Lars R Jensen, Heinz Bartenschlager, Sinitdhorn Rujirabanjerd, Andreas Tzschach, Astrid Nümann, Andreas R Janecke, Ralf Spörle, Sigmar Stricker, Martine Raynaud, John Nelson, Anna Hackett, Jean-Pierre Fryns, Jamel Chelly, Arjan Pm de Brouwer, Ben Hamel, Jozef Gecz, Hans-Hilger Ropers, Andreas W Kuss
Background: Mental retardation is a genetically heterogeneous disorder, as more than 90 genes for this disorder has been found on the X chromosome alone. In addition the majority of patients are non-syndromic in that they do not present with clinically recognisable features. This makes it difficult to determine the molecular cause of this disorder on the basis of the phenotype alone. Mutations in KDM5C (previously named SMCX or JARID1C), a gene that encodes a transcriptional regulator with histone demethylase activity specific for dimethylated and trimethylated H3K4, are a comparatively frequent cause of non-syndromic X-linked mental retardation (NS-XLMR). Specific transcriptional targets of KDM5C, however, are still unknown and the effects of KDM5C deficiency on gene expression have not yet been investigated.
Results: By whole-mount in situ hybridisation we showed that the mouse homologue of KDM5C is expressed in multiple tissues during mouse development.We present the results of gene expression profiling performed on lymphoblastoid cell lines as well as blood from patients with mutations in KDM5C. Using whole genome expression arrays and quantitative reverse transcriptase polymerase chain reaction (QRT-PCR) experiments, we identified several genes, including CMKOR1, KDM5B and KIAA0469 that were consistently deregulated in both tissues.
Conclusions: Our findings shed light on the pathological mechanisms underlying mental retardation and have implications for future diagnostics of this heterogeneous disorder.
{"title":"A distinctive gene expression fingerprint in mentally retarded male patients reflects disease-causing defects in the histone demethylase KDM5C.","authors":"Lars R Jensen, Heinz Bartenschlager, Sinitdhorn Rujirabanjerd, Andreas Tzschach, Astrid Nümann, Andreas R Janecke, Ralf Spörle, Sigmar Stricker, Martine Raynaud, John Nelson, Anna Hackett, Jean-Pierre Fryns, Jamel Chelly, Arjan Pm de Brouwer, Ben Hamel, Jozef Gecz, Hans-Hilger Ropers, Andreas W Kuss","doi":"10.1186/1755-8417-3-2","DOIUrl":"https://doi.org/10.1186/1755-8417-3-2","url":null,"abstract":"<p><strong>Background: </strong>Mental retardation is a genetically heterogeneous disorder, as more than 90 genes for this disorder has been found on the X chromosome alone. In addition the majority of patients are non-syndromic in that they do not present with clinically recognisable features. This makes it difficult to determine the molecular cause of this disorder on the basis of the phenotype alone. Mutations in KDM5C (previously named SMCX or JARID1C), a gene that encodes a transcriptional regulator with histone demethylase activity specific for dimethylated and trimethylated H3K4, are a comparatively frequent cause of non-syndromic X-linked mental retardation (NS-XLMR). Specific transcriptional targets of KDM5C, however, are still unknown and the effects of KDM5C deficiency on gene expression have not yet been investigated.</p><p><strong>Results: </strong>By whole-mount in situ hybridisation we showed that the mouse homologue of KDM5C is expressed in multiple tissues during mouse development.We present the results of gene expression profiling performed on lymphoblastoid cell lines as well as blood from patients with mutations in KDM5C. Using whole genome expression arrays and quantitative reverse transcriptase polymerase chain reaction (QRT-PCR) experiments, we identified several genes, including CMKOR1, KDM5B and KIAA0469 that were consistently deregulated in both tissues.</p><p><strong>Conclusions: </strong>Our findings shed light on the pathological mechanisms underlying mental retardation and have implications for future diagnostics of this heterogeneous disorder.</p>","PeriodicalId":88084,"journal":{"name":"PathoGenetics","volume":"3 1","pages":"2"},"PeriodicalIF":0.0,"publicationDate":"2010-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/1755-8417-3-2","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"28734742","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cheryl Shoubridge, May Huey Tan, Tod Fullston, Desiree Cloosterman, David Coman, George McGillivray, Grazia M Mancini, Tjitske Kleefstra, Jozef Gécz
Background: Aristaless related homeobox (ARX) is a paired-type homeobox gene. ARX function is frequently affected by naturally occurring mutations. Nonsense mutations, polyalanine tract expansions and missense mutations in ARX cause a range of intellectual disability and epilepsy phenotypes with or without additional features including hand dystonia, lissencephaly, autism or dysarthria. Severe malformation phenotypes, such as X-linked lissencephaly with ambiguous genitalia (XLAG), are frequently observed in individuals with protein truncating or missense mutations clustered in the highly conserved paired-type homeodomain.
Results: We have identified two novel point mutations in the R379 residue of the ARX homeodomain; c.1135C>A, p.R379S in a patient with infantile spasms and intellectual disability and c.1136G>T, p.R379L in a patient with XLAG. We investigated these and other missense mutations (R332P, R332H, R332C, T333N: associated with XLAG and Proud syndrome) predicted to affect the nuclear localisation sequences (NLS) flanking either end of the ARX homeodomain. The NLS regions are required for correct nuclear import facilitated by Importin 13 (IPO13). We demonstrate that missense mutations in either the N- or C-terminal NLS regions of the homeodomain cause significant disruption to nuclear localisation of the ARX protein in vitro. Surprisingly, none of these mutations abolished the binding of ARX to IPO13. This was confirmed by co-immunoprecipitation and immmuno fluorescence studies. Instead, tagged and endogenous IPO13 remained bound to the mutant ARX proteins, even in the RanGTP rich nuclear environment. We also identify the microtubule protein TUBA1A as a novel interacting protein for ARX and show cells expressing mutant ARX protein accumulate in mitosis, indicating normal cell division may be disrupted.
Conclusions: We show that the most likely, common pathogenic mechanism of the missense mutations in NLS regions of the ARX homeodomain is inadequate accumulation and distribution of the ARX transcription factor within the nucleus due to sequestration of ARX with IPO13.
背景:ARX (aristoess related homeobox)是一种配对型同源盒基因。ARX功能经常受到自然发生的突变的影响。ARX的无义突变、多丙氨酸束扩张和错义突变导致一系列智力残疾和癫痫表型,伴有或不伴有其他特征,包括手肌张力障碍、无脑畸形、自闭症或构音障碍。严重的畸形表型,如带有模糊生殖器的x连锁无脑畸形(XLAG),经常在高度保守的成对型同源结构域中聚集的蛋白质截断或错义突变的个体中观察到。结果:我们在ARX同源域的R379残基上发现了两个新的点突变;c.1135C>A, p.R379S在婴儿痉挛和智力残疾患者中,c.1136G>T, p.R379L在XLAG患者中。我们研究了这些和其他误义突变(R332P, R332H, R332C, T333N:与XLAG和Proud综合征相关)预测会影响ARX同源结构域两侧的核定位序列(NLS)。NLS地区需要通过importin13 (IPO13)促进正确的核进口。在体外实验中,我们证明了同位结构域N端或c端NLS区域的错义突变会对ARX蛋白的核定位造成显著的破坏。令人惊讶的是,这些突变都没有破坏ARX与IPO13的结合。免疫共沉淀和免疫荧光研究证实了这一点。相反,即使在富含RanGTP的核环境中,标记的内源性IPO13仍然与突变的ARX蛋白结合。我们还发现微管蛋白TUBA1A是一种新的ARX相互作用蛋白,并显示表达突变ARX蛋白的细胞在有丝分裂中积累,表明正常的细胞分裂可能被破坏。结论:我们发现,ARX同位结构域NLS区错义突变最可能的常见致病机制是由于IPO13对ARX的隔离导致ARX转录因子在细胞核内的积累和分布不足。
{"title":"Mutations in the nuclear localization sequence of the Aristaless related homeobox; sequestration of mutant ARX with IPO13 disrupts normal subcellular distribution of the transcription factor and retards cell division.","authors":"Cheryl Shoubridge, May Huey Tan, Tod Fullston, Desiree Cloosterman, David Coman, George McGillivray, Grazia M Mancini, Tjitske Kleefstra, Jozef Gécz","doi":"10.1186/1755-8417-3-1","DOIUrl":"https://doi.org/10.1186/1755-8417-3-1","url":null,"abstract":"<p><strong>Background: </strong>Aristaless related homeobox (ARX) is a paired-type homeobox gene. ARX function is frequently affected by naturally occurring mutations. Nonsense mutations, polyalanine tract expansions and missense mutations in ARX cause a range of intellectual disability and epilepsy phenotypes with or without additional features including hand dystonia, lissencephaly, autism or dysarthria. Severe malformation phenotypes, such as X-linked lissencephaly with ambiguous genitalia (XLAG), are frequently observed in individuals with protein truncating or missense mutations clustered in the highly conserved paired-type homeodomain.</p><p><strong>Results: </strong>We have identified two novel point mutations in the R379 residue of the ARX homeodomain; c.1135C>A, p.R379S in a patient with infantile spasms and intellectual disability and c.1136G>T, p.R379L in a patient with XLAG. We investigated these and other missense mutations (R332P, R332H, R332C, T333N: associated with XLAG and Proud syndrome) predicted to affect the nuclear localisation sequences (NLS) flanking either end of the ARX homeodomain. The NLS regions are required for correct nuclear import facilitated by Importin 13 (IPO13). We demonstrate that missense mutations in either the N- or C-terminal NLS regions of the homeodomain cause significant disruption to nuclear localisation of the ARX protein in vitro. Surprisingly, none of these mutations abolished the binding of ARX to IPO13. This was confirmed by co-immunoprecipitation and immmuno fluorescence studies. Instead, tagged and endogenous IPO13 remained bound to the mutant ARX proteins, even in the RanGTP rich nuclear environment. We also identify the microtubule protein TUBA1A as a novel interacting protein for ARX and show cells expressing mutant ARX protein accumulate in mitosis, indicating normal cell division may be disrupted.</p><p><strong>Conclusions: </strong>We show that the most likely, common pathogenic mechanism of the missense mutations in NLS regions of the ARX homeodomain is inadequate accumulation and distribution of the ARX transcription factor within the nucleus due to sequestration of ARX with IPO13.</p>","PeriodicalId":88084,"journal":{"name":"PathoGenetics","volume":"3 ","pages":"1"},"PeriodicalIF":0.0,"publicationDate":"2010-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/1755-8417-3-1","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"28706780","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
microRNAs (miRNAs) are a class of small RNAs (19-25 nucleotides in length) processed from double-stranded hairpin precursors. They negatively regulate gene expression in animals, by binding, with imperfect base pairing, to target sites in messenger RNAs (usually in 3' untranslated regions) thereby either reducing translational efficiency or determining transcript degradation. Considering that each miRNA can regulate, on average, the expression of approximately several hundred target genes, the miRNA apparatus can participate in the control of the gene expression of a large quota of mammalian transcriptomes and proteomes. As a consequence, miRNAs are expected to regulate various developmental and physiological processes, such as the development and function of many tissue and organs. Due to the strong impact of miRNAs on the biological processes, it is expected that mutations affecting miRNA function have a pathogenic role in human genetic diseases, similar to protein-coding genes. In this review, we provide an overview of the evidence available to date which support the pathogenic role of miRNAs in human genetic diseases. We will first describe the main types of mutation mechanisms affecting miRNA function that can result in human genetic disorders, namely: (1) mutations affecting miRNA sequences; (2) mutations in the recognition sites for miRNAs harboured in target mRNAs; and (3) mutations in genes that participate in the general processes of miRNA processing and function. Finally, we will also describe the results of recent studies, mostly based on animal models, indicating the phenotypic consequences of miRNA alterations on the function of several tissues and organs. These studies suggest that the spectrum of genetic diseases possibly caused by mutations in miRNAs is wide and is only starting to be unravelled.
{"title":"microRNAs and genetic diseases.","authors":"Nicola Meola, Vincenzo Alessandro Gennarino, Sandro Banfi","doi":"10.1186/1755-8417-2-7","DOIUrl":"https://doi.org/10.1186/1755-8417-2-7","url":null,"abstract":"<p><p> microRNAs (miRNAs) are a class of small RNAs (19-25 nucleotides in length) processed from double-stranded hairpin precursors. They negatively regulate gene expression in animals, by binding, with imperfect base pairing, to target sites in messenger RNAs (usually in 3' untranslated regions) thereby either reducing translational efficiency or determining transcript degradation. Considering that each miRNA can regulate, on average, the expression of approximately several hundred target genes, the miRNA apparatus can participate in the control of the gene expression of a large quota of mammalian transcriptomes and proteomes. As a consequence, miRNAs are expected to regulate various developmental and physiological processes, such as the development and function of many tissue and organs. Due to the strong impact of miRNAs on the biological processes, it is expected that mutations affecting miRNA function have a pathogenic role in human genetic diseases, similar to protein-coding genes. In this review, we provide an overview of the evidence available to date which support the pathogenic role of miRNAs in human genetic diseases. We will first describe the main types of mutation mechanisms affecting miRNA function that can result in human genetic disorders, namely: (1) mutations affecting miRNA sequences; (2) mutations in the recognition sites for miRNAs harboured in target mRNAs; and (3) mutations in genes that participate in the general processes of miRNA processing and function. Finally, we will also describe the results of recent studies, mostly based on animal models, indicating the phenotypic consequences of miRNA alterations on the function of several tissues and organs. These studies suggest that the spectrum of genetic diseases possibly caused by mutations in miRNAs is wide and is only starting to be unravelled.</p>","PeriodicalId":88084,"journal":{"name":"PathoGenetics","volume":"2 1","pages":"7"},"PeriodicalIF":0.0,"publicationDate":"2009-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/1755-8417-2-7","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"28488189","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Autosomal dominant polycystic kidney disease (ADPKD) is a genetic disease characterized by the formation of renal cysts. This disease can be caused by mutations in two genes, PKD1 and PKD2, which encode polycystin-1 (PC-1) and -2 (PC-2), respectively.PC-1 is a large plasma membrane receptor involved in the regulation of several biological functions and signaling pathways, and PC-2 is a calcium channel of the TRP family. The two proteins associate in a complex to prevent cyst formation, but the precise mechanism(s) involved remain largely unknown.This review will focus on recent advances in our understanding of the functions of polycystins and their role in signal transduction.Increased activity of the mammalian target of rapamycin (mTOR) kinase has been observed in cysts found in ADPKD tissues. Rapamycin has been shown to have beneficial effects in rodent models of polycystic kidney disease, prompting the initiation of pilot clinical trials with human patients. Furthermore, a direct role for PC-1 in the regulation of cell growth (size) via mTOR has recently been demonstrated.Major advancements in the study of mTOR biology have highlighted that this kinase exists in association with two different complexes, mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2). The mTORC1 complex regulates cell growth (size), proliferation, translation and autophagy, and mTORC2 regulates the actin cytoskeleton and apoptosis. Interestingly, mTORC2 has been shown to contain the kinase responsible for the phosphorylation of Akt at Serine 473. Previous studies have shown that PC-1 controls the PI 3-kinase/Akt cascade to regulate apoptosis and the actin cytoskeleton, suggesting that this receptor might regulate mTOR at several levels.This review aims to discuss three different, inter-related themes emerging from the literature: (i) studies performed in our and other laboratories collectively suggest that PC-1 might be able to differentially regulate the two mTOR complexes; (ii) several studies point to genetic and functional cross-talk between the PKD and TSC genes, although the molecular details remain obscure; and (iii) studies performed in mammals and in the unicellular algae Chlamidomonas Reinhardtii might highlight a link between cilia, regulation of cell size and regulation of the cell cycle.
{"title":"Emerging evidence of a link between the polycystins and the mTOR pathways.","authors":"Alessandra Boletta","doi":"10.1186/1755-8417-2-6","DOIUrl":"https://doi.org/10.1186/1755-8417-2-6","url":null,"abstract":"<p><p> Autosomal dominant polycystic kidney disease (ADPKD) is a genetic disease characterized by the formation of renal cysts. This disease can be caused by mutations in two genes, PKD1 and PKD2, which encode polycystin-1 (PC-1) and -2 (PC-2), respectively.PC-1 is a large plasma membrane receptor involved in the regulation of several biological functions and signaling pathways, and PC-2 is a calcium channel of the TRP family. The two proteins associate in a complex to prevent cyst formation, but the precise mechanism(s) involved remain largely unknown.This review will focus on recent advances in our understanding of the functions of polycystins and their role in signal transduction.Increased activity of the mammalian target of rapamycin (mTOR) kinase has been observed in cysts found in ADPKD tissues. Rapamycin has been shown to have beneficial effects in rodent models of polycystic kidney disease, prompting the initiation of pilot clinical trials with human patients. Furthermore, a direct role for PC-1 in the regulation of cell growth (size) via mTOR has recently been demonstrated.Major advancements in the study of mTOR biology have highlighted that this kinase exists in association with two different complexes, mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2). The mTORC1 complex regulates cell growth (size), proliferation, translation and autophagy, and mTORC2 regulates the actin cytoskeleton and apoptosis. Interestingly, mTORC2 has been shown to contain the kinase responsible for the phosphorylation of Akt at Serine 473. Previous studies have shown that PC-1 controls the PI 3-kinase/Akt cascade to regulate apoptosis and the actin cytoskeleton, suggesting that this receptor might regulate mTOR at several levels.This review aims to discuss three different, inter-related themes emerging from the literature: (i) studies performed in our and other laboratories collectively suggest that PC-1 might be able to differentially regulate the two mTOR complexes; (ii) several studies point to genetic and functional cross-talk between the PKD and TSC genes, although the molecular details remain obscure; and (iii) studies performed in mammals and in the unicellular algae Chlamidomonas Reinhardtii might highlight a link between cilia, regulation of cell size and regulation of the cell cycle.</p>","PeriodicalId":88084,"journal":{"name":"PathoGenetics","volume":"2 1","pages":"6"},"PeriodicalIF":0.0,"publicationDate":"2009-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/1755-8417-2-6","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"28464751","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hilda Tateossian, Rachel E Hardisty-Hughes, Susan Morse, Maria R Romero, Helen Hilton, Charlotte Dean, Steve Dm Brown
Background: Jeff is a dominant mouse mutant displaying chronic otitis media. The gene underlying Jeff is Fbxo11, a member of the large F-box family, which are specificity factors for the SCF E3 ubiquitin ligase complex. Jeff homozygotes die shortly after birth displaying a number of developmental abnormalities including cleft palate and eyes open at birth. TGF-beta signalling is involved in a number of epithelial developmental processes and we have investigated the impact of the Jeff mutation on the expression of this pathway.
Results: Phospho-Smad2 (pSmad2) is significantly upregulated in epithelia of Jeff homozygotes. Moreover, there was a significant increase in nuclear localization of pSmad2 in contrast to wild type. Mice heterozygous for both Jeff and Smad2 mutations recapitulate many of the features of the Jeff homozygous phenotype. However, tissue immunoprecipitations failed to detect any interaction between Fbxo11 and Smad2. Fbxo11 is known to neddylate p53, a co-factor of pSmad2, but we did not find any evidence of genetic interactions between Jeff and p53 mutants. Nevertheless, p53 levels are substantially reduced in Jeff mice suggesting that Fbxo11 plays a role in stabilizing p53.
Conclusion: Overall, our findings support a model whereby Fbxo11, possibly via stabilization of p53, is required to limit the accumulation of pSmad2 in the nucleus of epithelial cells of palatal shelves, eyelids and airways of the lungs. The finding that Fbxo11 impacts upon TGF-beta signalling has important implications for our understanding of the underlying disease mechanisms of middle ear inflammatory disease.
{"title":"Regulation of TGF-beta signalling by Fbxo11, the gene mutated in the Jeff otitis media mouse mutant.","authors":"Hilda Tateossian, Rachel E Hardisty-Hughes, Susan Morse, Maria R Romero, Helen Hilton, Charlotte Dean, Steve Dm Brown","doi":"10.1186/1755-8417-2-5","DOIUrl":"https://doi.org/10.1186/1755-8417-2-5","url":null,"abstract":"<p><strong>Background: </strong>Jeff is a dominant mouse mutant displaying chronic otitis media. The gene underlying Jeff is Fbxo11, a member of the large F-box family, which are specificity factors for the SCF E3 ubiquitin ligase complex. Jeff homozygotes die shortly after birth displaying a number of developmental abnormalities including cleft palate and eyes open at birth. TGF-beta signalling is involved in a number of epithelial developmental processes and we have investigated the impact of the Jeff mutation on the expression of this pathway.</p><p><strong>Results: </strong>Phospho-Smad2 (pSmad2) is significantly upregulated in epithelia of Jeff homozygotes. Moreover, there was a significant increase in nuclear localization of pSmad2 in contrast to wild type. Mice heterozygous for both Jeff and Smad2 mutations recapitulate many of the features of the Jeff homozygous phenotype. However, tissue immunoprecipitations failed to detect any interaction between Fbxo11 and Smad2. Fbxo11 is known to neddylate p53, a co-factor of pSmad2, but we did not find any evidence of genetic interactions between Jeff and p53 mutants. Nevertheless, p53 levels are substantially reduced in Jeff mice suggesting that Fbxo11 plays a role in stabilizing p53.</p><p><strong>Conclusion: </strong>Overall, our findings support a model whereby Fbxo11, possibly via stabilization of p53, is required to limit the accumulation of pSmad2 in the nucleus of epithelial cells of palatal shelves, eyelids and airways of the lungs. The finding that Fbxo11 impacts upon TGF-beta signalling has important implications for our understanding of the underlying disease mechanisms of middle ear inflammatory disease.</p>","PeriodicalId":88084,"journal":{"name":"PathoGenetics","volume":"2 1","pages":"5"},"PeriodicalIF":0.0,"publicationDate":"2009-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/1755-8417-2-5","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"28287972","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alessandra Tessitore, Marinella Pirozzi, Alberto Auricchio
Background: Lysosomal storage diseases are characterized by intracellular accumulation of metabolites within lysosomes. Recent evidence suggests that lysosomal storage impairs autophagy resulting in accumulation of polyubiquitinated proteins and dysfunctional mitochondria, ultimately leading to apoptosis. We studied the relationship between lysosome storage and impairment of different intracellular pathways and organelle function in mucopolysaccharidosis VI, which is characterized by accumulation of dermatan sulfate and signs of visceral and skeletal but not cerebral involvement.
Results: We show lysosomal storage, impaired autophagy, accumulation of polyubiquitinated proteins, and mitochondrial dysfunction in fibroblasts from mucopolysaccharidosis VI patients. We observe similar anomalies, along with inflammation and cell death, in association with dermatan sulfate storage in the visceral organs of mucopolysaccharidosis VI rats, but not in their central nervous system where dermatan sulfate storage is absent. Importantly, we show that prevention of dermatan sulfate storage in the mucopolysaccharidosis VI rat visceral organs by gene transfer results in correction of abnormal autophagy, inflammation, and apoptosis, suggesting that dermatan sulfate accumulation impairs lysosomal ability to receive and degrade molecules and organelles from the autophagic pathway, thus leading to cell toxicity.
Conclusion: These results indicate that the non-lysosomal degradation pathways we found activated in mucopolysaccharidosis VI can be both targets of new experimental therapies and biomarkers for follow-up of existing treatments.
{"title":"Abnormal autophagy, ubiquitination, inflammation and apoptosis are dependent upon lysosomal storage and are useful biomarkers of mucopolysaccharidosis VI.","authors":"Alessandra Tessitore, Marinella Pirozzi, Alberto Auricchio","doi":"10.1186/1755-8417-2-4","DOIUrl":"https://doi.org/10.1186/1755-8417-2-4","url":null,"abstract":"<p><strong>Background: </strong>Lysosomal storage diseases are characterized by intracellular accumulation of metabolites within lysosomes. Recent evidence suggests that lysosomal storage impairs autophagy resulting in accumulation of polyubiquitinated proteins and dysfunctional mitochondria, ultimately leading to apoptosis. We studied the relationship between lysosome storage and impairment of different intracellular pathways and organelle function in mucopolysaccharidosis VI, which is characterized by accumulation of dermatan sulfate and signs of visceral and skeletal but not cerebral involvement.</p><p><strong>Results: </strong>We show lysosomal storage, impaired autophagy, accumulation of polyubiquitinated proteins, and mitochondrial dysfunction in fibroblasts from mucopolysaccharidosis VI patients. We observe similar anomalies, along with inflammation and cell death, in association with dermatan sulfate storage in the visceral organs of mucopolysaccharidosis VI rats, but not in their central nervous system where dermatan sulfate storage is absent. Importantly, we show that prevention of dermatan sulfate storage in the mucopolysaccharidosis VI rat visceral organs by gene transfer results in correction of abnormal autophagy, inflammation, and apoptosis, suggesting that dermatan sulfate accumulation impairs lysosomal ability to receive and degrade molecules and organelles from the autophagic pathway, thus leading to cell toxicity.</p><p><strong>Conclusion: </strong>These results indicate that the non-lysosomal degradation pathways we found activated in mucopolysaccharidosis VI can be both targets of new experimental therapies and biomarkers for follow-up of existing treatments.</p>","PeriodicalId":88084,"journal":{"name":"PathoGenetics","volume":"2 1","pages":"4"},"PeriodicalIF":0.0,"publicationDate":"2009-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/1755-8417-2-4","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"28322107","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cilia are specialized organelles protruding from the cell surface of almost all mammalian cells. They consist of a basal body, composed of two centrioles, and a protruding body, named the axoneme. Although the basic structure of all cilia is the same, numerous differences emerge in different cell types, suggesting diverse functions. In recent years many studies have elucidated the function of 9+0 primary cilia. The primary cilium acts as an antenna for the cell, and several important pathways such as Hedgehog, Wnt and planar cell polarity (PCP) are transduced through it. Many studies on animal models have revealed that during embryogenesis the primary cilium has an essential role in defining the correct patterning of the body. Cilia are composed of hundreds of proteins and the impairment or dysfunction of one protein alone can cause complete loss of cilia or the formation of abnormal cilia. Mutations in ciliary proteins cause ciliopathies which can affect many organs at different levels of severity and are characterized by a wide spectrum of phenotypes. Ciliary proteins can be mutated in more than one ciliopathy, suggesting an interaction between proteins. To date, little is known about the role of primary cilia in adult life and it is tempting to speculate about their role in the maintenance of adult organs. The state of the art in primary cilia studies reveals a very intricate role. Analysis of cilia-related pathways and of the different clinical phenotypes of ciliopathies helps to shed light on the function of these sophisticated organelles. The aim of this review is to evaluate the recent advances in cilia function and the molecular mechanisms at the basis of their activity.
{"title":"The dynamic cilium in human diseases.","authors":"Anna D'Angelo, Brunella Franco","doi":"10.1186/1755-8417-2-3","DOIUrl":"https://doi.org/10.1186/1755-8417-2-3","url":null,"abstract":"<p><p> Cilia are specialized organelles protruding from the cell surface of almost all mammalian cells. They consist of a basal body, composed of two centrioles, and a protruding body, named the axoneme. Although the basic structure of all cilia is the same, numerous differences emerge in different cell types, suggesting diverse functions. In recent years many studies have elucidated the function of 9+0 primary cilia. The primary cilium acts as an antenna for the cell, and several important pathways such as Hedgehog, Wnt and planar cell polarity (PCP) are transduced through it. Many studies on animal models have revealed that during embryogenesis the primary cilium has an essential role in defining the correct patterning of the body. Cilia are composed of hundreds of proteins and the impairment or dysfunction of one protein alone can cause complete loss of cilia or the formation of abnormal cilia. Mutations in ciliary proteins cause ciliopathies which can affect many organs at different levels of severity and are characterized by a wide spectrum of phenotypes. Ciliary proteins can be mutated in more than one ciliopathy, suggesting an interaction between proteins. To date, little is known about the role of primary cilia in adult life and it is tempting to speculate about their role in the maintenance of adult organs. The state of the art in primary cilia studies reveals a very intricate role. Analysis of cilia-related pathways and of the different clinical phenotypes of ciliopathies helps to shed light on the function of these sophisticated organelles. The aim of this review is to evaluate the recent advances in cilia function and the molecular mechanisms at the basis of their activity.</p>","PeriodicalId":88084,"journal":{"name":"PathoGenetics","volume":"2 1","pages":"3"},"PeriodicalIF":0.0,"publicationDate":"2009-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/1755-8417-2-3","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"28171967","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Heli Honkala, Jenni Lahtela, Heli Fox, Massimiliano Gentile, Niklas Pakkasjärvi, Riitta Salonen, Kirmo Wartiovaara, Matti Jauhiainen, Marjo Kestilä
Background: Hydrolethalus syndrome (HLS) is a severe fetal malformation syndrome characterized by multiple developmental anomalies, including central nervous system (CNS) malformation such as hydrocephaly and absent midline structures of the brain, micrognathia, defective lobation of the lungs and polydactyly. Microscopically, immature cerebral cortex, abnormalities in radial glial cells and hypothalamic hamartoma are among key findings in the CNS of HLS fetuses. HLS is caused by a substitution of aspartic acid by glycine in the HYLS1 protein, whose function was previously unknown.
Results: To provide insight into the disease mechanism(s) of this lethal disorder we have studied different aspects of HLS and HYLS1. A genome-wide gene expression analysis indicated several upregulated genes in cell cycle regulatory cascades and in specific signal transduction pathways while many downregulated genes were associated with lipid metabolism. These changes were supported by findings in functional cell biology studies, which revealed an increased cell cycle rate and a decreased amount of apoptosis in HLS neuronal progenitor cells. Also, changes in lipid metabolism gene expression were reflected by a significant increase in the cholesterol levels of HLS liver tissues. In addition, based on our functional studies of HYLS1, we propose that HYLS1 is a transcriptional regulator that shuffles between the cytoplasm and the nucleus, and that when HYLS1 is mutated its function is significantly altered.
Conclusion: In this study, we have shown that the HYLS1 mutation has significant consequences in the cellular and tissue levels in HLS fetuses. Based on these results, it can be suggested that HYLS1 is part of the cellular transcriptional regulatory machinery and that the genetic defect has a widespread effect during embryonic and fetal development. These findings add a significant amount of new information to the pathogenesis of HLS and strongly suggest an essential role for HYLS1 in normal fetal development.
{"title":"Unraveling the disease pathogenesis behind lethal hydrolethalus syndrome revealed multiple changes in molecular and cellular level.","authors":"Heli Honkala, Jenni Lahtela, Heli Fox, Massimiliano Gentile, Niklas Pakkasjärvi, Riitta Salonen, Kirmo Wartiovaara, Matti Jauhiainen, Marjo Kestilä","doi":"10.1186/1755-8417-2-2","DOIUrl":"https://doi.org/10.1186/1755-8417-2-2","url":null,"abstract":"<p><strong>Background: </strong>Hydrolethalus syndrome (HLS) is a severe fetal malformation syndrome characterized by multiple developmental anomalies, including central nervous system (CNS) malformation such as hydrocephaly and absent midline structures of the brain, micrognathia, defective lobation of the lungs and polydactyly. Microscopically, immature cerebral cortex, abnormalities in radial glial cells and hypothalamic hamartoma are among key findings in the CNS of HLS fetuses. HLS is caused by a substitution of aspartic acid by glycine in the HYLS1 protein, whose function was previously unknown.</p><p><strong>Results: </strong>To provide insight into the disease mechanism(s) of this lethal disorder we have studied different aspects of HLS and HYLS1. A genome-wide gene expression analysis indicated several upregulated genes in cell cycle regulatory cascades and in specific signal transduction pathways while many downregulated genes were associated with lipid metabolism. These changes were supported by findings in functional cell biology studies, which revealed an increased cell cycle rate and a decreased amount of apoptosis in HLS neuronal progenitor cells. Also, changes in lipid metabolism gene expression were reflected by a significant increase in the cholesterol levels of HLS liver tissues. In addition, based on our functional studies of HYLS1, we propose that HYLS1 is a transcriptional regulator that shuffles between the cytoplasm and the nucleus, and that when HYLS1 is mutated its function is significantly altered.</p><p><strong>Conclusion: </strong>In this study, we have shown that the HYLS1 mutation has significant consequences in the cellular and tissue levels in HLS fetuses. Based on these results, it can be suggested that HYLS1 is part of the cellular transcriptional regulatory machinery and that the genetic defect has a widespread effect during embryonic and fetal development. These findings add a significant amount of new information to the pathogenesis of HLS and strongly suggest an essential role for HYLS1 in normal fetal development.</p>","PeriodicalId":88084,"journal":{"name":"PathoGenetics","volume":"2 1","pages":"2"},"PeriodicalIF":0.0,"publicationDate":"2009-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/1755-8417-2-2","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"28137805","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abraham A Anderson, Joan Helmering, Todd Juan, Chi-Ming Li, Jocelyn McCormick, Melissa Graham, Daniel M Baker, Michael A Damore, Murielle M Véniant, David J Lloyd
Background: C57BLKS/J (BLKS) mice are susceptible to islet exhaustion in insulin-resistant states as compared with C57BL6/J (B6) mice, as observed by the presence of the leptin receptor (Lepr) allele, Leprdb/db. Furthermore, DBA2/J (DBA) mice are also susceptible to beta-cell failure and share 25% of their genome with BLKS; thus the DBA genome may contribute to beta-cell dysfunction in BLKS mice.
Results: Here we show that BLKS mice exhibit elevated insulin secretion, as evidenced by improved glucose tolerance and increased islet insulin secretion compared with B6 mice, and describe interstrain transcriptional differences in glucose response. Transcriptional differences between BLKS and B6 mice were identified by expression profiling of isolated islets from both strains. Genomic mapping of gene expression differences demonstrated a significant association of expression differences with DBA loci in BLKS mice (P = 4x10-27).
Conclusion: Two genes, Nicotinamide nucleotide transhydrogenase (Nnt) and Pleiomorphic adenoma gene like 1 (Plagl1), were 4 and 7.2-fold higher respectively in BLKS islets, and may be major contributors to increased insulin secretion by BLKS islets. Contrary to reports for B6 mice, BLKS mice do not harbor a mutant Nnt gene. We detected 16 synonymous polymorphisms and a two-amino acid deletion in the Plagl1 gene in BLKS mice. Several inflammatory glucose-responsive genes are expressed at a higher level in BLKS, suggesting an inflammatory component to BLKS islet dysfunction. This study describes physiological differences between BLKS and B6 mice, and provides evidence for a causative role of the DBA genome in beta-cell dysfunction in BLKS mice.
{"title":"Pancreatic islet expression profiling in diabetes-prone C57BLKS/J mice reveals transcriptional differences contributed by DBA loci, including Plagl1 and Nnt.","authors":"Abraham A Anderson, Joan Helmering, Todd Juan, Chi-Ming Li, Jocelyn McCormick, Melissa Graham, Daniel M Baker, Michael A Damore, Murielle M Véniant, David J Lloyd","doi":"10.1186/1755-8417-2-1","DOIUrl":"https://doi.org/10.1186/1755-8417-2-1","url":null,"abstract":"<p><strong>Background: </strong>C57BLKS/J (BLKS) mice are susceptible to islet exhaustion in insulin-resistant states as compared with C57BL6/J (B6) mice, as observed by the presence of the leptin receptor (Lepr) allele, Leprdb/db. Furthermore, DBA2/J (DBA) mice are also susceptible to beta-cell failure and share 25% of their genome with BLKS; thus the DBA genome may contribute to beta-cell dysfunction in BLKS mice.</p><p><strong>Results: </strong>Here we show that BLKS mice exhibit elevated insulin secretion, as evidenced by improved glucose tolerance and increased islet insulin secretion compared with B6 mice, and describe interstrain transcriptional differences in glucose response. Transcriptional differences between BLKS and B6 mice were identified by expression profiling of isolated islets from both strains. Genomic mapping of gene expression differences demonstrated a significant association of expression differences with DBA loci in BLKS mice (P = 4x10-27).</p><p><strong>Conclusion: </strong>Two genes, Nicotinamide nucleotide transhydrogenase (Nnt) and Pleiomorphic adenoma gene like 1 (Plagl1), were 4 and 7.2-fold higher respectively in BLKS islets, and may be major contributors to increased insulin secretion by BLKS islets. Contrary to reports for B6 mice, BLKS mice do not harbor a mutant Nnt gene. We detected 16 synonymous polymorphisms and a two-amino acid deletion in the Plagl1 gene in BLKS mice. Several inflammatory glucose-responsive genes are expressed at a higher level in BLKS, suggesting an inflammatory component to BLKS islet dysfunction. This study describes physiological differences between BLKS and B6 mice, and provides evidence for a causative role of the DBA genome in beta-cell dysfunction in BLKS mice.</p>","PeriodicalId":88084,"journal":{"name":"PathoGenetics","volume":"2 1","pages":"1"},"PeriodicalIF":0.0,"publicationDate":"2009-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/1755-8417-2-1","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"27939501","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Monica Cardone, Caterina Porto, Antonietta Tarallo, Mariella Vicinanza, Barbara Rossi, Elena Polishchuk, Francesca Donaudy, Generoso Andria, Maria Antonietta De Matteis, Giancarlo Parenti
Background: Pompe disease (PD) is a metabolic myopathy caused by alpha-glucosidase (GAA) deficiency and characterized by generalized glycogen storage. Heterogeneous GAA gene mutations result in wide phenotypic variability, ranging from the severe classic infantile presentation to the milder intermediate and late-onset forms. Enzyme replacement therapy (ERT) with recombinant human GAA (rhGAA), the only treatment available for PD, intriguingly shows variable efficacy in different PD patients. To investigate the mechanisms underlying the variable response to ERT, we studied cell morphology of PD fibroblasts, the distribution and trafficking of the cation-independent mannose-6-phosphate receptor (CI-MPR) that mediates rhGAA uptake, and rhGAA uptake itself.
Results: We observed abnormalities of cell morphology in PD cells. Electron microscopy analysis showed accumulation of multivesicular bodies and expansion of the Golgi apparatus, and immunolocalization and western blot analysis of LC3 showed activation of autophagy. Immunofluorescence analysis showed abnormal intracellular distribution of CI-MPR in PD fibroblasts, increased co-localization with LC3 and reduced availability of the receptor at the plasma membrane. The recycling of CI-MPR from the plasma membrane to the trans-Golgi network was also impaired. All these abnormalities were more prominent in severe and intermediate PD fibroblasts, correlating with disease severity. In severe and intermediate PD cells rhGAA uptake and processing were less efficient and correction of GAA activity was reduced.
Conclusion: These results indicate a role for disrupted CI-MPR trafficking in the variable response to ERT in PD and have implications for ERT efficacy and optimization of treatment protocols.
{"title":"Abnormal mannose-6-phosphate receptor trafficking impairs recombinant alpha-glucosidase uptake in Pompe disease fibroblasts.","authors":"Monica Cardone, Caterina Porto, Antonietta Tarallo, Mariella Vicinanza, Barbara Rossi, Elena Polishchuk, Francesca Donaudy, Generoso Andria, Maria Antonietta De Matteis, Giancarlo Parenti","doi":"10.1186/1755-8417-1-6","DOIUrl":"https://doi.org/10.1186/1755-8417-1-6","url":null,"abstract":"<p><strong>Background: </strong>Pompe disease (PD) is a metabolic myopathy caused by alpha-glucosidase (GAA) deficiency and characterized by generalized glycogen storage. Heterogeneous GAA gene mutations result in wide phenotypic variability, ranging from the severe classic infantile presentation to the milder intermediate and late-onset forms. Enzyme replacement therapy (ERT) with recombinant human GAA (rhGAA), the only treatment available for PD, intriguingly shows variable efficacy in different PD patients. To investigate the mechanisms underlying the variable response to ERT, we studied cell morphology of PD fibroblasts, the distribution and trafficking of the cation-independent mannose-6-phosphate receptor (CI-MPR) that mediates rhGAA uptake, and rhGAA uptake itself.</p><p><strong>Results: </strong>We observed abnormalities of cell morphology in PD cells. Electron microscopy analysis showed accumulation of multivesicular bodies and expansion of the Golgi apparatus, and immunolocalization and western blot analysis of LC3 showed activation of autophagy. Immunofluorescence analysis showed abnormal intracellular distribution of CI-MPR in PD fibroblasts, increased co-localization with LC3 and reduced availability of the receptor at the plasma membrane. The recycling of CI-MPR from the plasma membrane to the trans-Golgi network was also impaired. All these abnormalities were more prominent in severe and intermediate PD fibroblasts, correlating with disease severity. In severe and intermediate PD cells rhGAA uptake and processing were less efficient and correction of GAA activity was reduced.</p><p><strong>Conclusion: </strong>These results indicate a role for disrupted CI-MPR trafficking in the variable response to ERT in PD and have implications for ERT efficacy and optimization of treatment protocols.</p>","PeriodicalId":88084,"journal":{"name":"PathoGenetics","volume":"1 1","pages":"6"},"PeriodicalIF":0.0,"publicationDate":"2008-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/1755-8417-1-6","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"27870547","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}