Pub Date : 2023-12-15DOI: 10.1007/s42773-023-00293-z
Abstract
Bio-tar extra-produced from biomass pyrolysis is prone to pose a threat to environment and human health. A novel N-doped porous electrode from bio-tar was produced under dual-activation of urea and KOH in this study. One-pot dual-activation played significant roles in N-functional group and micro-mesoporous structure, which resulted in the carbon material with the highest of nitrogen content (4.08%) and the special surface area (1298.26 m2·g−1). Specifically, the potential mechanisms of pore formation and N-doping in the one-pot dual-activation strategy were also proposed as a consequence, the one-pot dual-activated carbon material displayed excellent electrochemical performance with the highest capacitance of 309.5 F·g−1 at 0.5 A·g−1, and the unipolar specific capacitance remained with cyclic characteristics of 80.1% after 10,000 cycles in two-electrode symmetric system. Furthermore, the one-pot dual-activation strategy could create a profit of $1.64–$2.38 per kilogram of bio-tar processed without considering the initial investment and labor costs, which provides new perspectives for the utilization of waste bio-tar.
{"title":"Waste bio-tar based N-doped porous carbon for supercapacitors under dual activation: performance, mechanism, and assessment","authors":"","doi":"10.1007/s42773-023-00293-z","DOIUrl":"https://doi.org/10.1007/s42773-023-00293-z","url":null,"abstract":"<h3>Abstract</h3> <p>Bio-tar extra-produced from biomass pyrolysis is prone to pose a threat to environment and human health. A novel N-doped porous electrode from bio-tar was produced under dual-activation of urea and KOH in this study. One-pot dual-activation played significant roles in N-functional group and micro-mesoporous structure, which resulted in the carbon material with the highest of nitrogen content (4.08%) and the special surface area (1298.26 m<sup>2</sup>·g<sup>−1</sup>). Specifically, the potential mechanisms of pore formation and N-doping in the one-pot dual-activation strategy were also proposed as a consequence, the one-pot dual-activated carbon material displayed excellent electrochemical performance with the highest capacitance of 309.5 F·g<sup>−1</sup> at 0.5 A·g<sup>−1</sup>, and the unipolar specific capacitance remained with cyclic characteristics of 80.1% after 10,000 cycles in two-electrode symmetric system. Furthermore, the one-pot dual-activation strategy could create a profit of $1.64–$2.38 per kilogram of bio-tar processed without considering the initial investment and labor costs, which provides new perspectives for the utilization of waste bio-tar.</p> <span> <h3>Graphical Abstract</h3> <p> <span> <span> <img alt=\"\" src=\"https://static-content.springer.com/image/MediaObjects/42773_2023_293_Figa_HTML.png\"/> </span> </span></p> </span>","PeriodicalId":8789,"journal":{"name":"Biochar","volume":"71 1","pages":""},"PeriodicalIF":12.7,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138692782","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-15DOI: 10.1007/s42773-023-00266-2
Chunxia Yan, Yaqi Yang, Jie Wei, Jianhua Hou, Ziqiang Shao
Due to the rising need for clean and renewable energy, green materials including biochar are becoming increasingly popular in the field of energy storage and conversion. However, the lack of highly active and stable electrode materials hinders the development of stable energy supplies and efficient hydrogen production devices. Herein, we fabricated stable, conductive, and multifunctional chitosan microspheres by a facile emulsion crosslinking solution growth and hydrothermal sulphuration methods as multifunctional electrodes for overall water splitting driven by supercapacitors. This material possessed three-dimensional layered conductors with favorable heterojunction interface, ample hollow and porous structures. It presented remarkably enhanced electrochemical and catalytic activity for both supercapacitors and overall water electrolysis. The asymmetric supercapacitors based on chitosan biochar microsphere achieved high specific capacitance (260.9 F g−1 at 1 A g−1) and high energy density (81.5W h kg−1) at a power density of 978.4 W kg−1. The chitosan biochar microsphere as an electrode for electrolyze only required a low cell voltage of 1.49 V to reach a current density of 10 mA cm−2, and achieved excellent stability with 30 h continuous test at 20 mA cm−2. Then, we assembled a coupled energy storage device and hydrogen production system, the SCs as a backup power source availably guaranteed the continuous operation of overall water electrolysis. Our study provides valuable perspectives into the practical design of both integrated biochar-based electrode materials and coupled energy storage devices with energy conversion and storage in practical.
Graphical Abstract
由于对清洁和可再生能源的需求日益增长,包括生物炭在内的绿色材料在能源储存和转换领域越来越受欢迎。然而,高活性、高稳定性电极材料的缺乏阻碍了稳定能源供应和高效制氢装置的发展。在此,我们通过乳液交联溶液生长和水热硫化方法,制备了稳定、导电和多功能壳聚糖微球,作为超级电容器驱动的整体水分离多功能电极。这种材料具有三维层状导体、良好的异质结界面、丰富的中空和多孔结构。它显著增强了超级电容器和整体水电解的电化学和催化活性。基于壳聚糖生物炭微球的不对称超级电容器实现了高比电容(1 A g-1 时为 260.9 F g-1)和高能量密度(978.4 W kg-1 时为 81.5 W h kg-1)。壳聚糖生物炭微球作为电解电极,只需要 1.49 V 的低电池电压就能达到 10 mA cm-2 的电流密度,并且在 20 mA cm-2 下连续测试 30 小时,稳定性极佳。然后,我们组装了一个耦合储能装置和制氢系统,SCs 作为备用电源可以保证整体水电解的连续运行。我们的研究为实际设计具有能量转换和储存功能的集成生物炭电极材料和耦合储能装置提供了有价值的视角。
{"title":"N self‐doped multifunctional chitosan biochar-based microsphere with heterogeneous interfaces for self-powered supercapacitors to drive overall water splitting","authors":"Chunxia Yan, Yaqi Yang, Jie Wei, Jianhua Hou, Ziqiang Shao","doi":"10.1007/s42773-023-00266-2","DOIUrl":"https://doi.org/10.1007/s42773-023-00266-2","url":null,"abstract":"<p>Due to the rising need for clean and renewable energy, green materials including biochar are becoming increasingly popular in the field of energy storage and conversion. However, the lack of highly active and stable electrode materials hinders the development of stable energy supplies and efficient hydrogen production devices. Herein, we fabricated stable, conductive, and multifunctional chitosan microspheres by a facile emulsion crosslinking solution growth and hydrothermal sulphuration methods as multifunctional electrodes for overall water splitting driven by supercapacitors. This material possessed three-dimensional layered conductors with favorable heterojunction interface, ample hollow and porous structures. It presented remarkably enhanced electrochemical and catalytic activity for both supercapacitors and overall water electrolysis. The asymmetric supercapacitors based on chitosan biochar microsphere achieved high specific capacitance (260.9 F g<sup>−1</sup> at 1 A g<sup>−1</sup>) and high energy density (81.5W h kg<sup>−1</sup>) at a power density of 978.4 W kg<sup>−1</sup>. The chitosan biochar microsphere as an electrode for electrolyze only required a low cell voltage of 1.49 V to reach a current density of 10 mA cm<sup>−2</sup>, and achieved excellent stability with 30 h continuous test at 20 mA cm<sup>−2</sup>. Then, we assembled a coupled energy storage device and hydrogen production system, the SCs as a backup power source availably guaranteed the continuous operation of overall water electrolysis. Our study provides valuable perspectives into the practical design of both integrated biochar-based electrode materials and coupled energy storage devices with energy conversion and storage in practical.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>","PeriodicalId":8789,"journal":{"name":"Biochar","volume":"7 7 1","pages":""},"PeriodicalIF":12.7,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138692548","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-12DOI: 10.1007/s42773-023-00277-z
Qianqian Xie, Xiao Yang, Binoy Sarkar, Xiaomin Dou, Piumi Amasha Withana, Yong Sik Ok
In the last few decades, sulfonated carbon materials have garnered significant attention as Brønsted solid acid catalysts. The sulfonation process and catalytic activity of sulfonated biochar can be influenced by the aromaticity and degree of condensation exhibited by biochar. However, the relationships between the aromaticity, sulfonating ability, and resultant catalytic activity are not fully understood. In this study, biochar samples pyrolyzed at 300–650 °C exhibiting different aromaticity and degrees of condensation were sulfonated and employed as sulfonate-bearing solid catalysts for hydrolytically removing tylosin. They exhibited excellent hydrolytic performance and their kinetic constants were positively correlated with the total acidity and negatively correlated with their aromaticity. This study has uncovered the relationship between the structure, properties, sulfonating ability, and subsequent hydrolytic performance of biochar samples. It was observed that the aromaticity of biochar decreased as the pyrolysis temperature increased. Lower pyrolysis temperatures resulted in a reduced degree of condensation, smaller ring size, and an increased number of ring edge sites available for sulfonation, ultimately leading to enhanced catalytic performance. These findings provide valuable insights into the fundamental chemistry behind sulfonation upgrading of biochar, with the aim of developing functional catalysts for mitigating antibiotics in contaminated water.
Graphical Abstract
在过去几十年中,磺化碳材料作为布氏固体酸催化剂受到了广泛关注。磺化生物炭的磺化过程和催化活性会受到生物炭的芳香度和缩合度的影响。然而,芳香度、磺化能力和由此产生的催化活性之间的关系尚不完全清楚。本研究对 300-650 °C 高温分解的生物炭样品进行了磺化处理,并将其用作含磺酸盐的固体催化剂,用于水解去除泰乐菌素。它们表现出优异的水解性能,其动力学常数与总酸度呈正相关,而与芳香度呈负相关。这项研究揭示了生物炭样品的结构、性质、磺化能力和后续水解性能之间的关系。研究发现,生物炭的芳香度随着热解温度的升高而降低。热解温度越低,缩合程度越低,环的尺寸越小,可用于磺化的环边位点数量越多,最终导致催化性能增强。这些发现为了解生物炭磺化升级背后的基本化学原理提供了有价值的见解,其目的是开发功能性催化剂,以减少受污染水体中的抗生素。
{"title":"Conversion of biochar into sulfonate-bearing solid acids used for the hydrolysis of tylosin: the effect of aromaticity and degree of condensation","authors":"Qianqian Xie, Xiao Yang, Binoy Sarkar, Xiaomin Dou, Piumi Amasha Withana, Yong Sik Ok","doi":"10.1007/s42773-023-00277-z","DOIUrl":"https://doi.org/10.1007/s42773-023-00277-z","url":null,"abstract":"<p>In the last few decades, sulfonated carbon materials have garnered significant attention as Brønsted solid acid catalysts. The sulfonation process and catalytic activity of sulfonated biochar can be influenced by the aromaticity and degree of condensation exhibited by biochar. However, the relationships between the aromaticity, sulfonating ability, and resultant catalytic activity are not fully understood. In this study, biochar samples pyrolyzed at 300–650 °C exhibiting different aromaticity and degrees of condensation were sulfonated and employed as sulfonate-bearing solid catalysts for hydrolytically removing tylosin. They exhibited excellent hydrolytic performance and their kinetic constants were positively correlated with the total acidity and negatively correlated with their aromaticity. This study has uncovered the relationship between the structure, properties, sulfonating ability, and subsequent hydrolytic performance of biochar samples. It was observed that the aromaticity of biochar decreased as the pyrolysis temperature increased. Lower pyrolysis temperatures resulted in a reduced degree of condensation, smaller ring size, and an increased number of ring edge sites available for sulfonation, ultimately leading to enhanced catalytic performance. These findings provide valuable insights into the fundamental chemistry behind sulfonation upgrading of biochar, with the aim of developing functional catalysts for mitigating antibiotics in contaminated water.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\u0000","PeriodicalId":8789,"journal":{"name":"Biochar","volume":"107 1","pages":""},"PeriodicalIF":12.7,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138573953","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-11DOI: 10.1007/s42773-023-00278-y
Chuanfang Fan, Yanshan Cui, Qianru Zhang, Naiyi Yin, Xiaolin Cai, Xiangzhou Yuan, Sachini Senadheera, Yoora Cho, Yong Sik Ok
Biochar has a large specific surface area, well-developed pore structure, abundant surface functional groups, and superior nutrient supply capacity, which is widely available and environmentally friendly with its advantages in waste resource utilization, heavy metal(loid) remediation, and carbon storage. This review focuses on the interactions between biochar (including raw biochar, functional biochar (modified/ engineered/ designer biochar), and composite biochar) and rhizosphere during the remediation of soil contaminated with heavy metal(loid)s (Pb, As, Cd, Hg, Co, Cu, Ni, Zn, Cr, etc.) and the effects of these interactions on the microbial communities and root exudates (enzymes and low-molecular-weight organic acids (LMWOAs)). In terms of microorganisms, biochar affects the composition, diversity, and structure of microbial communities through the supply of nutrients, provision of microbial colonization sites, immobilization of heavy metal(loid)s, and introduction of exogenous microorganisms. With regard to root exudates, biochar provides electron transfer support between the microorganisms and exudates, regulates the secretion of enzymes to resist the oxidative stress stimulated by heavy metal(loid)s, ameliorates rhizosphere acidification caused by LMWOAs, and promotes the activity of soil enzymes. The roles and mechanisms of biochar on rhizosphere soils are discussed, as well as the challenges of biochar in the remediation of heavy metal(loid)-contaminated soils, and the issues that need to be addressed in future research are foreseen.
{"title":"A critical review of the interactions between rhizosphere and biochar during the remediation of metal(loid) contaminated soils","authors":"Chuanfang Fan, Yanshan Cui, Qianru Zhang, Naiyi Yin, Xiaolin Cai, Xiangzhou Yuan, Sachini Senadheera, Yoora Cho, Yong Sik Ok","doi":"10.1007/s42773-023-00278-y","DOIUrl":"https://doi.org/10.1007/s42773-023-00278-y","url":null,"abstract":"<p>Biochar has a large specific surface area, well-developed pore structure, abundant surface functional groups, and superior nutrient supply capacity, which is widely available and environmentally friendly with its advantages in waste resource utilization, heavy metal(loid) remediation, and carbon storage. This review focuses on the interactions between biochar (including raw biochar, functional biochar (modified/ engineered/ designer biochar), and composite biochar) and rhizosphere during the remediation of soil contaminated with heavy metal(loid)s (Pb, As, Cd, Hg, Co, Cu, Ni, Zn, Cr, etc.) and the effects of these interactions on the microbial communities and root exudates (enzymes and low-molecular-weight organic acids (LMWOAs)). In terms of microorganisms, biochar affects the composition, diversity, and structure of microbial communities through the supply of nutrients, provision of microbial colonization sites, immobilization of heavy metal(loid)s, and introduction of exogenous microorganisms. With regard to root exudates, biochar provides electron transfer support between the microorganisms and exudates, regulates the secretion of enzymes to resist the oxidative stress stimulated by heavy metal(loid)s, ameliorates rhizosphere acidification caused by LMWOAs, and promotes the activity of soil enzymes. The roles and mechanisms of biochar on rhizosphere soils are discussed, as well as the challenges of biochar in the remediation of heavy metal(loid)-contaminated soils, and the issues that need to be addressed in future research are foreseen.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\u0000","PeriodicalId":8789,"journal":{"name":"Biochar","volume":"31 1","pages":""},"PeriodicalIF":12.7,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138569667","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-08DOI: 10.1007/s42773-023-00285-z
Qianqian Zou, Bing Wang, Bin Gao, Tao Jiang, Qianwei Feng, Miao Chen, Jian Zhang, Xueyang Zhang
The widespread organic pollutants in wastewater are one of the global environmental problems. Advanced oxidation processes (AOPs) are widely used because of their characteristics of high efficiency and strong oxidation. However, AOPs may have some defects, such as incomplete mineralization of organic pollutants and the generation of toxic by-products during the degradation process, thus it is essential to seek efficient and green wastewater treatment technologies. Coupling different AOPs or other processes is beneficial for the mineralization of pollutants and reduces ecological risks to the environment. It is worth noting that carbonaceous materials (CMs) have received widespread attention and application in the degradation of organic pollutants in water by advanced oxidation coupling processes (C-AOPs) due to their excellent physicochemical properties in recent years. However, the behaviors and mechanisms of C-AOPs based on CMs on the degradation of organic pollutants are still unknown. Therefore, it is essential to comprehensively summarize the recent research progress. In this review, the applications of different CMs in C-AOPs were reviewed first. Secondly, the synergistic mechanisms of the C-AOPs based on different CMs were discussed. Then, toxic intermediates were explored and important toxicity assessment methods were proposed. Finally, the application potential of the C-AOPs in the future and the challenges were proposed. This review provides an important reference for the application and optimization of the C-AOPs in organic wastewater treatment in the future.
{"title":"Roles and mechanisms of carbonaceous materials in advanced oxidation coupling processes for degradation organic pollutants in wastewater: a review","authors":"Qianqian Zou, Bing Wang, Bin Gao, Tao Jiang, Qianwei Feng, Miao Chen, Jian Zhang, Xueyang Zhang","doi":"10.1007/s42773-023-00285-z","DOIUrl":"https://doi.org/10.1007/s42773-023-00285-z","url":null,"abstract":"<p>The widespread organic pollutants in wastewater are one of the global environmental problems. Advanced oxidation processes (AOPs) are widely used because of their characteristics of high efficiency and strong oxidation. However, AOPs may have some defects, such as incomplete mineralization of organic pollutants and the generation of toxic by-products during the degradation process, thus it is essential to seek efficient and green wastewater treatment technologies. Coupling different AOPs or other processes is beneficial for the mineralization of pollutants and reduces ecological risks to the environment. It is worth noting that carbonaceous materials (CMs) have received widespread attention and application in the degradation of organic pollutants in water by advanced oxidation coupling processes (C-AOPs) due to their excellent physicochemical properties in recent years. However, the behaviors and mechanisms of C-AOPs based on CMs on the degradation of organic pollutants are still unknown. Therefore, it is essential to comprehensively summarize the recent research progress. In this review, the applications of different CMs in C-AOPs were reviewed first. Secondly, the synergistic mechanisms of the C-AOPs based on different CMs were discussed. Then, toxic intermediates were explored and important toxicity assessment methods were proposed. Finally, the application potential of the C-AOPs in the future and the challenges were proposed. This review provides an important reference for the application and optimization of the C-AOPs in organic wastewater treatment in the future.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\u0000","PeriodicalId":8789,"journal":{"name":"Biochar","volume":"16 1","pages":""},"PeriodicalIF":12.7,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138552502","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-07DOI: 10.1007/s42773-023-00289-9
Xiuxiu Jia, Tao Yin, Yin Wang, Shuxing Zhou, Xue Zhao, Wentong Chen, Guangzhi Hu
In this study, an adsorbent (LCB) with rich honeycomb structure was prepared from cork waste generated from furniture factories for efficient adsorption of excess phosphorus (P) from wastewater. This adsorbent was successfully prepared in only one step, in situ precipitation method, which greatly simplified the synthesis process. Kinetic studies showed that when the initial concentration (C0) of wastewater was 10 mg P L−1, the P in the water could be completely adsorbed within 20 min. The adsorption efficiency of phosphorus was significantly improved compared to previous studies. When the C0 of pollutant and the dosage of LCB were 20 mg P L−1 and 0.5 g L−1, respectively, the removal rate of P exceeded 99% in the pH range of 3–10, which indicates the wide applicability of LCB. In addition, the P adsorption capacity of LCB was 82.4% of its initial value after nine adsorption–desorption cycles, indicating that LCB has a high stability and can be widely used in different water environments. Therefore, LCB is a promising material for the treatment of P-containing wastewater.
Graphical Abstract
本研究利用家具厂产生的软木废料制备了一种具有丰富蜂窝结构的吸附剂(LCB),用于高效吸附废水中过量的磷(P)。该吸附剂的制备仅需一步,即原位沉淀法,大大简化了合成过程。动力学研究表明,当废水的初始浓度(C0)为 10 mg P L-1 时,水中的磷可在 20 分钟内被完全吸附。与之前的研究相比,磷的吸附效率明显提高。当污染物的 C0 和 LCB 的用量分别为 20 mg P L-1 和 0.5 g L-1 时,在 pH 值为 3-10 的范围内,P 的去除率超过 99%,这表明 LCB 具有广泛的适用性。此外,经过九次吸附-解吸循环后,LCB 对 P 的吸附量为初始值的 82.4%,表明 LCB 具有较高的稳定性,可广泛应用于不同的水环境中。因此,LCB 是一种很有前景的处理含 P 废水的材料。
{"title":"Porous honeycomb cork biochar for efficient and highly selective removal of phosphorus from wastewater","authors":"Xiuxiu Jia, Tao Yin, Yin Wang, Shuxing Zhou, Xue Zhao, Wentong Chen, Guangzhi Hu","doi":"10.1007/s42773-023-00289-9","DOIUrl":"https://doi.org/10.1007/s42773-023-00289-9","url":null,"abstract":"<p>In this study, an adsorbent (LCB) with rich honeycomb structure was prepared from cork waste generated from furniture factories for efficient adsorption of excess phosphorus (P) from wastewater. This adsorbent was successfully prepared in only one step, in situ precipitation method, which greatly simplified the synthesis process. Kinetic studies showed that when the initial concentration (C<sub>0</sub>) of wastewater was 10 mg P L<sup>−1</sup>, the P in the water could be completely adsorbed within 20 min. The adsorption efficiency of phosphorus was significantly improved compared to previous studies. When the C<sub>0</sub> of pollutant and the dosage of LCB were 20 mg P L<sup>−1</sup> and 0.5 g L<sup>−1</sup>, respectively, the removal rate of P exceeded 99% in the pH range of 3–10, which indicates the wide applicability of LCB. In addition, the P adsorption capacity of LCB was 82.4% of its initial value after nine adsorption–desorption cycles, indicating that LCB has a high stability and can be widely used in different water environments. Therefore, LCB is a promising material for the treatment of P-containing wastewater.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\u0000","PeriodicalId":8789,"journal":{"name":"Biochar","volume":"222 1","pages":""},"PeriodicalIF":12.7,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138547570","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pyrolysis is an effective technology for treating and utilizing biogas residue. To explore the phosphorus (P) supply capacity of the biochar generated from biogas residue of Eichhornia Crassipes, the P speciation of E. crassipes biogas residue and biomass during pyrolysis (300–700 °C) was analyzed by combining sequential chemical extraction, 31P nuclear magnetic resonance (NMR) and P K-edge X-ray absorption near edge structure (XANES) spectroscopy. Pyrolysis treatment promoted the conversion of amorphous Ca-P phases in biogas residue and biomass into crystalline hydroxyapatite (HAP) phase, which matched the formation of stable HCl-P pools in the biochar derived from biogas residue (AEBs, 22.65–82.04%) and biomass (EBs, 13.08–33.52%) in the process of pyrolysis. Moreover, the total P contents in AEBs (19.43–28.92 mg g−1) were higher than that of EBs (3.41–5.26 mg g−1), indicating that AEBs had a great P reclamation potential. The P release kinetics from AEBs and EBs in water were evaluated via an incubation experiment for 360 h. The P release from both AEBs and EBs conformed to the pseudo-second order kinetics model (R2 > 0.93), but their P release behaviors were different. The P release of AEBs conformed to the diffusion-re-adsorption model, while that of EBs accorded with the diffusion-dissolution model. The diffusive gradients in thin-films (DGT) analysis showed that AEBs could significantly increase soil available P content as compared with EBs. Hence, the biochar produced from biogas residue of E. crassipes via pyrolysis has a good application potential as a P fertilizer.
{"title":"Phosphorus-enriched biochar from biogas residue of Eichhornia crassipes: transformation and release of phosphorus","authors":"Fan Yu, Junxia Wang, Xutong Wang, Yuting Wang, Qianqian Guo, Zhi Wang, Xiaoqiang Cui, Yanjun Hu, Beibei Yan, Guanyi Chen","doi":"10.1007/s42773-023-00281-3","DOIUrl":"https://doi.org/10.1007/s42773-023-00281-3","url":null,"abstract":"<p>Pyrolysis is an effective technology for treating and utilizing biogas residue. To explore the phosphorus (P) supply capacity of the biochar generated from biogas residue of <i>Eichhornia Crassipes</i>, the P speciation of <i>E. crassipes</i> biogas residue and biomass during pyrolysis (300–700 °C) was analyzed by combining sequential chemical extraction, <sup>31</sup>P nuclear magnetic resonance (NMR) and P K-edge X-ray absorption near edge structure (XANES) spectroscopy. Pyrolysis treatment promoted the conversion of amorphous Ca-P phases in biogas residue and biomass into crystalline hydroxyapatite (HAP) phase, which matched the formation of stable HCl-P pools in the biochar derived from biogas residue (AEBs, 22.65–82.04%) and biomass (EBs, 13.08–33.52%) in the process of pyrolysis. Moreover, the total P contents in AEBs (19.43–28.92 mg g<sup>−1</sup>) were higher than that of EBs (3.41–5.26 mg g<sup>−1</sup>), indicating that AEBs had a great P reclamation potential. The P release kinetics from AEBs and EBs in water were evaluated via an incubation experiment for 360 h. The P release from both AEBs and EBs conformed to the pseudo-second order kinetics model (<i>R</i><sup><i>2</i></sup> > 0.93), but their P release behaviors were different. The P release of AEBs conformed to the diffusion-re-adsorption model, while that of EBs accorded with the diffusion-dissolution model. The diffusive gradients in thin-films (DGT) analysis showed that AEBs could significantly increase soil available P content as compared with EBs. Hence, the biochar produced from biogas residue of <i>E. crassipes</i> via pyrolysis has a good application potential as a P fertilizer.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\u0000","PeriodicalId":8789,"journal":{"name":"Biochar","volume":" 4","pages":""},"PeriodicalIF":12.7,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138493787","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-01DOI: 10.1007/s42773-023-00292-0
Xiangying Li, Xiangyu Zhang, Peng Zhang, Xinhua Wang, Hongwen Sun, Yongyue Lu, L. Jiao, Chenglan Liu
{"title":"Correction: Incorporation of N-doped biochar into zero-valent iron for efficient reductive degradation of neonicotinoids: mechanism and performance","authors":"Xiangying Li, Xiangyu Zhang, Peng Zhang, Xinhua Wang, Hongwen Sun, Yongyue Lu, L. Jiao, Chenglan Liu","doi":"10.1007/s42773-023-00292-0","DOIUrl":"https://doi.org/10.1007/s42773-023-00292-0","url":null,"abstract":"","PeriodicalId":8789,"journal":{"name":"Biochar","volume":"134 4‐6","pages":"1"},"PeriodicalIF":12.7,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138626204","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}