases. In this review, we provide a brief summary of eukaryotic telomere and rDNA loci structures, highlight several universal features of rRNA and telomerase biogenesis, evaluate intriguing interconnections between telomere biology and ribosome assembly, and conclude with an assessment of overlapping features of human diseases of telomeropathies and ribosomopathies.
{"title":"Telomere biology and ribosome biogenesis: structural and functional interconnections.","authors":"Liia R Valeeva, Liliia R Abdulkina, Inna A Agabekian, Eugene V Shakirov","doi":"10.1139/bcb-2022-0383","DOIUrl":"10.1139/bcb-2022-0383","url":null,"abstract":"<p><p>Telomeres are nucleoprotein structures that play a pivotal role in the protection and maintenance of eukaryotic chromosomes. Telomeres and the enzyme telomerase, which replenishes telomeric DNA lost during replication, are important factors necessary to ensure continued cell proliferation. Cell proliferation is also dependent on proper and efficient protein synthesis, which is carried out by ribosomes. Mutations in genes involved in either ribosome biogenesis or telomere biology result in cellular abnormalities and can cause human genetic diseases, defined as ribosomopathies and telomeropathies, respectively. Interestingly, recent discoveries indicate that many of the ribosome assembly and rRNA maturation factors have additional noncanonical functions in telomere biology. Similarly, several key proteins and enzymes involved in telomere biology, including telomerase, have unexpected roles in rRNA transcription and maturation. These observations point to an intriguing cross-talk mechanism potentially explaining the multiple pleiotropic symptoms of mutations in many causal genes identified in various telomeropathy and ribosomopathy diseases. In this review, we provide a brief summary of eukaryotic telomere and rDNA loci structures, highlight several universal features of rRNA and telomerase biogenesis, evaluate intriguing interconnections between telomere biology and ribosome assembly, and conclude with an assessment of overlapping features of human diseases of telomeropathies and ribosomopathies.</p>","PeriodicalId":8775,"journal":{"name":"Biochemistry and Cell Biology","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9368277","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-01Epub Date: 2023-03-29DOI: 10.1139/bcb-2023-0008
Olivia Coulter, Christopher D Walker, Mary-Louise Risher
Astrocytes are a subtype of non-neuronal glial cells that reside in the central nervous system. Astrocytes have extensive peripheral astrocytic processes that ensheathe synapses to form the tripartite synapse. Through a multitude of pathways, astrocytes can influence synaptic development and structural maturation, respond to neuronal signals, and modulate synaptic transmission. Over the last decade, strong evidence has emerged demonstrating that astrocytes can influence behavioral outcomes in various animal models of cognition. However, the full extent of how astrocytes influence brain function is still being revealed. Astrocyte calcium (Ca2+) signaling has emerged as an important driver of astrocyte-neuronal communication allowing intricate crosstalk through mechanisms that are still not fully understood. Here, we will review the field's current understanding of astrocyte Ca2+ signaling and discuss the sophisticated state-of-the-art tools and approaches used to continue unraveling astrocytes' interesting role in brain function. Using the field of pre-clinical ethanol (EtOH) studies in the context of alcohol use disorder, we focus on how these novel approaches have helped to reveal an important role for astrocyte Ca2+ function in regulating EtOH consumption and how astrocyte Ca2+ dysfunction contributes to the cognitive deficits that emerge after EtOH exposure in a rodent model.
{"title":"Astrocyte-specific Ca<sup>2+</sup> activity: Mechanisms of action, experimental tools, and roles in ethanol-induced dysfunction.","authors":"Olivia Coulter, Christopher D Walker, Mary-Louise Risher","doi":"10.1139/bcb-2023-0008","DOIUrl":"10.1139/bcb-2023-0008","url":null,"abstract":"<p><p>Astrocytes are a subtype of non-neuronal glial cells that reside in the central nervous system. Astrocytes have extensive peripheral astrocytic processes that ensheathe synapses to form the tripartite synapse. Through a multitude of pathways, astrocytes can influence synaptic development and structural maturation, respond to neuronal signals, and modulate synaptic transmission. Over the last decade, strong evidence has emerged demonstrating that astrocytes can influence behavioral outcomes in various animal models of cognition. However, the full extent of how astrocytes influence brain function is still being revealed. Astrocyte calcium (Ca<sup>2+</sup>) signaling has emerged as an important driver of astrocyte-neuronal communication allowing intricate crosstalk through mechanisms that are still not fully understood. Here, we will review the field's current understanding of astrocyte Ca<sup>2+</sup> signaling and discuss the sophisticated state-of-the-art tools and approaches used to continue unraveling astrocytes' interesting role in brain function. Using the field of pre-clinical ethanol (EtOH) studies in the context of alcohol use disorder, we focus on how these novel approaches have helped to reveal an important role for astrocyte Ca<sup>2+</sup> function in regulating EtOH consumption and how astrocyte Ca<sup>2+</sup> dysfunction contributes to the cognitive deficits that emerge after EtOH exposure in a rodent model.</p>","PeriodicalId":8775,"journal":{"name":"Biochemistry and Cell Biology","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10010321","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-01Epub Date: 2023-04-11DOI: 10.1139/bcb-2023-0021
Sarah Jane Laframboise, Thomas Bailey, Anh-Thu Dang, Mercedes Rose, Zier Zhou, Matthew D Berg, Stephen Holland, Sami Aftab Abdul, Kaela O'Connor, Sara El-Sahli, Dominique M Boucher, Garrett Fairman, Jacky Deng, Katherine Shaw, Nathaniel Noblett, Alexa D'Addario, Madelaine Empey, Keaton Sinclair
Graduate students are vital to the creation of research and innovation in Canada. The National Graduate Student Finance Survey was launched in 2021 by the Ottawa Science Policy Network to investigate the financial realities of Canadian graduate students. Closing in April 2022, the survey received 1305 responses from graduate students representing various geographical locations, years of study, fields of education, and demographic backgrounds. The results capture a snapshot into graduate student finances, including an in-depth analysis of stipends, scholarships, debt, tuition, and living expenses. In its entirety, we found that the majority of graduate students are facing serious financial concerns. This is largely due to stagnant funding for students both from federal and provincial granting agencies and from within their institutions. This reality is even worse for international students, members of historically underrepresented communities, and those with dependents, all of whom experience additional challenges that impact their financial security. Based on our findings, we propose several recommendations to the Tri-Council agencies (Natural Sciences and Engineering Research Council, Social Science and Humanities Research Council, and Canadian Institute for Health Research) and academic institutions to strengthen graduate student finances and help sustain the future of research in Canada.
{"title":"Analysis of financial challenges faced by graduate students in Canada.","authors":"Sarah Jane Laframboise, Thomas Bailey, Anh-Thu Dang, Mercedes Rose, Zier Zhou, Matthew D Berg, Stephen Holland, Sami Aftab Abdul, Kaela O'Connor, Sara El-Sahli, Dominique M Boucher, Garrett Fairman, Jacky Deng, Katherine Shaw, Nathaniel Noblett, Alexa D'Addario, Madelaine Empey, Keaton Sinclair","doi":"10.1139/bcb-2023-0021","DOIUrl":"10.1139/bcb-2023-0021","url":null,"abstract":"<p><p>Graduate students are vital to the creation of research and innovation in Canada. The National Graduate Student Finance Survey was launched in 2021 by the Ottawa Science Policy Network to investigate the financial realities of Canadian graduate students. Closing in April 2022, the survey received 1305 responses from graduate students representing various geographical locations, years of study, fields of education, and demographic backgrounds. The results capture a snapshot into graduate student finances, including an in-depth analysis of stipends, scholarships, debt, tuition, and living expenses. In its entirety, we found that the majority of graduate students are facing serious financial concerns. This is largely due to stagnant funding for students both from federal and provincial granting agencies and from within their institutions. This reality is even worse for international students, members of historically underrepresented communities, and those with dependents, all of whom experience additional challenges that impact their financial security. Based on our findings, we propose several recommendations to the Tri-Council agencies (Natural Sciences and Engineering Research Council, Social Science and Humanities Research Council, and Canadian Institute for Health Research) and academic institutions to strengthen graduate student finances and help sustain the future of research in Canada.</p>","PeriodicalId":8775,"journal":{"name":"Biochemistry and Cell Biology","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9900386","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}