首页 > 最新文献

Biochar最新文献

英文 中文
Towards a high-quality fertilizer based on algae residues treated via hydrothermal carbonization. Trends on how process parameters influence inorganics 利用经热液碳化处理的藻类残渣制造优质肥料。工艺参数对无机物的影响趋势
IF 12.7 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Pub Date : 2024-07-08 DOI: 10.1007/s42773-024-00357-8
Daniela Moloeznik Paniagua, Lina Maja Marie Krenz, Judy A. Libra, Nathalie Korf, Vera Susanne Rotter

The use of beach-cast macroalgae as a fertilizer (F) or soil amendment (SA) is coming back into focus, due to its highly efficient transformation of CO2, nutrients, salts and minerals from its aqueous surroundings into biomass. This research studied the hydrothermal carbonization (HTC) of Fucus vesiculosus macroalgae to hydrochar and evaluated its feasibility for use in soil applications. F. vesiculosus was submitted to HTC following a full factorial design of experiments with three HTC process parameters varied to assess their impact on the hydrochars: temperature (T: 160, 190, 220 °C), solid content (%So: 20, 35%), and process water recirculation (PWrec: yes and no). In general, F. vesiculosus and its hydrochars were rich in nutrients, but also contained regulated heavy metals. Investigation of the partitioning behavior of inorganic elements between the hydrochars and process water showed that heavy metals like Cr, Pb, Co and Cu tended to accumulate in the hydrochar, unaffected by HTC conditions. Nutrients such as P, N, B, and Mn were primarily found in the hydrochar and could be partially influenced to transfer to process water by changing %So and T. The correlation between the mass fractions of 22 elements in the hydrochar and HTC process parameters was studied. T was the most influential parameter, showing a significant positive correlation for eleven elements. %So and PWrec showed inconsistent effects on different elements. When process water was recirculated, some elements decreased (Ca, Cd, Fe) while others increased (K, Na, B, N) in the hydrochar. Assessment against various regulations and standards for F and SA revealed that F. vesiculosus complied with Cd limit values for most rules including the EURF and B, and was regulated only in the RAL for SA, over the limit value. In contrast, the limit value of Cd for both F and SA applications was surpassed in the 13 hydrochars. The contents of N, P, K, S, and Na in the feedstock and hydrochars complied with European F and SA rules, while they were too high for German rules on SA. The other limits for F rules were achieved (under certain HTC process parameters) except for P (lower than the requirements in F for F. vesiculosus and its hydrochars).

Graphical Abstract

由于滩涂大型藻类能高效地将水环境中的二氧化碳、养分、盐分和矿物质转化为生物质,因此其作为肥料(F)或土壤改良剂(SA)的用途再次受到关注。本研究对褐藻(Fucus vesiculosus)大型藻类的水热碳化(HTC)过程进行了研究,并评估了其在土壤应用中的可行性。在对 F. vesiculosus 进行水热碳化时,采用了全因子实验设计,改变了三个水热碳化工艺参数,以评估它们对水炭的影响:温度(T:160、190、220 °C)、固体含量(%So:20、35%)和工艺水再循环(PWrec:是和否)。总体而言,F. vesiculosus 及其水合赭石富含营养物质,但也含有受管制的重金属。无机元素在水包炭和工艺用水之间的分配行为调查显示,重金属(如铬、铅、钴和铜)倾向于在水包炭中积累,不受 HTC 条件的影响。养分(如 P、N、B 和 Mn)主要存在于水包炭中,可以通过改变 %So 和 T 来部分影响其向工艺水的转移。T 是影响最大的参数,与 11 种元素呈显著正相关。%So 和 PWrec 对不同元素的影响不一致。当工艺水再循环时,水炭中的某些元素会减少(钙、镉、铁),而其他元素则会增加(钾、鈉、硼、氮)。根据有关 F 和 SA 的各种规定和标准进行的评估显示,F. vesiculosus 符合大多数规定(包括 EURF 和 B)中的镉限值,仅在 SA 的 RAL 中受到规定,超过了限值。相比之下,13 种水螯合态氮和 SA 的镉含量都超过了限值。原料和水煤浆中 N、P、K、S 和 Na 的含量符合欧洲焚烧和脱硫规则,但在德国脱硫规则中则过高。除 P 外(低于 F. vesiculosus 及其水煤浆的 F. 要求),其他均达到了 F 规则的限制(在某些 HTC 工艺参数下)。
{"title":"Towards a high-quality fertilizer based on algae residues treated via hydrothermal carbonization. Trends on how process parameters influence inorganics","authors":"Daniela Moloeznik Paniagua, Lina Maja Marie Krenz, Judy A. Libra, Nathalie Korf, Vera Susanne Rotter","doi":"10.1007/s42773-024-00357-8","DOIUrl":"https://doi.org/10.1007/s42773-024-00357-8","url":null,"abstract":"<p>The use of beach-cast macroalgae as a fertilizer (F) or soil amendment (SA) is coming back into focus, due to its highly efficient transformation of CO<sub>2</sub>, nutrients, salts and minerals from its aqueous surroundings into biomass. This research studied the hydrothermal carbonization (HTC) of <i>Fucus vesiculosus</i> macroalgae to hydrochar and evaluated its feasibility for use in soil applications. <i>F. vesiculosus</i> was submitted to HTC following a full factorial design of experiments with three HTC process parameters varied to assess their impact on the hydrochars: temperature (<i>T</i>: 160, 190, 220 °C), solid content (<i>%So</i>: 20, 35%), and process water recirculation (<i>PWrec</i>: yes and no). In general, <i>F. vesiculosus</i> and its hydrochars were rich in nutrients, but also contained regulated heavy metals. Investigation of the partitioning behavior of inorganic elements between the hydrochars and process water showed that heavy metals like Cr, Pb, Co and Cu tended to accumulate in the hydrochar, unaffected by HTC conditions. Nutrients such as P, N, B, and Mn were primarily found in the hydrochar and could be partially influenced to transfer to process water by changing <i>%So</i> and <i>T</i>. The correlation between the mass fractions of 22 elements in the hydrochar and HTC process parameters was studied. <i>T</i> was the most influential parameter, showing a significant positive correlation for eleven elements. <i>%So</i> and <i>PWrec</i> showed inconsistent effects on different elements. When process water was recirculated, some elements decreased (Ca, Cd, Fe) while others increased (K, Na, B, N) in the hydrochar. Assessment against various regulations and standards for F and SA revealed that <i>F. vesiculosus</i> complied with Cd limit values for most rules including the EURF and B, and was regulated only in the RAL for SA, over the limit value. In contrast, the limit value of Cd for both F and SA applications was surpassed in the 13 hydrochars. The contents of N, P, K, S, and Na in the feedstock and hydrochars complied with European F and SA rules, while they were too high for German rules on SA. The other limits for F rules were achieved (under certain HTC process parameters) except for P (lower than the requirements in F for <i>F. vesiculosus</i> and its hydrochars).</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\u0000","PeriodicalId":8789,"journal":{"name":"Biochar","volume":"25 1","pages":""},"PeriodicalIF":12.7,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141567204","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparative responses of two maize genotypes with contrasting drought tolerance to biochar application 耐旱性截然不同的两种玉米基因型对施用生物炭的反应比较
IF 12.7 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Pub Date : 2024-07-03 DOI: 10.1007/s42773-024-00359-6
Renjie Ruan, Hans Lambers, Yaosheng Wang

The impact of biochar application on plant performance under drought stress necessitates a comprehensive understanding of biochar–soil interaction, root growth, and plant physiological processes. Therefore, pot experiments were conducted to assess the effects of biochar on plant responses to drought stress at the seedling stage. Two contrasting maize genotypes (drought-sensitive KN5585 vs. -tolerant Mo17) were subjected to biochar application under drought stress conditions. The results indicated that biochar application decreased soil exchangeable Na+ and Ca2+ contents while increased soil exchangeable K+ content (2.7-fold) and electrical conductivity (4.0-fold), resulting in an elevated leaf sap K+ concentration in both maize genotypes. The elevated K+ concentration with biochar application increased root apoplastic pH in the drought-sensitive KN5585, but not in the drought-tolerant Mo17, which stimulated the activation of H+-ATPase and H+ efflux in KN5585 roots. Apoplast alkalinization of the drought-sensitive KN5585 resulting from biochar application further inhibited root growth by 30.7%, contributing to an improvement in water potential, a reduction in levels of O2, H2O2, T-AOC, SOD, and POD, as well as the down-regulation of genes associated with drought resistance in KN5585 roots. In contrast, biochar application increased leaf sap osmolality and provided osmotic protection for the drought-tolerant Mo17, which was associated with trehalose accumulation in Mo17 roots. Biochar application improved sucrose utilization and circadian rhythm of Mo17 roots, and increased fresh weight under drought stress. This study suggests that biochar application has the potential to enhance plant drought tolerance, which is achieved through the inhibition of root growth in sensitive plants and the enhancement of osmotic protection in tolerant plants, respectively.

Graphical Abstract

施用生物炭对干旱胁迫下植物表现的影响需要全面了解生物炭与土壤的相互作用、根系生长和植物生理过程。因此,我们进行了盆栽实验,以评估生物炭对植物幼苗期干旱胁迫反应的影响。在干旱胁迫条件下,对两种不同的玉米基因型(对干旱敏感的 KN5585 和耐旱的 Mo17)施用生物炭。结果表明,施用生物炭降低了土壤中可交换的 Na+ 和 Ca2+ 含量,同时提高了土壤中可交换的 K+ 含量(2.7 倍)和电导率(4.0 倍),导致两种玉米基因型的叶片汁液 K+ 浓度升高。施用生物炭导致的 K+ 浓度升高增加了对干旱敏感的 KN5585 的根系凋亡体 pH 值,但对干旱耐受的 Mo17 却没有增加,这刺激了 KN5585 根系中 H+-ATP 酶的活化和 H+ 的外流。施用生物炭导致对干旱敏感的 KN5585 的细胞质碱化,进一步抑制了 30.7% 的根系生长,从而改善了水势,降低了 O2-、H2O2、T-AOC、SOD 和 POD 的水平,并下调了与 KN5585 根系抗旱性相关的基因。相反,施用生物炭提高了叶液渗透压,为耐旱的 Mo17 提供了渗透保护,这与 Mo17 根部的三卤糖积累有关。施用生物炭改善了 Mo17 根系的蔗糖利用率和昼夜节律,并增加了干旱胁迫下的鲜重。这项研究表明,施用生物炭有可能提高植物的耐旱性,这分别是通过抑制敏感植物的根系生长和增强耐旱植物的渗透保护来实现的。
{"title":"Comparative responses of two maize genotypes with contrasting drought tolerance to biochar application","authors":"Renjie Ruan, Hans Lambers, Yaosheng Wang","doi":"10.1007/s42773-024-00359-6","DOIUrl":"https://doi.org/10.1007/s42773-024-00359-6","url":null,"abstract":"<p>The impact of biochar application on plant performance under drought stress necessitates a comprehensive understanding of biochar–soil interaction, root growth, and plant physiological processes. Therefore, pot experiments were conducted to assess the effects of biochar on plant responses to drought stress at the seedling stage. Two contrasting maize genotypes (drought-sensitive KN5585 vs. -tolerant Mo17) were subjected to biochar application under drought stress conditions. The results indicated that biochar application decreased soil exchangeable Na<sup>+</sup> and Ca<sup>2+</sup> contents while increased soil exchangeable K<sup>+</sup> content (2.7-fold) and electrical conductivity (4.0-fold), resulting in an elevated leaf sap K<sup>+</sup> concentration in both maize genotypes. The elevated K<sup>+</sup> concentration with biochar application increased root apoplastic pH in the drought-sensitive KN5585, but not in the drought-tolerant Mo17, which stimulated the activation of H<sup>+</sup>-ATPase and H<sup>+</sup> efflux in KN5585 roots. Apoplast alkalinization of the drought-sensitive KN5585 resulting from biochar application further inhibited root growth by 30.7%, contributing to an improvement in water potential, a reduction in levels of O<sub>2</sub><sup>–</sup>, H<sub>2</sub>O<sub>2</sub>, T-AOC, SOD, and POD, as well as the down-regulation of genes associated with drought resistance in KN5585 roots. In contrast, biochar application increased leaf sap osmolality and provided osmotic protection for the drought-tolerant Mo17, which was associated with trehalose accumulation in Mo17 roots. Biochar application improved sucrose utilization and circadian rhythm of Mo17 roots, and increased fresh weight under drought stress. This study suggests that biochar application has the potential to enhance plant drought tolerance, which is achieved through the inhibition of root growth in sensitive plants and the enhancement of osmotic protection in tolerant plants, respectively.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\u0000","PeriodicalId":8789,"journal":{"name":"Biochar","volume":"14 1","pages":""},"PeriodicalIF":12.7,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141520756","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Algal-biochar and Chlorella vulgaris microalgae: a sustainable approach for textile wastewater treatment and biodiesel production 藻类生物炭和小球藻微藻类:纺织废水处理和生物柴油生产的可持续方法
IF 12.7 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Pub Date : 2024-07-02 DOI: 10.1007/s42773-024-00358-7
Rabia Rehman, Javed Iqbal, Muhammad Saif Ur Rehman, Shanawar Hamid, Yuze Wang, Kashif Rasool, Tahir Fazal

Microalgae technology is a viable solution for environmental conservation (carbon capture and wastewater treatment) and energy production. However, the nutrient cost, slow-kinetics, and low biosorption capacity of microalgae hindered its application. To overcome them, algal-biochar (BC) can be integrated with microalgae to treat textile wastewater (TWW) due to its low cost, its ability to rapidly adsorb pollutants, and its ability to serve as a nutrient source for microalgal-growth to capture CO2 and biodiesel production. Chlorella vulgaris (CV) and algal-BC were combined in this work to assess microalgal growth, carbon capture, TWW bioremediation, and biodiesel production. Results showed the highest optical density (3.70 ± 0.07 OD680), biomass productivity (42.31 ± 0.50 mg L−1 d−1), and dry weight biomass production (255.11 ± 6.01 mg L−1) in an integrated system of CV-BC-TWW by capturing atmospheric CO2 (77.57 ± 2.52 mg L−1 d−1). More than 99% bioremediation (removal of MB-pollutant, COD, nitrates, and phosphates) of TWW was achieved in CV-BC-TWW system due to biosorption and biodegradation processes. The addition of algal-BC and CV microalgae to TWW not only enhanced the algal growth but also increased the bioremediation of TWW and biodiesel content. The highest fatty acid methylesters (biodiesel) were also produced, up to 76.79 ± 2.01 mg g−1 from CV-BC-TWW cultivated-biomass. Biodiesel’s oxidative stability and low-temperature characteristics are enhanced by the presence of palmitoleic (C16:1) and linolenic (C18:3) acids. Hence, this study revealed that the integration of algal-biochar, as a biosorbent and source of nutrients, with living-microalgae offers an efficient, economical, and sustainable approach for microalgae growth, CO2 fixation, TWW treatment, and biodiesel production.

Graphical Abstract

微藻技术是环境保护(碳捕获和废水处理)和能源生产的可行解决方案。然而,微藻的营养成本、缓慢的动力学和较低的生物吸附能力阻碍了其应用。为了克服这些问题,藻类生物炭(BC)可与微藻结合,用于处理纺织废水(TWW),因为其成本低,能够快速吸附污染物,并可作为微藻生长的营养源,用于捕获二氧化碳和生产生物柴油。本研究将小球藻(CV)和藻类生物碱(BC)结合起来,对微藻的生长、碳捕集、三水生物修复和生物柴油的生产进行了评估。结果表明,在 CV-BC-TWW 综合系统中,通过捕获大气中的二氧化碳(77.57 ± 2.52 mg L-1 d-1),光密度(3.70 ± 0.07 OD680)、生物量生产率(42.31 ± 0.50 mg L-1 d-1)和干重生物量生产率(255.11 ± 6.01 mg L-1)均达到最高水平。由于生物吸附和生物降解过程,CV-BC-TWW 系统对 TWW 实现了 99% 以上的生物修复(去除甲基溴污染物、化学需氧量、硝酸盐和磷酸盐)。在 TWW 中添加藻-BC 和 CV 微藻不仅能促进藻类生长,还能提高 TWW 的生物修复能力和生物柴油含量。CV-BC-TWW 培养生物质产生的脂肪酸甲酯(生物柴油)也最高,达到 76.79 ± 2.01 mg g-1。生物柴油的氧化稳定性和低温特性因棕榈油酸(C16:1)和亚麻酸(C18:3)的存在而增强。因此,这项研究表明,将作为生物吸附剂和营养源的海藻生物炭与活体微藻相结合,为微藻生长、二氧化碳固定、三水处理和生物柴油生产提供了一种高效、经济和可持续的方法。
{"title":"Algal-biochar and Chlorella vulgaris microalgae: a sustainable approach for textile wastewater treatment and biodiesel production","authors":"Rabia Rehman, Javed Iqbal, Muhammad Saif Ur Rehman, Shanawar Hamid, Yuze Wang, Kashif Rasool, Tahir Fazal","doi":"10.1007/s42773-024-00358-7","DOIUrl":"https://doi.org/10.1007/s42773-024-00358-7","url":null,"abstract":"<p>Microalgae technology is a viable solution for environmental conservation (carbon capture and wastewater treatment) and energy production. However, the nutrient cost, slow-kinetics, and low biosorption capacity of microalgae hindered its application. To overcome them, algal-biochar (BC) can be integrated with microalgae to treat textile wastewater (TWW) due to its low cost, its ability to rapidly adsorb pollutants, and its ability to serve as a nutrient source for microalgal-growth to capture CO<sub>2</sub> and biodiesel production. <i>Chlorella vulgaris</i> (CV) and algal-BC were combined in this work to assess microalgal growth, carbon capture, TWW bioremediation, and biodiesel production. Results showed the highest optical density (3.70 ± 0.07 OD<sub>680</sub>), biomass productivity (42.31 ± 0.50 mg L<sup>−1</sup> d<sup>−1</sup>), and dry weight biomass production (255.11 ± 6.01 mg L<sup>−1</sup>) in an integrated system of CV-BC-TWW by capturing atmospheric CO<sub>2</sub> (77.57 ± 2.52 mg L<sup>−1</sup> d<sup>−1</sup>). More than 99% bioremediation (removal of MB-pollutant, COD, nitrates, and phosphates) of TWW was achieved in CV-BC-TWW system due to biosorption and biodegradation processes. The addition of algal-BC and CV microalgae to TWW not only enhanced the algal growth but also increased the bioremediation of TWW and biodiesel content. The highest fatty acid methylesters (biodiesel) were also produced, up to 76.79 ± 2.01 mg g<sup>−1</sup> from CV-BC-TWW cultivated-biomass. Biodiesel’s oxidative stability and low-temperature characteristics are enhanced by the presence of palmitoleic (C16:1) and linolenic (C18:3) acids. Hence, this study revealed that the integration of algal-biochar, as a biosorbent and source of nutrients, with living-microalgae offers an efficient, economical, and sustainable approach for microalgae growth, CO<sub>2</sub> fixation, TWW treatment, and biodiesel production.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\u0000","PeriodicalId":8789,"journal":{"name":"Biochar","volume":"4 1","pages":""},"PeriodicalIF":12.7,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141506191","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of hydrothermal temperature on the optical properties of hydrochar-derived dissolved organic matter and their interactions with copper (II) 水热温度对水炭衍生溶解有机物的光学特性及其与铜(II)相互作用的影响
IF 12.7 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Pub Date : 2024-06-25 DOI: 10.1007/s42773-024-00353-y
Licheng Ji, Zhongpu Yu, Qi Cao, Xiangyang Gui, Xingjun Fan, Chengcheng Wei, Fei Jiang, Jie Wang, Fanbin Meng, Feiyue Li, Jianfei Wang

Hydrothermal carbonization (HTC) has been regarded as a promising technique for turning wet biomass into hydrochar due to its low energy consumption, low exhaust gas emissions, etc. In addition, hydrochar is an important source of dissolved organic matter (DOM), which plays a crucial part in the migration and destiny of pollutants in the environmental medium. However, there are limited studies that focus on the factors that influence the formation of DOM in hydrochar, such as hydrothermal temperature. Therefore, the current study comprehensively characterized the optical properties of DOM within hydrochar derived from sawdust (HDOM) under different hydrothermal temperatures (150–300 °C) by Ultraviolet–visible (UV–Vis) and fluorescence spectroscopy, as well as its complexation characteristic with Cu(II). The findings revealed that the organic carbon content of HDOM reached a peak of 37.3 mg L−1 when the temperature rose to 240 °C and then decreased as the temperature increased. UV–Vis spectroscopy analysis showed that the absorption capacity of HDOM at 275 nm increases with temperature and reaches a maximum value at 240 °C, indicating that high temperature promotes the formation of monocyclic aromatic compounds. High temperature enhances the aromaticity, hydrophobicity, and humification degree of HDOM, thus improving its stability and aromaticity. The E3/E4 ratios are all greater than 3.5, confirming that the main component of HDOM is fulvic acid, which corresponds to 3D-EEM and Pearson's correlation coefficient analysis. The humification index (HIX) of HDOM increased with the rise in hydrothermal temperature (150–240 °C), as observed by the three-dimensional excitation-emission matrix spectroscopy (3D-EEMs). After reaching its peak at 240 °C, the HIX value gradually dropped in line with the trend of the DOC change. Moreover, the bioavailability (BIX) value of DOM was all high and greater than 1, indicating all the HDOM are readily bioavailable. Two microbial humic substances (C1 and C4), a humic-like substance (C2), and a protein-like substance (C3) were discovered in DOM by integrating 3D-EEMs with parallel factor analysis (PARAFAC). Their fluorescence intensity decreases as the Cu(II) concentration increases, indicating the formation of complexes with Cu(II). As the temperature rises, the binding ability of DOM and Cu(II) changes significantly, reaching the optimum at 300 °C. Meanwhile, the substance C2 has the strongest binding ability with Cu(II). This research emphasizes the significance of spectroscopy analysis in determining the evolution of hydrochar-derived DOM, the potential for heavy metal binding and migration, and its characteristics and features.

Graphical Abstract

水热碳化(HTC)因其能耗低、废气排放少等优点,被认为是将湿生物质转化为水炭的一种有前途的技术。此外,水碳是溶解有机物(DOM)的重要来源,而溶解有机物对污染物在环境介质中的迁移和归宿起着至关重要的作用。然而,针对影响水煤炭中 DOM 形成的因素(如水热温度)的研究十分有限。因此,本研究通过紫外-可见光谱(UV-Vis)和荧光光谱,对不同水热温度(150-300 °C)下锯末衍生水炭(HDOM)中 DOM 的光学特性及其与 Cu(II) 的络合特性进行了综合表征。研究结果表明,当温度升至 240 ℃ 时,HDOM 的有机碳含量达到 37.3 mg L-1 的峰值,然后随着温度的升高而降低。紫外可见光谱分析显示,HDOM 在 275 纳米波长处的吸收能力随温度升高而增加,并在 240 °C 时达到最大值,这表明高温促进了单环芳香族化合物的形成。高温增强了 HDOM 的芳香性、疏水性和腐殖化程度,从而提高了其稳定性和芳香性。E3/E4比值均大于3.5,证实了HDOM的主要成分是富勒酸,这与3D-EEM和皮尔逊相关系数分析相吻合。通过三维激发-发射矩阵光谱(3D-EEMs)观察到,HDOM 的腐殖化指数(HIX)随着水热温度(150-240 ℃)的升高而增加。在 240 °C 达到峰值后,HIX 值随 DOC 变化趋势逐渐下降。此外,DOM 的生物利用率(BIX)值都很高且大于 1,表明所有 HDOM 都很容易被生物利用。通过将三维电子显微镜与并行因子分析(PARAFAC)相结合,在 DOM 中发现了两种微生物腐殖质(C1 和 C4)、一种类腐殖质(C2)和一种类蛋白质(C3)。它们的荧光强度随着 Cu(II)浓度的增加而降低,表明它们与 Cu(II)形成了络合物。随着温度的升高,DOM 与 Cu(II)的结合能力发生了显著变化,在 300 °C 时达到最佳。同时,物质 C2 与 Cu(II) 的结合能力最强。这项研究强调了光谱分析在确定水碳衍生 DOM 的演变、重金属结合和迁移潜力及其特征和特性方面的重要意义。 图文摘要
{"title":"Effect of hydrothermal temperature on the optical properties of hydrochar-derived dissolved organic matter and their interactions with copper (II)","authors":"Licheng Ji, Zhongpu Yu, Qi Cao, Xiangyang Gui, Xingjun Fan, Chengcheng Wei, Fei Jiang, Jie Wang, Fanbin Meng, Feiyue Li, Jianfei Wang","doi":"10.1007/s42773-024-00353-y","DOIUrl":"https://doi.org/10.1007/s42773-024-00353-y","url":null,"abstract":"<p>Hydrothermal carbonization (HTC) has been regarded as a promising technique for turning wet biomass into hydrochar due to its low energy consumption, low exhaust gas emissions, etc. In addition, hydrochar is an important source of dissolved organic matter (DOM), which plays a crucial part in the migration and destiny of pollutants in the environmental medium. However, there are limited studies that focus on the factors that influence the formation of DOM in hydrochar, such as hydrothermal temperature. Therefore, the current study comprehensively characterized the optical properties of DOM within hydrochar derived from sawdust (HDOM) under different hydrothermal temperatures (150–300 °C) by Ultraviolet–visible (UV–Vis) and fluorescence spectroscopy, as well as its complexation characteristic with Cu(II). The findings revealed that the organic carbon content of HDOM reached a peak of 37.3 mg L<sup>−1</sup> when the temperature rose to 240 °C and then decreased as the temperature increased. UV–Vis spectroscopy analysis showed that the absorption capacity of HDOM at 275 nm increases with temperature and reaches a maximum value at 240 °C, indicating that high temperature promotes the formation of monocyclic aromatic compounds. High temperature enhances the aromaticity, hydrophobicity, and humification degree of HDOM, thus improving its stability and aromaticity. The E3/E4 ratios are all greater than 3.5, confirming that the main component of HDOM is fulvic acid, which corresponds to 3D-EEM and Pearson's correlation coefficient analysis. The humification index (HIX) of HDOM increased with the rise in hydrothermal temperature (150–240 °C), as observed by the three-dimensional excitation-emission matrix spectroscopy (3D-EEMs). After reaching its peak at 240 °C, the HIX value gradually dropped in line with the trend of the DOC change. Moreover, the bioavailability (BIX) value of DOM was all high and greater than 1, indicating all the HDOM are readily bioavailable. Two microbial humic substances (C1 and C4), a humic-like substance (C2), and a protein-like substance (C3) were discovered in DOM by integrating 3D-EEMs with parallel factor analysis (PARAFAC). Their fluorescence intensity decreases as the Cu(II) concentration increases, indicating the formation of complexes with Cu(II). As the temperature rises, the binding ability of DOM and Cu(II) changes significantly, reaching the optimum at 300 °C. Meanwhile, the substance C2 has the strongest binding ability with Cu(II). This research emphasizes the significance of spectroscopy analysis in determining the evolution of hydrochar-derived DOM, the potential for heavy metal binding and migration, and its characteristics and features.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>","PeriodicalId":8789,"journal":{"name":"Biochar","volume":"67 1","pages":""},"PeriodicalIF":12.7,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141506192","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring magnetic nanomaterials with a focus on magnetic biochar in anaerobic digestion: from synthesis to application 探索磁性纳米材料,重点是厌氧消化中的磁性生物炭:从合成到应用
IF 12.7 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Pub Date : 2024-06-24 DOI: 10.1007/s42773-024-00354-x
Wenneng Zhou, Mahmoud Mazarji, Mengtong Li, Aohua Li, Yajing Wang, Yadong Yang, Jonathan T. E. Lee, Eldon R. Rene, Xiangzhou Yuan, Junting Pan

Anaerobic digestion technology, effective for sustainable waste management and renewable energy, but challenged by slow reaction rates and low biogas yields, could benefit from advancements in magnetic nanomaterials. This review explores the potential of magnetic nanomaterials, particularly magnetic biochar nanocomposites, to address these challenges by serving as electron conduits and providing essential iron. This review contributes a thorough overview of the application of magnetic nanoparticles loaded into biochar in anaerobic digestion and engages in a comprehensive discussion regarding the synthesis methods and characterization of various magnetic nanoparticles, elucidating their mechanisms of action in both the absence and presence of magnetic fields. Our review underscores the predominance of co-precipitation (53%) and commercially sourced nanoparticles (29%) as the main synthesis methods, with chemical reduction, pyrolysis, and green synthesis pathways less commonly utilized (8%, 5%, and 5%, respectively). Notably, pyrolysis is predominantly employed for synthesizing magnetic biochar nanocomposites, reflecting its prevalence in 100% of cases for this specific application. By offering a critical evaluation of the current state of knowledge and discussing the challenges and future directions for research in this field, this review can help researchers and practitioners better understand the potential of magnetic biochar nanocomposites for enhancing anaerobic digestion performance and ultimately advancing sustainable waste management and renewable energy production.

Graphical Abstract

厌氧消化技术对可持续废物管理和可再生能源非常有效,但却面临着反应速率慢和沼气产量低的挑战。本综述探讨了磁性纳米材料(尤其是磁性生物炭纳米复合材料)通过作为电子导管和提供必要的铁来应对这些挑战的潜力。本综述全面概述了在厌氧消化中将磁性纳米颗粒装入生物炭的应用,并对各种磁性纳米颗粒的合成方法和特性进行了全面讨论,阐明了它们在无磁场和有磁场情况下的作用机制。我们的综述强调,共沉淀(53%)和商业来源的纳米粒子(29%)是主要的合成方法,而化学还原、热解和绿色合成途径较少使用(分别为 8%、5% 和 5%)。值得注意的是,热解法主要用于合成磁性生物炭纳米复合材料,在这一特定应用中,热解法的使用率高达 100%。本综述对当前的知识状况进行了批判性评估,并讨论了该领域的挑战和未来研究方向,有助于研究人员和从业人员更好地了解磁性生物炭纳米复合材料在提高厌氧消化性能方面的潜力,并最终推动可持续废物管理和可再生能源生产。
{"title":"Exploring magnetic nanomaterials with a focus on magnetic biochar in anaerobic digestion: from synthesis to application","authors":"Wenneng Zhou, Mahmoud Mazarji, Mengtong Li, Aohua Li, Yajing Wang, Yadong Yang, Jonathan T. E. Lee, Eldon R. Rene, Xiangzhou Yuan, Junting Pan","doi":"10.1007/s42773-024-00354-x","DOIUrl":"https://doi.org/10.1007/s42773-024-00354-x","url":null,"abstract":"<p>Anaerobic digestion technology, effective for sustainable waste management and renewable energy, but challenged by slow reaction rates and low biogas yields, could benefit from advancements in magnetic nanomaterials. This review explores the potential of magnetic nanomaterials, particularly magnetic biochar nanocomposites, to address these challenges by serving as electron conduits and providing essential iron. This review contributes a thorough overview of the application of magnetic nanoparticles loaded into biochar in anaerobic digestion and engages in a comprehensive discussion regarding the synthesis methods and characterization of various magnetic nanoparticles, elucidating their mechanisms of action in both the absence and presence of magnetic fields. Our review underscores the predominance of co-precipitation (53%) and commercially sourced nanoparticles (29%) as the main synthesis methods, with chemical reduction, pyrolysis, and green synthesis pathways less commonly utilized (8%, 5%, and 5%, respectively). Notably, pyrolysis is predominantly employed for synthesizing magnetic biochar nanocomposites, reflecting its prevalence in 100% of cases for this specific application. By offering a critical evaluation of the current state of knowledge and discussing the challenges and future directions for research in this field, this review can help researchers and practitioners better understand the potential of magnetic biochar nanocomposites for enhancing anaerobic digestion performance and ultimately advancing sustainable waste management and renewable energy production.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\u0000","PeriodicalId":8789,"journal":{"name":"Biochar","volume":"23 1","pages":""},"PeriodicalIF":12.7,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141506193","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Production and modifications of biochar to engineered materials and its application for environmental sustainability: a review 生物炭的生产和改性为工程材料及其在环境可持续性方面的应用:综述
IF 12.7 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Pub Date : 2024-06-21 DOI: 10.1007/s42773-024-00350-1
Gokulan Ravindiran, Sivarethinamohan Rajamanickam, Gorti Janardhan, Gasim Hayder, Avinash Alagumalai, Omid Mahian, Su Shiung Lam, Christian Sonne

Biochar, a carbon-rich material produced from biomass waste through thermal conversion, holds great environmental promise. This article offers a comprehensive overview of the various feedstocks used in biochar production, the different types of thermal degradation processes, biochar characterization, properties, modifications to engineered materials, and their applications in the environment. The quality of biochar, including surface area, pore size and volume, and functional group formation, is significantly influenced by the specific conditions under which thermal conversion takes place. Each of the diverse processes employed to produce biochar yields a distinct set of properties in the final product. In recent years, biochar has gained widespread recognition and utilization in diverse fields such as wastewater treatment, carbon sequestration, reduction of greenhouse gas emissions, biogas production, catalysis in biofuel industries, construction, and soil enhancement. In summary, biochar is a promising environmental mitigation tool to achieve a sustainable environment. In addition to its benefits, the application of biochar presents several challenges, including the selection of feedstocks, methods of biochar production, modifications to biochar, the properties of biochar, and the specific applications of biochar. The current review summarizes factors that could lead to significant advancements in future applications.

Graphical Abstract

生物炭是一种通过热转化从生物质废物中生产出来的富碳材料,在环保方面大有可为。本文全面概述了生物炭生产中使用的各种原料、不同类型的热降解过程、生物炭的表征、特性、对工程材料的改性及其在环境中的应用。生物炭的质量,包括表面积、孔隙大小和体积以及官能团的形成,受热转化的特定条件影响很大。生产生物炭所采用的每种工艺都会在最终产品中产生一系列不同的特性。近年来,生物炭在废水处理、碳封存、减少温室气体排放、沼气生产、生物燃料工业催化、建筑和土壤改良等多个领域得到了广泛的认可和应用。总之,生物炭是实现可持续环境的一种前景广阔的环境缓解工具。除了它的益处,生物炭的应用也面临着一些挑战,包括原料的选择、生物炭的生产方法、生物炭的改性、生物炭的特性以及生物炭的具体应用。本综述总结了可能导致未来应用取得重大进展的因素。
{"title":"Production and modifications of biochar to engineered materials and its application for environmental sustainability: a review","authors":"Gokulan Ravindiran, Sivarethinamohan Rajamanickam, Gorti Janardhan, Gasim Hayder, Avinash Alagumalai, Omid Mahian, Su Shiung Lam, Christian Sonne","doi":"10.1007/s42773-024-00350-1","DOIUrl":"https://doi.org/10.1007/s42773-024-00350-1","url":null,"abstract":"<p>Biochar, a carbon-rich material produced from biomass waste through thermal conversion, holds great environmental promise. This article offers a comprehensive overview of the various feedstocks used in biochar production, the different types of thermal degradation processes, biochar characterization, properties, modifications to engineered materials, and their applications in the environment. The quality of biochar, including surface area, pore size and volume, and functional group formation, is significantly influenced by the specific conditions under which thermal conversion takes place. Each of the diverse processes employed to produce biochar yields a distinct set of properties in the final product. In recent years, biochar has gained widespread recognition and utilization in diverse fields such as wastewater treatment, carbon sequestration, reduction of greenhouse gas emissions, biogas production, catalysis in biofuel industries, construction, and soil enhancement. In summary, biochar is a promising environmental mitigation tool to achieve a sustainable environment. In addition to its benefits, the application of biochar presents several challenges, including the selection of feedstocks, methods of biochar production, modifications to biochar, the properties of biochar, and the specific applications of biochar. The current review summarizes factors that could lead to significant advancements in future applications.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\u0000","PeriodicalId":8789,"journal":{"name":"Biochar","volume":"24 1","pages":""},"PeriodicalIF":12.7,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141506194","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced passivation of thallium, vanadium and arsenic in contaminated soils: critical role of Fe–Mn-biochar 增强受污染土壤中铊、钒和砷的钝化:铁锰生物炭的关键作用
IF 12.7 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Pub Date : 2024-06-20 DOI: 10.1007/s42773-024-00344-z
Pengyuan Deng, Wenhuan Yuan, Jin Wang, Liangzhong Li, Yuchen Zhou, Jingzi Beiyuan, Haofan Xu, Shunlong Jiang, Zicong Tan, Yurong Gao, Diyun Chen, Juan Liu

Thallium (Tl), vanadium (V) and arsenic (As) are considered as typical toxic elements of increased interest. Their accumulation in soils can pose a substantial health threat to human beings. In this study, Fe–Mn modified biochar (FMBC) was chemically constructed to immobilize Tl, V and As in contaminated soils. The results showed that compared with pristine biochar (BC), FMBC can achieve significantly higher passivation effects for the studied contaminated soils, which reduced the bioavailable Tl, V and As contents by 83.9%, 71.09% and 71.92%, respectively. The passivation of Tl, As, and V via FMBC application was partially attributed to a notable increase in pH, which enhances the availability of adsorptive sites. Further, the newly formed minerals, including cancrinite, gibbsite and Fe–Mn (hydr)oxides, serve as additional adsorbents, substantially reducing the mobility of Tl, V and As. Additionally, the oxidation of Tl(I) to Tl(III) by the Fe–Mn (hydr)oxide of FMBC significantly enhanced Tl immobilization, consequently diminishing its bioavailability. The findings suggest that significant environmental threats could be alleviated through the potential application of FMBC in treating Tl-As-V dominated contamination in soils, providing a new perspective for the sustainable utilization of industrially polluted soils.

Graphical Abstract

铊(Tl)、钒(V)和砷(As)被认为是典型的有毒元素,越来越受到人们的关注。它们在土壤中的积累会对人类健康造成严重威胁。在这项研究中,通过化学方法构建了铁锰改性生物炭(FMBC),以固定受污染土壤中的铅、钒和砷。结果表明,与原始生物炭(BC)相比,FMBC 对所研究污染土壤的钝化效果显著提高,生物可利用的 Tl、V 和 As 含量分别降低了 83.9%、71.09% 和 71.92%。施用 FMBC 对 Tl、As 和 V 的钝化作用部分归因于 pH 值的显著升高,这提高了吸附位点的可用性。此外,新形成的矿物(包括康松石、吉比特石和铁锰(氢)氧化物)作为额外的吸附剂,大大降低了 Tl、V 和 As 的流动性。此外,FMBC 的铁-锰(水合)氧化物将 Tl(I)氧化为 Tl(III),大大提高了 Tl 的固定性,从而降低了其生物利用率。研究结果表明,通过潜在应用 FMBC 来处理土壤中以 Tl-As-V 为主的污染,可以减轻对环境的重大威胁,为工业污染土壤的可持续利用提供了一个新的视角。
{"title":"Enhanced passivation of thallium, vanadium and arsenic in contaminated soils: critical role of Fe–Mn-biochar","authors":"Pengyuan Deng, Wenhuan Yuan, Jin Wang, Liangzhong Li, Yuchen Zhou, Jingzi Beiyuan, Haofan Xu, Shunlong Jiang, Zicong Tan, Yurong Gao, Diyun Chen, Juan Liu","doi":"10.1007/s42773-024-00344-z","DOIUrl":"https://doi.org/10.1007/s42773-024-00344-z","url":null,"abstract":"<p>Thallium (Tl), vanadium (V) and arsenic (As) are considered as typical toxic elements of increased interest. Their accumulation in soils can pose a substantial health threat to human beings. In this study, Fe–Mn modified biochar (FMBC) was chemically constructed to immobilize Tl, V and As in contaminated soils. The results showed that compared with pristine biochar (BC), FMBC can achieve significantly higher passivation effects for the studied contaminated soils, which reduced the bioavailable Tl, V and As contents by 83.9%, 71.09% and 71.92%, respectively. The passivation of Tl, As, and V via FMBC application was partially attributed to a notable increase in pH, which enhances the availability of adsorptive sites. Further, the newly formed minerals, including cancrinite, gibbsite and Fe–Mn (hydr)oxides, serve as additional adsorbents, substantially reducing the mobility of Tl, V and As. Additionally, the oxidation of Tl(I) to Tl(III) by the Fe–Mn (hydr)oxide of FMBC significantly enhanced Tl immobilization, consequently diminishing its bioavailability. The findings suggest that significant environmental threats could be alleviated through the potential application of FMBC in treating Tl-As-V dominated contamination in soils, providing a new perspective for the sustainable utilization of industrially polluted soils.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\u0000","PeriodicalId":8789,"journal":{"name":"Biochar","volume":"29 1","pages":""},"PeriodicalIF":12.7,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141529347","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High-efficiency remediation of Hg and Cd co-contaminated paddy soils by Fe–Mn oxide modified biochar and its microbial community responses 氧化铁-氧化锰改性生物炭对汞和镉共污染稻田土壤的高效修复及其微生物群落响应
IF 12.7 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Pub Date : 2024-06-05 DOI: 10.1007/s42773-024-00346-x
Tong Sun, Ge Gao, Wenhao Yang, Yuebing Sun, Qingqing Huang, Lin Wang, Xuefeng Liang

Fe–Mn oxide modified biochar (FMBC) was produced to explore its potential for remediation of Hg–Cd contaminated paddy soils. The results showed that the application of FMBC decreased the contents of bioavailable Hg and Cd by 41.49–81.85% and 19.47–33.02% in contrast to CK, while the amount of labile organic carbon (C) fractions and C-pool management index (CPMI) was increased under BC and FMBC treated soils, indicating the enhancement of soil C storage and nutrient cycling function. Dry weight of different parts of Oryza sativa L. was enhanced after the addition of BC and FMBC, and the contents of Fe and Mn in root iron–manganese plaques (IMP) were 1.46–2.06 and 6.72–19.35 times higher than those of the control groups. Hg and Cd contents in brown rice under the FMBC treatments were significantly reduced by 18.32–71.16% and 59.52–72.11% compared with the control. FMBC addition altered the composition and metabolism function of soil bacterial communities, especially increasing the abundance of keystone phyla, including Firmicutes, Proteobacteria and Actinobacteria. Partial least squares path modelling (PLSPM) revealed that the contents of Na2S2O3–Hg, DTPA–Cd and IMP were the key indicators affecting Hg and Cd accumulation in rice grains. These results demonstrate the simultaneous value of FMBC in remediation of Hg and Cd combined pollution and restoring soil fertility and biological productivity.

Graphical Abstract

研究人员生产了氧化铁-氧化锰改性生物炭(FMBC),以探索其修复受汞-镉污染的稻田土壤的潜力。结果表明,施用 FMBC 与施用 CK 相比,生物可利用的汞和镉含量分别降低了 41.49%-81.85%和 19.47%-33.02%,而在 BC 和 FMBC 处理的土壤中,可溶性有机碳(C)组分的数量和 C 池管理指数(CPMI)均有所增加,表明土壤的 C 储存和养分循环功能得到了增强。添加 BC 和 FMBC 后,大麦不同部位的干重均有所增加,根部铁锰斑块(IMP)中铁和锰的含量分别是对照组的 1.46-2.06 倍和 6.72-19.35 倍。与对照组相比,FMBC 处理糙米中的汞和镉含量分别显著降低了 18.32%-71.16% 和 59.52%-72.11%。添加 FMBC 改变了土壤细菌群落的组成和代谢功能,特别是增加了关键菌门的丰度,包括固氮菌、变形菌和放线菌。偏最小二乘路径模型(PLSPM)显示,Na2S2O3-汞、DTPA-镉和 IMP 的含量是影响水稻谷粒中汞和镉积累的关键指标。这些结果表明,FMBC 在修复汞和镉联合污染、恢复土壤肥力和生物生产力方面同时具有重要价值。 图文摘要
{"title":"High-efficiency remediation of Hg and Cd co-contaminated paddy soils by Fe–Mn oxide modified biochar and its microbial community responses","authors":"Tong Sun, Ge Gao, Wenhao Yang, Yuebing Sun, Qingqing Huang, Lin Wang, Xuefeng Liang","doi":"10.1007/s42773-024-00346-x","DOIUrl":"https://doi.org/10.1007/s42773-024-00346-x","url":null,"abstract":"<p>Fe–Mn oxide modified biochar (FMBC) was produced to explore its potential for remediation of Hg–Cd contaminated paddy soils. The results showed that the application of FMBC decreased the contents of bioavailable Hg and Cd by 41.49–81.85% and 19.47–33.02% in contrast to CK, while the amount of labile organic carbon (C) fractions and C-pool management index (CPMI) was increased under BC and FMBC treated soils, indicating the enhancement of soil C storage and nutrient cycling function. Dry weight of different parts of <i>Oryza sativa</i> L. was enhanced after the addition of BC and FMBC, and the contents of Fe and Mn in root iron–manganese plaques (IMP) were 1.46–2.06 and 6.72–19.35 times higher than those of the control groups. Hg and Cd contents in brown rice under the FMBC treatments were significantly reduced by 18.32–71.16% and 59.52–72.11% compared with the control. FMBC addition altered the composition and metabolism function of soil bacterial communities, especially increasing the abundance of keystone phyla, including <i>Firmicutes</i>, <i>Proteobacteria and Actinobacteria.</i> Partial least squares path modelling (PLSPM) revealed that the contents of Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub>–Hg, DTPA–Cd and IMP were the key indicators affecting Hg and Cd accumulation in rice grains. These results demonstrate the simultaneous value of FMBC in remediation of Hg and Cd combined pollution and restoring soil fertility and biological productivity.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\u0000","PeriodicalId":8789,"journal":{"name":"Biochar","volume":"43 1","pages":""},"PeriodicalIF":12.7,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141256524","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mikania micrantha Kunth and its derived biochar impacts on heavy metal bioavailability and siderophore-related genes during chicken manure composting 薇甘菊及其衍生生物炭在鸡粪堆肥过程中对重金属生物利用率和嗜苷酸相关基因的影响
IF 12.7 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Pub Date : 2024-06-04 DOI: 10.1007/s42773-024-00347-w
Yousif Abdelrahman Yousif Abdellah, Hong-Yu Chen, Shi-Wen Deng, Wan-Ting Li, Rong-Jie Ren, Xi Yang, Muhammad Shoaib Rana, Shan-Shan Sun, Jia-Jie Liu, Rui-Long Wang

Biochar can potentially reduce heavy metals (HMs) mobility and bioavailability during composting. However, siderophores secreted by functional microbes might lead to the re-mobilization of metals like Cu and Zn. Therefore, this study intended to explore the impacts of Mikania micrantha Kunth (MM) and MM-derived biochar (MMB) in the reduction of Cu and Zn bioavailability, and siderophore-related gene abundances during composting. Compared with MM and corn straw (CS) composts, a significant decline was noticed in the extractable and reducible Cu [(2.3 mg kg−1 + 12.1 mg kg−1), and (3.3 mg kg−1 + 14.6 mg kg−1)], and Zn [(103.1 mg kg−1 + 110.1 mg kg−1), and (109.6 mg kg−1 + 117.2 mg kg−1)] in MMB and corn straw biochar (CSB) composts, respectively. Besides, the lowest relative abundance of HMs-resistant bacteria particularly Corynebacterium (0.40%), Pseudomonas (0.46%), and Enterobacter (0.47%), was noted in MMB compost. Also, a significant increase in sesquiterpenoid and triterpenoid biosynthesis abundance (5.77%) accompanied by a reduction in the abundance of clusters related to siderophore transport, and siderophore transmembrane transporter activity was detected in MMB compost. Multivariate analysis labeled temperature, moisture content, total organic carbon, Corynebacterium, and Bacillus as the primary factors significantly correlated with the Cu and Zn bioavailability (− 0.90 ≤ r ≤ 0.90, P < 0.05). The structural equation model revealed that physicochemical parameters, microbial abundance, and siderophores exert a substantial influence on Cu and Zn bioavailability. Accordingly, MM and its derived biochar are recommended as an effective approach for accelerating Cu and Zn bioavailability reduction and managing the growth and distribution of invasive plants.

Graphical Abstract

在堆肥过程中,生物炭有可能降低重金属(HMs)的流动性和生物利用率。然而,功能微生物分泌的嗜硒酸盐可能会导致铜和锌等金属的再迁移。因此,本研究旨在探讨薇甘菊(MM)和薇甘菊衍生生物炭(MMB)在堆肥过程中对降低铜和锌生物利用率以及嗜硒酸相关基因丰度的影响。与 MM 和玉米秸秆(CS)堆肥相比,MMB 和玉米秸秆生物炭(CSB)堆肥中的可提取和可还原铜[(2.3 mg kg-1 + 12.1 mg kg-1)和(3.3 mg kg-1 + 14.6 mg kg-1)]和锌[(103.1 mg kg-1 + 110.1 mg kg-1)和(109.6 mg kg-1 + 117.2 mg kg-1)]分别显著下降。此外,MMB 堆肥中抗 HMs 细菌的相对丰度最低,尤其是棒状杆菌(0.40%)、假单胞菌(0.46%)和肠杆菌(0.47%)。此外,在 MMB 堆肥中还检测到倍半萜类和三萜类生物合成丰度(5.77%)的显著增加,同时与苷元转运相关的簇群丰度和苷元跨膜转运活性降低。多变量分析表明,温度、含水量、总有机碳、棒状杆菌和芽孢杆菌是与铜和锌生物利用率显著相关的主要因素(- 0.90 ≤ r ≤ 0.90, P <0.05)。结构方程模型显示,理化参数、微生物丰度和嗜硒物质对铜和锌的生物利用率有很大影响。因此,建议将 MM 及其衍生的生物炭作为加速降低铜和锌生物利用率以及管理入侵植物生长和分布的有效方法。
{"title":"Mikania micrantha Kunth and its derived biochar impacts on heavy metal bioavailability and siderophore-related genes during chicken manure composting","authors":"Yousif Abdelrahman Yousif Abdellah, Hong-Yu Chen, Shi-Wen Deng, Wan-Ting Li, Rong-Jie Ren, Xi Yang, Muhammad Shoaib Rana, Shan-Shan Sun, Jia-Jie Liu, Rui-Long Wang","doi":"10.1007/s42773-024-00347-w","DOIUrl":"https://doi.org/10.1007/s42773-024-00347-w","url":null,"abstract":"<p>Biochar can potentially reduce heavy metals (HMs) mobility and bioavailability during composting. However, siderophores secreted by functional microbes might lead to the re-mobilization of metals like Cu and Zn. Therefore, this study intended to explore the impacts of <i>Mikania micrantha</i> Kunth (MM) and MM-derived biochar (MMB) in the reduction of Cu and Zn bioavailability, and siderophore-related gene abundances during composting. Compared with MM and corn straw (CS) composts, a significant decline was noticed in the extractable and reducible Cu [(2.3 mg kg<sup>−1</sup> + 12.1 mg kg<sup>−1</sup>), and (3.3 mg kg<sup>−1</sup> + 14.6 mg kg<sup>−1</sup>)], and Zn [(103.1 mg kg<sup>−1</sup> + 110.1 mg kg<sup>−1</sup>), and (109.6 mg kg<sup>−1</sup> + 117.2 mg kg<sup>−1</sup>)] in MMB and corn straw biochar (CSB) composts, respectively. Besides, the lowest relative abundance of HMs-resistant bacteria particularly <i>Corynebacterium</i> (0.40%), <i>Pseudomonas</i> (0.46%), and <i>Enterobacter</i> (0.47%), was noted in MMB compost. Also, a significant increase in sesquiterpenoid and triterpenoid biosynthesis abundance (5.77%) accompanied by a reduction in the abundance of clusters related to siderophore transport, and siderophore transmembrane transporter activity was detected in MMB compost. Multivariate analysis labeled temperature, moisture content, total organic carbon, <i>Corynebacterium</i>, and <i>Bacillus</i> as the primary factors significantly correlated with the Cu and Zn bioavailability (− 0.90 ≤ r ≤ 0.90, <i>P</i> &lt; 0.05). The structural equation model revealed that physicochemical parameters, microbial abundance, and siderophores exert a substantial influence on Cu and Zn bioavailability. Accordingly, MM and its derived biochar are recommended as an effective approach for accelerating Cu and Zn bioavailability reduction and managing the growth and distribution of invasive plants.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\u0000","PeriodicalId":8789,"journal":{"name":"Biochar","volume":"26 1","pages":""},"PeriodicalIF":12.7,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141256520","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Maximizing the value of liquid products and minimizing carbon loss in hydrothermal processing of biomass: an evolution from carbonization to humification 在生物质水热处理过程中最大限度地提高液体产品的价值和减少碳损失:从碳化到腐殖化的演变
IF 12.7 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Pub Date : 2024-05-09 DOI: 10.1007/s42773-024-00334-1
Nader Marzban, Judy A. Libra, Vera Susanne Rotter, Christiane Herrmann, Kyoung S. Ro, Svitlana Filonenko, Thomas Hoffmann, Markus Antonietti

Hydrothermal carbonization (HTC) converts wet biomass into hydrochar and a process liquid, but aromatic compounds in the products have been reported as a roadblock for soil applications as they can inhibit germination, plant growth, and soil microbial activity. Here, we compared HTC and hydrothermal humification (HTH) of cow manure digestate while varying the initial alkaline content by adding KOH. HTH converted 37.5 wt% of the feedstock to artificial humic acids (A-HAs) found in both solid and liquid, twice that of HTC. HTH reduced phenolic and furanic aromatic compounds by over 70% in solids and 90% in liquids. The A-HAs in HTH resemble natural humic acids (N-HA), based on FTIR, UV–vis spectra, and CHN and XRD analysis. The HTH liquid possesses 60% higher total organic carbon (TOC) than HTC. Although one-third of TOC can be precipitated as A-HA, a high TOC concentration remains in the liquid, which is shown to be mainly organic acids. Therefore, we also evaluated the HTC and HTH liquids for anaerobic biomethane production, and found that compared to the original cow manure digestate, the HTH liquids increased methane yield by 110.3 to 158.6%, a significant enhancement relative to the 17.2% increase seen with HTC liquid. The strong reduction in organic acids during biogas production from HTH liquid indicates the potential for converting soluble byproducts into methane, while maintaining high A-HAs levels in the solid product.

Graphical Abstract

水热碳化(HTC)可将湿生物质转化为水炭和加工液,但据报道,产品中的芳香族化合物会抑制发芽、植物生长和土壤微生物活动,是土壤应用的障碍。在此,我们比较了牛粪沼渣的 HTC 和水热腐殖化 (HTH),同时通过添加 KOH 改变初始碱性含量。HTH 将 37.5% 的原料转化为固体和液体中的人工腐植酸(A-HAs),是 HTC 的两倍。HTH 在固体中减少了 70% 以上的酚类和呋喃芳香化合物,在液体中减少了 90%。根据傅立叶变换红外光谱、紫外-可见光谱、碳氮化合物和 XRD 分析,HTH 中的 A-HAs 与天然腐植酸(N-HA)相似。HTH 液体的总有机碳(TOC)比 HTC 高 60%。虽然三分之一的 TOC 可以沉淀为 A-HA,但液体中仍残留有较高浓度的 TOC,其中主要是有机酸。因此,我们还评估了 HTC 和 HTH 液体的厌氧生物甲烷产量,结果发现,与原始牛粪沼渣相比,HTH 液体的甲烷产量提高了 110.3% 到 158.6%,与 HTC 液体的 17.2% 相比,有了显著提高。在使用 HTH 液体生产沼气的过程中,有机酸大量减少,这表明在将可溶性副产品转化为甲烷的同时,还能在固体产品中保持较高的 A-HAs 水平。
{"title":"Maximizing the value of liquid products and minimizing carbon loss in hydrothermal processing of biomass: an evolution from carbonization to humification","authors":"Nader Marzban, Judy A. Libra, Vera Susanne Rotter, Christiane Herrmann, Kyoung S. Ro, Svitlana Filonenko, Thomas Hoffmann, Markus Antonietti","doi":"10.1007/s42773-024-00334-1","DOIUrl":"https://doi.org/10.1007/s42773-024-00334-1","url":null,"abstract":"<p>Hydrothermal carbonization (HTC) converts wet biomass into hydrochar and a process liquid, but aromatic compounds in the products have been reported as a roadblock for soil applications as they can inhibit germination, plant growth, and soil microbial activity. Here, we compared HTC and hydrothermal humification (HTH) of cow manure digestate while varying the initial alkaline content by adding KOH. HTH converted 37.5 wt% of the feedstock to artificial humic acids (A-HAs) found in both solid and liquid, twice that of HTC. HTH reduced phenolic and furanic aromatic compounds by over 70% in solids and 90% in liquids. The A-HAs in HTH resemble natural humic acids (N-HA), based on FTIR, UV–vis spectra, and CHN and XRD analysis. The HTH liquid possesses 60% higher total organic carbon (TOC) than HTC. Although one-third of TOC can be precipitated as A-HA, a high TOC concentration remains in the liquid, which is shown to be mainly organic acids. Therefore, we also evaluated the HTC and HTH liquids for anaerobic biomethane production, and found that compared to the original cow manure digestate, the HTH liquids increased methane yield by 110.3 to 158.6%, a significant enhancement relative to the 17.2% increase seen with HTC liquid. The strong reduction in organic acids during biogas production from HTH liquid indicates the potential for converting soluble byproducts into methane, while maintaining high A-HAs levels in the solid product.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\u0000","PeriodicalId":8789,"journal":{"name":"Biochar","volume":"79 1","pages":""},"PeriodicalIF":12.7,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140925667","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Biochar
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1