Pub Date : 2024-08-06DOI: 10.1007/s42773-024-00356-9
Dili daer, Lei Luo, Yewen Shang, Jiaxiao Wang, Chengzhen Wu, Zhengang Liu
Co-hydrothermal carbonization (co-HTC) of phosphorus rock (PR) and corn straw (CS) was investigated to prepare hydrochar-based materials as soil conditioners, focusing on the morphological transformation and solid–liquid migration of carbon and phosphorus. Various analytical methods, including elemental analysis, chemical quantification, FT-IR, XRD, 3D-EEM, TG, and XANES, were used to understand the synergistic interactions of PR and CS during co-HTC and determine the properties of the resultant products. The results indicated the acidic solution and humic acid-like substances produced by HTC of CS reduced the crystallinity of the PR and served as the activating agent for PR, allowing the PR to be easily dissolved and reconstituted, producing calcium carbonate and apatite-like materials, and the formation of C–O–PO3, C–PO3, C=O, and O=C–O chemical bonds. At 220 °C, adding 5% PR significantly promoted a 10.3% rise in the yield of CS hydrochar, a 4.3% rise in carbon recovery of CS, and a 4.8% rise in carbon sequestration potential of CS. The formation of Ca–P was notably promoted and the content of AP in co-HTC hydrochar was up to 89.9%, with 39% Hydro-P and 33% CaHPO4. In the case of artificial humic acid (HAa), its content was also remarkably increased by 5.9% in the hydrochar by co-HTC. In addition, the hydrochar produced by co-HTC of CS and PR was composed of carbon with an increased aromatic degree, rich organic matter, and biologically effective mineral nutrient elements and exhibited high stability. The present study provided a promising approach for value-added utilization of waste biomass and low-grade PR towards soil application.
{"title":"Co-hydrothermal carbonization of waste biomass and phosphate rock: promoted carbon sequestration and enhanced phosphorus bioavailability","authors":"Dili daer, Lei Luo, Yewen Shang, Jiaxiao Wang, Chengzhen Wu, Zhengang Liu","doi":"10.1007/s42773-024-00356-9","DOIUrl":"https://doi.org/10.1007/s42773-024-00356-9","url":null,"abstract":"<p>Co-hydrothermal carbonization (co-HTC) of phosphorus rock (PR) and corn straw (CS) was investigated to prepare hydrochar-based materials as soil conditioners, focusing on the morphological transformation and solid–liquid migration of carbon and phosphorus. Various analytical methods, including elemental analysis, chemical quantification, FT-IR, XRD, 3D-EEM, TG, and XANES, were used to understand the synergistic interactions of PR and CS during co-HTC and determine the properties of the resultant products. The results indicated the acidic solution and humic acid-like substances produced by HTC of CS reduced the crystallinity of the PR and served as the activating agent for PR, allowing the PR to be easily dissolved and reconstituted, producing calcium carbonate and apatite-like materials, and the formation of C–O–PO<sub>3</sub>, C–PO<sub>3</sub>, C=O, and O=C–O chemical bonds. At 220 °C, adding 5% PR significantly promoted a 10.3% rise in the yield of CS hydrochar, a 4.3% rise in carbon recovery of CS, and a 4.8% rise in carbon sequestration potential of CS. The formation of Ca–P was notably promoted and the content of AP in co-HTC hydrochar was up to 89.9%, with 39% Hydro-P and 33% CaHPO<sub>4</sub>. In the case of artificial humic acid (HAa), its content was also remarkably increased by 5.9% in the hydrochar by co-HTC. In addition, the hydrochar produced by co-HTC of CS and PR was composed of carbon with an increased aromatic degree, rich organic matter, and biologically effective mineral nutrient elements and exhibited high stability. The present study provided a promising approach for value-added utilization of waste biomass and low-grade PR towards soil application.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\u0000","PeriodicalId":8789,"journal":{"name":"Biochar","volume":"56 1","pages":""},"PeriodicalIF":12.7,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141930705","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
To reveal the influence of the diversity of precursors on the formation of environmental persistent free radicals (EPFRs), pomelo peel (PP) and its physically divided portion, pomelo cuticle (PC), and white fiber (WF) were used as precursors to prepare six hydrochars: PPH-Fe, PCH-Fe, WFH-Fe, PPH, PCH, and WFH with and without Fe(III) addition during hydrothermal carbonization (HTC). PPH-Fe and WFH-Fe had higher EPFRs content (9.11 × 1018 and 8.25 × 1018 spins·g−1) compared to PPH and WFH (3.33 × 1018 and 2.96 × 1018 spins·g−1), indicating that iron-doping favored EPFRs formation. However, PCH-Fe had lower EPFRs content (2.78 × 1018 spins·g−1) than PCH (7.95 × 1018 spins·g−1), possibly due to excessive iron leading to the consumption of the generated EPFRs. For another reason, the required Fe(III) amount for EPFRs formation might vary among different precursors. PC has a lower concentration of phenolic compounds but 68–97% fatty acids, while WF and PP are rich in cellulose and lignin. In the Fenton-like reaction, oxygen-centered radicals of hydrochar played a significant role in activating H2O2 and efficiently degrading bisphenol A (BPA). Mechanisms of reactive oxygen species (ROS) generation in hydrochar/H2O2 system were proposed. EPFRs on hydrochar activate H2O2 via electron transfer, creating ·OH and 1O2, leading to BPA degradation. More importantly, the embedded EPFRs on the hydrochar's inner surface contributed to the prolonged Fenton-like reactivity of PPH-Fe stored for 45 days. This study demonstrates that by optimizing precursor selection and iron doping, hydrochars can be engineered to maximize their EPFRs content and reactivity, providing a cost-effective solution for the degradation of hazardous pollutants.
{"title":"Activating Fenton-like reaction by hydrochars containing persistent free radicals derived from various pomelo peel components","authors":"Chaoyang Zhang, Zili Jiang, Wanxue Sun, Yuyuan Tang, Zhanying Zhang, Changrong Shi, Xiuxiu Ruan","doi":"10.1007/s42773-024-00362-x","DOIUrl":"https://doi.org/10.1007/s42773-024-00362-x","url":null,"abstract":"<p>To reveal the influence of the diversity of precursors on the formation of environmental persistent free radicals (EPFRs), pomelo peel (PP) and its physically divided portion, pomelo cuticle (PC), and white fiber (WF) were used as precursors to prepare six hydrochars: PPH-Fe, PCH-Fe, WFH-Fe, PPH, PCH, and WFH with and without Fe(III) addition during hydrothermal carbonization (HTC). PPH-Fe and WFH-Fe had higher EPFRs content (9.11 × 10<sup>18</sup> and 8.25 × 10<sup>18</sup> spins·g<sup>−1</sup>) compared to PPH and WFH (3.33 × 10<sup>18</sup> and 2.96 × 10<sup>18</sup> spins·g<sup>−1</sup>), indicating that iron-doping favored EPFRs formation. However, PCH-Fe had lower EPFRs content (2.78 × 10<sup>18</sup> spins·g<sup>−1</sup>) than PCH (7.95 × 10<sup>18</sup> spins·g<sup>−1</sup>), possibly due to excessive iron leading to the consumption of the generated EPFRs. For another reason, the required Fe(III) amount for EPFRs formation might vary among different precursors. PC has a lower concentration of phenolic compounds but 68–97% fatty acids, while WF and PP are rich in cellulose and lignin. In the Fenton-like reaction, oxygen-centered radicals of hydrochar played a significant role in activating H<sub>2</sub>O<sub>2</sub> and efficiently degrading bisphenol A (BPA). Mechanisms of reactive oxygen species (ROS) generation in hydrochar/H<sub>2</sub>O<sub>2</sub> system were proposed. EPFRs on hydrochar activate H<sub>2</sub>O<sub>2</sub> via electron transfer, creating ·OH and <sup>1</sup>O<sub>2</sub>, leading to BPA degradation. More importantly, the embedded EPFRs on the hydrochar's inner surface contributed to the prolonged Fenton-like reactivity of PPH-Fe stored for 45 days. This study demonstrates that by optimizing precursor selection and iron doping, hydrochars can be engineered to maximize their EPFRs content and reactivity, providing a cost-effective solution for the degradation of hazardous pollutants.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>\u0000","PeriodicalId":8789,"journal":{"name":"Biochar","volume":"87 1","pages":""},"PeriodicalIF":12.7,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141930706","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Despite fertilization efforts, phosphorus (P) availability in soils remains a major constraint to global plant productivity. Soil incorporation of biochar could promote soil P availability but its effects remain uncertain. To attain further improvements in soil P availability with biochar, we developed, characterized, and evaluated magnesium-oxide (MgO) and sepiolite (Mg4Si6O15(OH)2·6H2O)-functionalized biochars with optimized P retention/release capacity. Field-based application of these biochars for improving P availability and their mechanisms during three growth stages of maize was investigated. We further leveraged next-generation sequencing to unravel their impacts on the plant growth-stage shifts in soil functional genes regulating P availability. Results showed insignificant variation in P availability between single super phosphate fertilization (F) and its combination with raw biochar (BF). However, the occurrence of Mg-bound minerals on the optimized biochars’ surface adjusted its surface charges and properties and improved the retention and slow release of inorganic P. Compared to BF, available P (AP) was 26.5% and 19.1% higher during the 12-leaf stage and blister stage, respectively, under MgO-optimized biochar + F treatment (MgOBF), and 15.5% higher under sepiolite-biochar + F (SBF) during maize physiological maturity. Cumulatively, AP was 15.6% and 13.2% higher in MgOBF and SBF relative to BF. Hence, plant biomass, grain yield, and P uptake were highest in MgOBF and SBF, respectively at harvest. Optimized-biochar amendment stimulated microbial 16SrRNA gene diversity and suppressed the expression of P starvation response and P uptake and transport-related genes while stimulating P solubilization and mineralization genes. Thus, the optimized biochars promoted P availability via the combined processes of slow-release of retained phosphates, while inducing the microbial solubilization and mineralization of inorganic and organic P, respectively. Our study advances strategies for reducing cropland P limitation and reveals the potential of optimized biochars for improving P availability on the field scale.
{"title":"Magnesium-doped biochars increase soil phosphorus availability by regulating phosphorus retention, microbial solubilization and mineralization","authors":"Muhammed Mustapha Ibrahim, Huiying Lin, Zhaofeng Chang, Zhimin Li, Asif Riaz, Enqing Hou","doi":"10.1007/s42773-024-00360-z","DOIUrl":"https://doi.org/10.1007/s42773-024-00360-z","url":null,"abstract":"<p>Despite fertilization efforts, phosphorus (P) availability in soils remains a major constraint to global plant productivity. Soil incorporation of biochar could promote soil P availability but its effects remain uncertain. To attain further improvements in soil P availability with biochar, we developed, characterized, and evaluated magnesium-oxide (MgO) and sepiolite (Mg<sub>4</sub>Si<sub>6</sub>O<sub>15</sub>(OH)<sub>2</sub>·6H<sub>2</sub>O)-functionalized biochars with optimized P retention/release capacity. Field-based application of these biochars for improving P availability and their mechanisms during three growth stages of maize was investigated. We further leveraged next-generation sequencing to unravel their impacts on the plant growth-stage shifts in soil functional genes regulating P availability. Results showed insignificant variation in P availability between single super phosphate fertilization (F) and its combination with raw biochar (BF). However, the occurrence of Mg-bound minerals on the optimized biochars’ surface adjusted its surface charges and properties and improved the retention and slow release of inorganic P. Compared to BF, available P (AP) was 26.5% and 19.1% higher during the 12-leaf stage and blister stage, respectively, under MgO-optimized biochar + F treatment (MgOBF), and 15.5% higher under sepiolite-biochar + F (SBF) during maize physiological maturity. Cumulatively, AP was 15.6% and 13.2% higher in MgOBF and SBF relative to BF. Hence, plant biomass, grain yield, and P uptake were highest in MgOBF and SBF, respectively at harvest. Optimized-biochar amendment stimulated microbial 16SrRNA gene diversity and suppressed the expression of P starvation response and P uptake and transport-related genes while stimulating P solubilization and mineralization genes. Thus, the optimized biochars promoted P availability via the combined processes of slow-release of retained phosphates, while inducing the microbial solubilization and mineralization of inorganic and organic P, respectively. Our study advances strategies for reducing cropland P limitation and reveals the potential of optimized biochars for improving P availability on the field scale.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\u0000","PeriodicalId":8789,"journal":{"name":"Biochar","volume":"4 1","pages":""},"PeriodicalIF":12.7,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141737821","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-08DOI: 10.1007/s42773-024-00357-8
Daniela Moloeznik Paniagua, Lina Maja Marie Krenz, Judy A. Libra, Nathalie Korf, Vera Susanne Rotter
The use of beach-cast macroalgae as a fertilizer (F) or soil amendment (SA) is coming back into focus, due to its highly efficient transformation of CO2, nutrients, salts and minerals from its aqueous surroundings into biomass. This research studied the hydrothermal carbonization (HTC) of Fucus vesiculosus macroalgae to hydrochar and evaluated its feasibility for use in soil applications. F. vesiculosus was submitted to HTC following a full factorial design of experiments with three HTC process parameters varied to assess their impact on the hydrochars: temperature (T: 160, 190, 220 °C), solid content (%So: 20, 35%), and process water recirculation (PWrec: yes and no). In general, F. vesiculosus and its hydrochars were rich in nutrients, but also contained regulated heavy metals. Investigation of the partitioning behavior of inorganic elements between the hydrochars and process water showed that heavy metals like Cr, Pb, Co and Cu tended to accumulate in the hydrochar, unaffected by HTC conditions. Nutrients such as P, N, B, and Mn were primarily found in the hydrochar and could be partially influenced to transfer to process water by changing %So and T. The correlation between the mass fractions of 22 elements in the hydrochar and HTC process parameters was studied. T was the most influential parameter, showing a significant positive correlation for eleven elements. %So and PWrec showed inconsistent effects on different elements. When process water was recirculated, some elements decreased (Ca, Cd, Fe) while others increased (K, Na, B, N) in the hydrochar. Assessment against various regulations and standards for F and SA revealed that F. vesiculosus complied with Cd limit values for most rules including the EURF and B, and was regulated only in the RAL for SA, over the limit value. In contrast, the limit value of Cd for both F and SA applications was surpassed in the 13 hydrochars. The contents of N, P, K, S, and Na in the feedstock and hydrochars complied with European F and SA rules, while they were too high for German rules on SA. The other limits for F rules were achieved (under certain HTC process parameters) except for P (lower than the requirements in F for F. vesiculosus and its hydrochars).
Graphical Abstract
由于滩涂大型藻类能高效地将水环境中的二氧化碳、养分、盐分和矿物质转化为生物质,因此其作为肥料(F)或土壤改良剂(SA)的用途再次受到关注。本研究对褐藻(Fucus vesiculosus)大型藻类的水热碳化(HTC)过程进行了研究,并评估了其在土壤应用中的可行性。在对 F. vesiculosus 进行水热碳化时,采用了全因子实验设计,改变了三个水热碳化工艺参数,以评估它们对水炭的影响:温度(T:160、190、220 °C)、固体含量(%So:20、35%)和工艺水再循环(PWrec:是和否)。总体而言,F. vesiculosus 及其水合赭石富含营养物质,但也含有受管制的重金属。无机元素在水包炭和工艺用水之间的分配行为调查显示,重金属(如铬、铅、钴和铜)倾向于在水包炭中积累,不受 HTC 条件的影响。养分(如 P、N、B 和 Mn)主要存在于水包炭中,可以通过改变 %So 和 T 来部分影响其向工艺水的转移。T 是影响最大的参数,与 11 种元素呈显著正相关。%So 和 PWrec 对不同元素的影响不一致。当工艺水再循环时,水炭中的某些元素会减少(钙、镉、铁),而其他元素则会增加(钾、鈉、硼、氮)。根据有关 F 和 SA 的各种规定和标准进行的评估显示,F. vesiculosus 符合大多数规定(包括 EURF 和 B)中的镉限值,仅在 SA 的 RAL 中受到规定,超过了限值。相比之下,13 种水螯合态氮和 SA 的镉含量都超过了限值。原料和水煤浆中 N、P、K、S 和 Na 的含量符合欧洲焚烧和脱硫规则,但在德国脱硫规则中则过高。除 P 外(低于 F. vesiculosus 及其水煤浆的 F. 要求),其他均达到了 F 规则的限制(在某些 HTC 工艺参数下)。
{"title":"Towards a high-quality fertilizer based on algae residues treated via hydrothermal carbonization. Trends on how process parameters influence inorganics","authors":"Daniela Moloeznik Paniagua, Lina Maja Marie Krenz, Judy A. Libra, Nathalie Korf, Vera Susanne Rotter","doi":"10.1007/s42773-024-00357-8","DOIUrl":"https://doi.org/10.1007/s42773-024-00357-8","url":null,"abstract":"<p>The use of beach-cast macroalgae as a fertilizer (F) or soil amendment (SA) is coming back into focus, due to its highly efficient transformation of CO<sub>2</sub>, nutrients, salts and minerals from its aqueous surroundings into biomass. This research studied the hydrothermal carbonization (HTC) of <i>Fucus vesiculosus</i> macroalgae to hydrochar and evaluated its feasibility for use in soil applications. <i>F. vesiculosus</i> was submitted to HTC following a full factorial design of experiments with three HTC process parameters varied to assess their impact on the hydrochars: temperature (<i>T</i>: 160, 190, 220 °C), solid content (<i>%So</i>: 20, 35%), and process water recirculation (<i>PWrec</i>: yes and no). In general, <i>F. vesiculosus</i> and its hydrochars were rich in nutrients, but also contained regulated heavy metals. Investigation of the partitioning behavior of inorganic elements between the hydrochars and process water showed that heavy metals like Cr, Pb, Co and Cu tended to accumulate in the hydrochar, unaffected by HTC conditions. Nutrients such as P, N, B, and Mn were primarily found in the hydrochar and could be partially influenced to transfer to process water by changing <i>%So</i> and <i>T</i>. The correlation between the mass fractions of 22 elements in the hydrochar and HTC process parameters was studied. <i>T</i> was the most influential parameter, showing a significant positive correlation for eleven elements. <i>%So</i> and <i>PWrec</i> showed inconsistent effects on different elements. When process water was recirculated, some elements decreased (Ca, Cd, Fe) while others increased (K, Na, B, N) in the hydrochar. Assessment against various regulations and standards for F and SA revealed that <i>F. vesiculosus</i> complied with Cd limit values for most rules including the EURF and B, and was regulated only in the RAL for SA, over the limit value. In contrast, the limit value of Cd for both F and SA applications was surpassed in the 13 hydrochars. The contents of N, P, K, S, and Na in the feedstock and hydrochars complied with European F and SA rules, while they were too high for German rules on SA. The other limits for F rules were achieved (under certain HTC process parameters) except for P (lower than the requirements in F for <i>F. vesiculosus</i> and its hydrochars).</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\u0000","PeriodicalId":8789,"journal":{"name":"Biochar","volume":"25 1","pages":""},"PeriodicalIF":12.7,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141567204","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-03DOI: 10.1007/s42773-024-00359-6
Renjie Ruan, Hans Lambers, Yaosheng Wang
The impact of biochar application on plant performance under drought stress necessitates a comprehensive understanding of biochar–soil interaction, root growth, and plant physiological processes. Therefore, pot experiments were conducted to assess the effects of biochar on plant responses to drought stress at the seedling stage. Two contrasting maize genotypes (drought-sensitive KN5585 vs. -tolerant Mo17) were subjected to biochar application under drought stress conditions. The results indicated that biochar application decreased soil exchangeable Na+ and Ca2+ contents while increased soil exchangeable K+ content (2.7-fold) and electrical conductivity (4.0-fold), resulting in an elevated leaf sap K+ concentration in both maize genotypes. The elevated K+ concentration with biochar application increased root apoplastic pH in the drought-sensitive KN5585, but not in the drought-tolerant Mo17, which stimulated the activation of H+-ATPase and H+ efflux in KN5585 roots. Apoplast alkalinization of the drought-sensitive KN5585 resulting from biochar application further inhibited root growth by 30.7%, contributing to an improvement in water potential, a reduction in levels of O2–, H2O2, T-AOC, SOD, and POD, as well as the down-regulation of genes associated with drought resistance in KN5585 roots. In contrast, biochar application increased leaf sap osmolality and provided osmotic protection for the drought-tolerant Mo17, which was associated with trehalose accumulation in Mo17 roots. Biochar application improved sucrose utilization and circadian rhythm of Mo17 roots, and increased fresh weight under drought stress. This study suggests that biochar application has the potential to enhance plant drought tolerance, which is achieved through the inhibition of root growth in sensitive plants and the enhancement of osmotic protection in tolerant plants, respectively.
{"title":"Comparative responses of two maize genotypes with contrasting drought tolerance to biochar application","authors":"Renjie Ruan, Hans Lambers, Yaosheng Wang","doi":"10.1007/s42773-024-00359-6","DOIUrl":"https://doi.org/10.1007/s42773-024-00359-6","url":null,"abstract":"<p>The impact of biochar application on plant performance under drought stress necessitates a comprehensive understanding of biochar–soil interaction, root growth, and plant physiological processes. Therefore, pot experiments were conducted to assess the effects of biochar on plant responses to drought stress at the seedling stage. Two contrasting maize genotypes (drought-sensitive KN5585 vs. -tolerant Mo17) were subjected to biochar application under drought stress conditions. The results indicated that biochar application decreased soil exchangeable Na<sup>+</sup> and Ca<sup>2+</sup> contents while increased soil exchangeable K<sup>+</sup> content (2.7-fold) and electrical conductivity (4.0-fold), resulting in an elevated leaf sap K<sup>+</sup> concentration in both maize genotypes. The elevated K<sup>+</sup> concentration with biochar application increased root apoplastic pH in the drought-sensitive KN5585, but not in the drought-tolerant Mo17, which stimulated the activation of H<sup>+</sup>-ATPase and H<sup>+</sup> efflux in KN5585 roots. Apoplast alkalinization of the drought-sensitive KN5585 resulting from biochar application further inhibited root growth by 30.7%, contributing to an improvement in water potential, a reduction in levels of O<sub>2</sub><sup>–</sup>, H<sub>2</sub>O<sub>2</sub>, T-AOC, SOD, and POD, as well as the down-regulation of genes associated with drought resistance in KN5585 roots. In contrast, biochar application increased leaf sap osmolality and provided osmotic protection for the drought-tolerant Mo17, which was associated with trehalose accumulation in Mo17 roots. Biochar application improved sucrose utilization and circadian rhythm of Mo17 roots, and increased fresh weight under drought stress. This study suggests that biochar application has the potential to enhance plant drought tolerance, which is achieved through the inhibition of root growth in sensitive plants and the enhancement of osmotic protection in tolerant plants, respectively.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\u0000","PeriodicalId":8789,"journal":{"name":"Biochar","volume":"14 1","pages":""},"PeriodicalIF":12.7,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141520756","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-02DOI: 10.1007/s42773-024-00358-7
Rabia Rehman, Javed Iqbal, Muhammad Saif Ur Rehman, Shanawar Hamid, Yuze Wang, Kashif Rasool, Tahir Fazal
Microalgae technology is a viable solution for environmental conservation (carbon capture and wastewater treatment) and energy production. However, the nutrient cost, slow-kinetics, and low biosorption capacity of microalgae hindered its application. To overcome them, algal-biochar (BC) can be integrated with microalgae to treat textile wastewater (TWW) due to its low cost, its ability to rapidly adsorb pollutants, and its ability to serve as a nutrient source for microalgal-growth to capture CO2 and biodiesel production. Chlorella vulgaris (CV) and algal-BC were combined in this work to assess microalgal growth, carbon capture, TWW bioremediation, and biodiesel production. Results showed the highest optical density (3.70 ± 0.07 OD680), biomass productivity (42.31 ± 0.50 mg L−1 d−1), and dry weight biomass production (255.11 ± 6.01 mg L−1) in an integrated system of CV-BC-TWW by capturing atmospheric CO2 (77.57 ± 2.52 mg L−1 d−1). More than 99% bioremediation (removal of MB-pollutant, COD, nitrates, and phosphates) of TWW was achieved in CV-BC-TWW system due to biosorption and biodegradation processes. The addition of algal-BC and CV microalgae to TWW not only enhanced the algal growth but also increased the bioremediation of TWW and biodiesel content. The highest fatty acid methylesters (biodiesel) were also produced, up to 76.79 ± 2.01 mg g−1 from CV-BC-TWW cultivated-biomass. Biodiesel’s oxidative stability and low-temperature characteristics are enhanced by the presence of palmitoleic (C16:1) and linolenic (C18:3) acids. Hence, this study revealed that the integration of algal-biochar, as a biosorbent and source of nutrients, with living-microalgae offers an efficient, economical, and sustainable approach for microalgae growth, CO2 fixation, TWW treatment, and biodiesel production.
{"title":"Algal-biochar and Chlorella vulgaris microalgae: a sustainable approach for textile wastewater treatment and biodiesel production","authors":"Rabia Rehman, Javed Iqbal, Muhammad Saif Ur Rehman, Shanawar Hamid, Yuze Wang, Kashif Rasool, Tahir Fazal","doi":"10.1007/s42773-024-00358-7","DOIUrl":"https://doi.org/10.1007/s42773-024-00358-7","url":null,"abstract":"<p>Microalgae technology is a viable solution for environmental conservation (carbon capture and wastewater treatment) and energy production. However, the nutrient cost, slow-kinetics, and low biosorption capacity of microalgae hindered its application. To overcome them, algal-biochar (BC) can be integrated with microalgae to treat textile wastewater (TWW) due to its low cost, its ability to rapidly adsorb pollutants, and its ability to serve as a nutrient source for microalgal-growth to capture CO<sub>2</sub> and biodiesel production. <i>Chlorella vulgaris</i> (CV) and algal-BC were combined in this work to assess microalgal growth, carbon capture, TWW bioremediation, and biodiesel production. Results showed the highest optical density (3.70 ± 0.07 OD<sub>680</sub>), biomass productivity (42.31 ± 0.50 mg L<sup>−1</sup> d<sup>−1</sup>), and dry weight biomass production (255.11 ± 6.01 mg L<sup>−1</sup>) in an integrated system of CV-BC-TWW by capturing atmospheric CO<sub>2</sub> (77.57 ± 2.52 mg L<sup>−1</sup> d<sup>−1</sup>). More than 99% bioremediation (removal of MB-pollutant, COD, nitrates, and phosphates) of TWW was achieved in CV-BC-TWW system due to biosorption and biodegradation processes. The addition of algal-BC and CV microalgae to TWW not only enhanced the algal growth but also increased the bioremediation of TWW and biodiesel content. The highest fatty acid methylesters (biodiesel) were also produced, up to 76.79 ± 2.01 mg g<sup>−1</sup> from CV-BC-TWW cultivated-biomass. Biodiesel’s oxidative stability and low-temperature characteristics are enhanced by the presence of palmitoleic (C16:1) and linolenic (C18:3) acids. Hence, this study revealed that the integration of algal-biochar, as a biosorbent and source of nutrients, with living-microalgae offers an efficient, economical, and sustainable approach for microalgae growth, CO<sub>2</sub> fixation, TWW treatment, and biodiesel production.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\u0000","PeriodicalId":8789,"journal":{"name":"Biochar","volume":"4 1","pages":""},"PeriodicalIF":12.7,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141506191","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-25DOI: 10.1007/s42773-024-00353-y
Licheng Ji, Zhongpu Yu, Qi Cao, Xiangyang Gui, Xingjun Fan, Chengcheng Wei, Fei Jiang, Jie Wang, Fanbin Meng, Feiyue Li, Jianfei Wang
Hydrothermal carbonization (HTC) has been regarded as a promising technique for turning wet biomass into hydrochar due to its low energy consumption, low exhaust gas emissions, etc. In addition, hydrochar is an important source of dissolved organic matter (DOM), which plays a crucial part in the migration and destiny of pollutants in the environmental medium. However, there are limited studies that focus on the factors that influence the formation of DOM in hydrochar, such as hydrothermal temperature. Therefore, the current study comprehensively characterized the optical properties of DOM within hydrochar derived from sawdust (HDOM) under different hydrothermal temperatures (150–300 °C) by Ultraviolet–visible (UV–Vis) and fluorescence spectroscopy, as well as its complexation characteristic with Cu(II). The findings revealed that the organic carbon content of HDOM reached a peak of 37.3 mg L−1 when the temperature rose to 240 °C and then decreased as the temperature increased. UV–Vis spectroscopy analysis showed that the absorption capacity of HDOM at 275 nm increases with temperature and reaches a maximum value at 240 °C, indicating that high temperature promotes the formation of monocyclic aromatic compounds. High temperature enhances the aromaticity, hydrophobicity, and humification degree of HDOM, thus improving its stability and aromaticity. The E3/E4 ratios are all greater than 3.5, confirming that the main component of HDOM is fulvic acid, which corresponds to 3D-EEM and Pearson's correlation coefficient analysis. The humification index (HIX) of HDOM increased with the rise in hydrothermal temperature (150–240 °C), as observed by the three-dimensional excitation-emission matrix spectroscopy (3D-EEMs). After reaching its peak at 240 °C, the HIX value gradually dropped in line with the trend of the DOC change. Moreover, the bioavailability (BIX) value of DOM was all high and greater than 1, indicating all the HDOM are readily bioavailable. Two microbial humic substances (C1 and C4), a humic-like substance (C2), and a protein-like substance (C3) were discovered in DOM by integrating 3D-EEMs with parallel factor analysis (PARAFAC). Their fluorescence intensity decreases as the Cu(II) concentration increases, indicating the formation of complexes with Cu(II). As the temperature rises, the binding ability of DOM and Cu(II) changes significantly, reaching the optimum at 300 °C. Meanwhile, the substance C2 has the strongest binding ability with Cu(II). This research emphasizes the significance of spectroscopy analysis in determining the evolution of hydrochar-derived DOM, the potential for heavy metal binding and migration, and its characteristics and features.
Graphical Abstract
水热碳化(HTC)因其能耗低、废气排放少等优点,被认为是将湿生物质转化为水炭的一种有前途的技术。此外,水碳是溶解有机物(DOM)的重要来源,而溶解有机物对污染物在环境介质中的迁移和归宿起着至关重要的作用。然而,针对影响水煤炭中 DOM 形成的因素(如水热温度)的研究十分有限。因此,本研究通过紫外-可见光谱(UV-Vis)和荧光光谱,对不同水热温度(150-300 °C)下锯末衍生水炭(HDOM)中 DOM 的光学特性及其与 Cu(II) 的络合特性进行了综合表征。研究结果表明,当温度升至 240 ℃ 时,HDOM 的有机碳含量达到 37.3 mg L-1 的峰值,然后随着温度的升高而降低。紫外可见光谱分析显示,HDOM 在 275 纳米波长处的吸收能力随温度升高而增加,并在 240 °C 时达到最大值,这表明高温促进了单环芳香族化合物的形成。高温增强了 HDOM 的芳香性、疏水性和腐殖化程度,从而提高了其稳定性和芳香性。E3/E4比值均大于3.5,证实了HDOM的主要成分是富勒酸,这与3D-EEM和皮尔逊相关系数分析相吻合。通过三维激发-发射矩阵光谱(3D-EEMs)观察到,HDOM 的腐殖化指数(HIX)随着水热温度(150-240 ℃)的升高而增加。在 240 °C 达到峰值后,HIX 值随 DOC 变化趋势逐渐下降。此外,DOM 的生物利用率(BIX)值都很高且大于 1,表明所有 HDOM 都很容易被生物利用。通过将三维电子显微镜与并行因子分析(PARAFAC)相结合,在 DOM 中发现了两种微生物腐殖质(C1 和 C4)、一种类腐殖质(C2)和一种类蛋白质(C3)。它们的荧光强度随着 Cu(II)浓度的增加而降低,表明它们与 Cu(II)形成了络合物。随着温度的升高,DOM 与 Cu(II)的结合能力发生了显著变化,在 300 °C 时达到最佳。同时,物质 C2 与 Cu(II) 的结合能力最强。这项研究强调了光谱分析在确定水碳衍生 DOM 的演变、重金属结合和迁移潜力及其特征和特性方面的重要意义。 图文摘要
{"title":"Effect of hydrothermal temperature on the optical properties of hydrochar-derived dissolved organic matter and their interactions with copper (II)","authors":"Licheng Ji, Zhongpu Yu, Qi Cao, Xiangyang Gui, Xingjun Fan, Chengcheng Wei, Fei Jiang, Jie Wang, Fanbin Meng, Feiyue Li, Jianfei Wang","doi":"10.1007/s42773-024-00353-y","DOIUrl":"https://doi.org/10.1007/s42773-024-00353-y","url":null,"abstract":"<p>Hydrothermal carbonization (HTC) has been regarded as a promising technique for turning wet biomass into hydrochar due to its low energy consumption, low exhaust gas emissions, etc. In addition, hydrochar is an important source of dissolved organic matter (DOM), which plays a crucial part in the migration and destiny of pollutants in the environmental medium. However, there are limited studies that focus on the factors that influence the formation of DOM in hydrochar, such as hydrothermal temperature. Therefore, the current study comprehensively characterized the optical properties of DOM within hydrochar derived from sawdust (HDOM) under different hydrothermal temperatures (150–300 °C) by Ultraviolet–visible (UV–Vis) and fluorescence spectroscopy, as well as its complexation characteristic with Cu(II). The findings revealed that the organic carbon content of HDOM reached a peak of 37.3 mg L<sup>−1</sup> when the temperature rose to 240 °C and then decreased as the temperature increased. UV–Vis spectroscopy analysis showed that the absorption capacity of HDOM at 275 nm increases with temperature and reaches a maximum value at 240 °C, indicating that high temperature promotes the formation of monocyclic aromatic compounds. High temperature enhances the aromaticity, hydrophobicity, and humification degree of HDOM, thus improving its stability and aromaticity. The E3/E4 ratios are all greater than 3.5, confirming that the main component of HDOM is fulvic acid, which corresponds to 3D-EEM and Pearson's correlation coefficient analysis. The humification index (HIX) of HDOM increased with the rise in hydrothermal temperature (150–240 °C), as observed by the three-dimensional excitation-emission matrix spectroscopy (3D-EEMs). After reaching its peak at 240 °C, the HIX value gradually dropped in line with the trend of the DOC change. Moreover, the bioavailability (BIX) value of DOM was all high and greater than 1, indicating all the HDOM are readily bioavailable. Two microbial humic substances (C1 and C4), a humic-like substance (C2), and a protein-like substance (C3) were discovered in DOM by integrating 3D-EEMs with parallel factor analysis (PARAFAC). Their fluorescence intensity decreases as the Cu(II) concentration increases, indicating the formation of complexes with Cu(II). As the temperature rises, the binding ability of DOM and Cu(II) changes significantly, reaching the optimum at 300 °C. Meanwhile, the substance C2 has the strongest binding ability with Cu(II). This research emphasizes the significance of spectroscopy analysis in determining the evolution of hydrochar-derived DOM, the potential for heavy metal binding and migration, and its characteristics and features.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>","PeriodicalId":8789,"journal":{"name":"Biochar","volume":"67 1","pages":""},"PeriodicalIF":12.7,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141506192","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-24DOI: 10.1007/s42773-024-00354-x
Wenneng Zhou, Mahmoud Mazarji, Mengtong Li, Aohua Li, Yajing Wang, Yadong Yang, Jonathan T. E. Lee, Eldon R. Rene, Xiangzhou Yuan, Junting Pan
Anaerobic digestion technology, effective for sustainable waste management and renewable energy, but challenged by slow reaction rates and low biogas yields, could benefit from advancements in magnetic nanomaterials. This review explores the potential of magnetic nanomaterials, particularly magnetic biochar nanocomposites, to address these challenges by serving as electron conduits and providing essential iron. This review contributes a thorough overview of the application of magnetic nanoparticles loaded into biochar in anaerobic digestion and engages in a comprehensive discussion regarding the synthesis methods and characterization of various magnetic nanoparticles, elucidating their mechanisms of action in both the absence and presence of magnetic fields. Our review underscores the predominance of co-precipitation (53%) and commercially sourced nanoparticles (29%) as the main synthesis methods, with chemical reduction, pyrolysis, and green synthesis pathways less commonly utilized (8%, 5%, and 5%, respectively). Notably, pyrolysis is predominantly employed for synthesizing magnetic biochar nanocomposites, reflecting its prevalence in 100% of cases for this specific application. By offering a critical evaluation of the current state of knowledge and discussing the challenges and future directions for research in this field, this review can help researchers and practitioners better understand the potential of magnetic biochar nanocomposites for enhancing anaerobic digestion performance and ultimately advancing sustainable waste management and renewable energy production.
{"title":"Exploring magnetic nanomaterials with a focus on magnetic biochar in anaerobic digestion: from synthesis to application","authors":"Wenneng Zhou, Mahmoud Mazarji, Mengtong Li, Aohua Li, Yajing Wang, Yadong Yang, Jonathan T. E. Lee, Eldon R. Rene, Xiangzhou Yuan, Junting Pan","doi":"10.1007/s42773-024-00354-x","DOIUrl":"https://doi.org/10.1007/s42773-024-00354-x","url":null,"abstract":"<p>Anaerobic digestion technology, effective for sustainable waste management and renewable energy, but challenged by slow reaction rates and low biogas yields, could benefit from advancements in magnetic nanomaterials. This review explores the potential of magnetic nanomaterials, particularly magnetic biochar nanocomposites, to address these challenges by serving as electron conduits and providing essential iron. This review contributes a thorough overview of the application of magnetic nanoparticles loaded into biochar in anaerobic digestion and engages in a comprehensive discussion regarding the synthesis methods and characterization of various magnetic nanoparticles, elucidating their mechanisms of action in both the absence and presence of magnetic fields. Our review underscores the predominance of co-precipitation (53%) and commercially sourced nanoparticles (29%) as the main synthesis methods, with chemical reduction, pyrolysis, and green synthesis pathways less commonly utilized (8%, 5%, and 5%, respectively). Notably, pyrolysis is predominantly employed for synthesizing magnetic biochar nanocomposites, reflecting its prevalence in 100% of cases for this specific application. By offering a critical evaluation of the current state of knowledge and discussing the challenges and future directions for research in this field, this review can help researchers and practitioners better understand the potential of magnetic biochar nanocomposites for enhancing anaerobic digestion performance and ultimately advancing sustainable waste management and renewable energy production.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\u0000","PeriodicalId":8789,"journal":{"name":"Biochar","volume":"23 1","pages":""},"PeriodicalIF":12.7,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141506193","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-21DOI: 10.1007/s42773-024-00350-1
Gokulan Ravindiran, Sivarethinamohan Rajamanickam, Gorti Janardhan, Gasim Hayder, Avinash Alagumalai, Omid Mahian, Su Shiung Lam, Christian Sonne
Biochar, a carbon-rich material produced from biomass waste through thermal conversion, holds great environmental promise. This article offers a comprehensive overview of the various feedstocks used in biochar production, the different types of thermal degradation processes, biochar characterization, properties, modifications to engineered materials, and their applications in the environment. The quality of biochar, including surface area, pore size and volume, and functional group formation, is significantly influenced by the specific conditions under which thermal conversion takes place. Each of the diverse processes employed to produce biochar yields a distinct set of properties in the final product. In recent years, biochar has gained widespread recognition and utilization in diverse fields such as wastewater treatment, carbon sequestration, reduction of greenhouse gas emissions, biogas production, catalysis in biofuel industries, construction, and soil enhancement. In summary, biochar is a promising environmental mitigation tool to achieve a sustainable environment. In addition to its benefits, the application of biochar presents several challenges, including the selection of feedstocks, methods of biochar production, modifications to biochar, the properties of biochar, and the specific applications of biochar. The current review summarizes factors that could lead to significant advancements in future applications.
{"title":"Production and modifications of biochar to engineered materials and its application for environmental sustainability: a review","authors":"Gokulan Ravindiran, Sivarethinamohan Rajamanickam, Gorti Janardhan, Gasim Hayder, Avinash Alagumalai, Omid Mahian, Su Shiung Lam, Christian Sonne","doi":"10.1007/s42773-024-00350-1","DOIUrl":"https://doi.org/10.1007/s42773-024-00350-1","url":null,"abstract":"<p>Biochar, a carbon-rich material produced from biomass waste through thermal conversion, holds great environmental promise. This article offers a comprehensive overview of the various feedstocks used in biochar production, the different types of thermal degradation processes, biochar characterization, properties, modifications to engineered materials, and their applications in the environment. The quality of biochar, including surface area, pore size and volume, and functional group formation, is significantly influenced by the specific conditions under which thermal conversion takes place. Each of the diverse processes employed to produce biochar yields a distinct set of properties in the final product. In recent years, biochar has gained widespread recognition and utilization in diverse fields such as wastewater treatment, carbon sequestration, reduction of greenhouse gas emissions, biogas production, catalysis in biofuel industries, construction, and soil enhancement. In summary, biochar is a promising environmental mitigation tool to achieve a sustainable environment. In addition to its benefits, the application of biochar presents several challenges, including the selection of feedstocks, methods of biochar production, modifications to biochar, the properties of biochar, and the specific applications of biochar. The current review summarizes factors that could lead to significant advancements in future applications.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\u0000","PeriodicalId":8789,"journal":{"name":"Biochar","volume":"24 1","pages":""},"PeriodicalIF":12.7,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141506194","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-20DOI: 10.1007/s42773-024-00344-z
Pengyuan Deng, Wenhuan Yuan, Jin Wang, Liangzhong Li, Yuchen Zhou, Jingzi Beiyuan, Haofan Xu, Shunlong Jiang, Zicong Tan, Yurong Gao, Diyun Chen, Juan Liu
Thallium (Tl), vanadium (V) and arsenic (As) are considered as typical toxic elements of increased interest. Their accumulation in soils can pose a substantial health threat to human beings. In this study, Fe–Mn modified biochar (FMBC) was chemically constructed to immobilize Tl, V and As in contaminated soils. The results showed that compared with pristine biochar (BC), FMBC can achieve significantly higher passivation effects for the studied contaminated soils, which reduced the bioavailable Tl, V and As contents by 83.9%, 71.09% and 71.92%, respectively. The passivation of Tl, As, and V via FMBC application was partially attributed to a notable increase in pH, which enhances the availability of adsorptive sites. Further, the newly formed minerals, including cancrinite, gibbsite and Fe–Mn (hydr)oxides, serve as additional adsorbents, substantially reducing the mobility of Tl, V and As. Additionally, the oxidation of Tl(I) to Tl(III) by the Fe–Mn (hydr)oxide of FMBC significantly enhanced Tl immobilization, consequently diminishing its bioavailability. The findings suggest that significant environmental threats could be alleviated through the potential application of FMBC in treating Tl-As-V dominated contamination in soils, providing a new perspective for the sustainable utilization of industrially polluted soils.
Graphical Abstract
铊(Tl)、钒(V)和砷(As)被认为是典型的有毒元素,越来越受到人们的关注。它们在土壤中的积累会对人类健康造成严重威胁。在这项研究中,通过化学方法构建了铁锰改性生物炭(FMBC),以固定受污染土壤中的铅、钒和砷。结果表明,与原始生物炭(BC)相比,FMBC 对所研究污染土壤的钝化效果显著提高,生物可利用的 Tl、V 和 As 含量分别降低了 83.9%、71.09% 和 71.92%。施用 FMBC 对 Tl、As 和 V 的钝化作用部分归因于 pH 值的显著升高,这提高了吸附位点的可用性。此外,新形成的矿物(包括康松石、吉比特石和铁锰(氢)氧化物)作为额外的吸附剂,大大降低了 Tl、V 和 As 的流动性。此外,FMBC 的铁-锰(水合)氧化物将 Tl(I)氧化为 Tl(III),大大提高了 Tl 的固定性,从而降低了其生物利用率。研究结果表明,通过潜在应用 FMBC 来处理土壤中以 Tl-As-V 为主的污染,可以减轻对环境的重大威胁,为工业污染土壤的可持续利用提供了一个新的视角。
{"title":"Enhanced passivation of thallium, vanadium and arsenic in contaminated soils: critical role of Fe–Mn-biochar","authors":"Pengyuan Deng, Wenhuan Yuan, Jin Wang, Liangzhong Li, Yuchen Zhou, Jingzi Beiyuan, Haofan Xu, Shunlong Jiang, Zicong Tan, Yurong Gao, Diyun Chen, Juan Liu","doi":"10.1007/s42773-024-00344-z","DOIUrl":"https://doi.org/10.1007/s42773-024-00344-z","url":null,"abstract":"<p>Thallium (Tl), vanadium (V) and arsenic (As) are considered as typical toxic elements of increased interest. Their accumulation in soils can pose a substantial health threat to human beings. In this study, Fe–Mn modified biochar (FMBC) was chemically constructed to immobilize Tl, V and As in contaminated soils. The results showed that compared with pristine biochar (BC), FMBC can achieve significantly higher passivation effects for the studied contaminated soils, which reduced the bioavailable Tl, V and As contents by 83.9%, 71.09% and 71.92%, respectively. The passivation of Tl, As, and V via FMBC application was partially attributed to a notable increase in pH, which enhances the availability of adsorptive sites. Further, the newly formed minerals, including cancrinite, gibbsite and Fe–Mn (hydr)oxides, serve as additional adsorbents, substantially reducing the mobility of Tl, V and As. Additionally, the oxidation of Tl(I) to Tl(III) by the Fe–Mn (hydr)oxide of FMBC significantly enhanced Tl immobilization, consequently diminishing its bioavailability. The findings suggest that significant environmental threats could be alleviated through the potential application of FMBC in treating Tl-As-V dominated contamination in soils, providing a new perspective for the sustainable utilization of industrially polluted soils.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\u0000","PeriodicalId":8789,"journal":{"name":"Biochar","volume":"29 1","pages":""},"PeriodicalIF":12.7,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141529347","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}