Paolo Panizzon, Jakob Gismann, Bernd Riedstra, Marion Nicolaus, Culum Brown, Ton Groothuis
Individual differences in laterality and personality are expected to covary, as emotions are processed differently by the two hemispheres and personality involves emotional behavior. Fish species are often used to investigate this topic due to the large variability in personality and laterality patterns. While some species show a positive relationship between lateralization strength and boldness, others show a negative relationship, and some show no relationship. A new way to assess the robustness of such relationship is to manipulate both laterality and personality to examine how this affects their relationship. To this end, we conducted a fully factorial design experiment manipulating predation and group size during early development. Results showed that the strength of laterality was influenced by predation threat, while social tendency and boldness were influenced by group size. These findings suggest that early life conditions can have an impact on laterality and social behavior. The relationship between laterality and personality traits, while present, was heavily influenced by the specific trial conditions, but not by the different developmental conditions. In summary, the relationship between laterality and behaviors appears to be context-dependent, yet resilient to early environmental manipulations.
{"title":"Effects of early predation and social cues on the relationship between laterality and personality","authors":"Paolo Panizzon, Jakob Gismann, Bernd Riedstra, Marion Nicolaus, Culum Brown, Ton Groothuis","doi":"10.1093/beheco/arae012","DOIUrl":"https://doi.org/10.1093/beheco/arae012","url":null,"abstract":"Individual differences in laterality and personality are expected to covary, as emotions are processed differently by the two hemispheres and personality involves emotional behavior. Fish species are often used to investigate this topic due to the large variability in personality and laterality patterns. While some species show a positive relationship between lateralization strength and boldness, others show a negative relationship, and some show no relationship. A new way to assess the robustness of such relationship is to manipulate both laterality and personality to examine how this affects their relationship. To this end, we conducted a fully factorial design experiment manipulating predation and group size during early development. Results showed that the strength of laterality was influenced by predation threat, while social tendency and boldness were influenced by group size. These findings suggest that early life conditions can have an impact on laterality and social behavior. The relationship between laterality and personality traits, while present, was heavily influenced by the specific trial conditions, but not by the different developmental conditions. In summary, the relationship between laterality and behaviors appears to be context-dependent, yet resilient to early environmental manipulations.","PeriodicalId":8840,"journal":{"name":"Behavioral Ecology","volume":"142 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140055176","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Himal Thapa, Adam L Crane, Gabrielle H Achtymichuk, Sultan M M Sadat, Douglas P Chivers, Maud C O Ferrari
Living with a diverse array of predators provides a significant challenge for prey to learn and retain information about each predator they encounter. Consequently, some prey respond to novel predators because they have previous experience with a perceptually similar predator species, a phenomenon known as generalization of predator recognition. However, it remains unknown whether prey can generalize learned responses across ontogenetic stages of predators. Using wood frog (Lithobates sylvaticus) tadpole prey we conducted two experiments to explore the extent of predator generalization of different life stages of two different predators: (1) predacious diving beetles (Dytiscus sp.) and (2) tiger salamanders (Ambystoma mavortium). In both experiments, we used chemical alarm cues (i.e., injured conspecific cues) to condition tadpoles to recognize the odor of either the larval or adult stage of the predator as risky. One day later, we tested tadpoles with either the larval or adult predator odor to determine whether they generalized their learned responses to the other life stage of the predator. Tadpoles generalized between larval and adult beetle odors but failed to generalize between larval and adult salamander odors. These results suggest that the odor of some predator species changes during metamorphosis to an extent that reduces their recognisability by prey. This ‘predator identity reset’ increases the number of threats to which prey need to attend.
{"title":"Predator metamorphosis and its consequence for prey risk assessment","authors":"Himal Thapa, Adam L Crane, Gabrielle H Achtymichuk, Sultan M M Sadat, Douglas P Chivers, Maud C O Ferrari","doi":"10.1093/beheco/arae014","DOIUrl":"https://doi.org/10.1093/beheco/arae014","url":null,"abstract":"Living with a diverse array of predators provides a significant challenge for prey to learn and retain information about each predator they encounter. Consequently, some prey respond to novel predators because they have previous experience with a perceptually similar predator species, a phenomenon known as generalization of predator recognition. However, it remains unknown whether prey can generalize learned responses across ontogenetic stages of predators. Using wood frog (Lithobates sylvaticus) tadpole prey we conducted two experiments to explore the extent of predator generalization of different life stages of two different predators: (1) predacious diving beetles (Dytiscus sp.) and (2) tiger salamanders (Ambystoma mavortium). In both experiments, we used chemical alarm cues (i.e., injured conspecific cues) to condition tadpoles to recognize the odor of either the larval or adult stage of the predator as risky. One day later, we tested tadpoles with either the larval or adult predator odor to determine whether they generalized their learned responses to the other life stage of the predator. Tadpoles generalized between larval and adult beetle odors but failed to generalize between larval and adult salamander odors. These results suggest that the odor of some predator species changes during metamorphosis to an extent that reduces their recognisability by prey. This ‘predator identity reset’ increases the number of threats to which prey need to attend.","PeriodicalId":8840,"journal":{"name":"Behavioral Ecology","volume":"50 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140055304","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sociality impacts many biological processes and can be tightly linked to an individual’s fitness. To maximize advantages of group living, many social animals prefer to associate with individuals that provide the most benefits, such as kin, familiar individuals or those of similar phenotype. Such social strategies are not necessarily stable over time but can vary with changing selection pressures. In particular, young individuals transitioning to independence should continuously adjust their social behavior in light of developmental changes. However, social strategies exhibited during adolescence in animals are understudied and the factors underlying social network formation during ontogeny remain elusive. Here, we tracked associations of wild great tits (Parus major) during transition to independence and across their first year of life. Both spatial and social factors predicted dyadic associations. During transition to independence in spring, fledglings initially preferred to associate with siblings and peers over non-parent adults. We found no evidence for preferred associations among juveniles of similar age or fledge weight during that time, but weak evidence for some potential inheritance of the parental social network. By autumn, after juveniles had reached full independence, they exhibited social strategies similar to those of adults by establishing stable social ties based on familiarity that persisted through winter into next spring. Overall, this research demonstrates dynamic changes in social networks during ontogeny in a species with fast life-history and limited parental care, which likely reflect changes in selective pressures. It further highlights the importance of long-term social bonds based on familiarity in this species.
{"title":"The ontogeny of social networks in wild great tits (Parus major)","authors":"Sonja Wild, Gustavo Alarcón-Nieto, Lucy Aplin","doi":"10.1093/beheco/arae011","DOIUrl":"https://doi.org/10.1093/beheco/arae011","url":null,"abstract":"Sociality impacts many biological processes and can be tightly linked to an individual’s fitness. To maximize advantages of group living, many social animals prefer to associate with individuals that provide the most benefits, such as kin, familiar individuals or those of similar phenotype. Such social strategies are not necessarily stable over time but can vary with changing selection pressures. In particular, young individuals transitioning to independence should continuously adjust their social behavior in light of developmental changes. However, social strategies exhibited during adolescence in animals are understudied and the factors underlying social network formation during ontogeny remain elusive. Here, we tracked associations of wild great tits (Parus major) during transition to independence and across their first year of life. Both spatial and social factors predicted dyadic associations. During transition to independence in spring, fledglings initially preferred to associate with siblings and peers over non-parent adults. We found no evidence for preferred associations among juveniles of similar age or fledge weight during that time, but weak evidence for some potential inheritance of the parental social network. By autumn, after juveniles had reached full independence, they exhibited social strategies similar to those of adults by establishing stable social ties based on familiarity that persisted through winter into next spring. Overall, this research demonstrates dynamic changes in social networks during ontogeny in a species with fast life-history and limited parental care, which likely reflect changes in selective pressures. It further highlights the importance of long-term social bonds based on familiarity in this species.","PeriodicalId":8840,"journal":{"name":"Behavioral Ecology","volume":"10 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140003338","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tanner Yuen, Kathreen E Ruckstuhl, April Robin Martinig, Peter Neuhaus
Lifetime fitness and its determinants are an important topic in the study of behavioural ecology and life-history evolution. Early life conditions comprise some of these determinants, warranting further investigation into their impact. In some mammals, babies born lighter tend to have lower life expectancy than those born heavier, and some of these life-history traits are passed on to offspring, with lighter-born females giving birth to lighter offspring. We investigated how weight at weaning, the relative timing of birth in the season, maternal weight, and maternal age affected the longevity and lifetime reproductive success (LRS) of female Columbian ground squirrels (Urocitellus columbianus). We hypothesized that early life conditions such as offspring weight would not only have lifetime fitness consequences but also intergenerational effects. We found that weight at weaning had a significant impact on longevity, with heavier individuals living longer. The relative timing of an individual’s birth did not have a significant association with either longevity or LRS. Individuals born to heavier mothers were found to have significantly higher LRS than those born to lighter mothers. Finally, maternal age was found to be significantly associated with their offspring’s LRS, with older mothers having less successful offspring. Our results provide evidence that early life conditions do have lifelong fitness and sometimes intergenerational consequences for Columbian ground squirrels.
{"title":"Born with an advantage: Early life and maternal effects on fitness in female ground squirrels","authors":"Tanner Yuen, Kathreen E Ruckstuhl, April Robin Martinig, Peter Neuhaus","doi":"10.1093/beheco/arae013","DOIUrl":"https://doi.org/10.1093/beheco/arae013","url":null,"abstract":"Lifetime fitness and its determinants are an important topic in the study of behavioural ecology and life-history evolution. Early life conditions comprise some of these determinants, warranting further investigation into their impact. In some mammals, babies born lighter tend to have lower life expectancy than those born heavier, and some of these life-history traits are passed on to offspring, with lighter-born females giving birth to lighter offspring. We investigated how weight at weaning, the relative timing of birth in the season, maternal weight, and maternal age affected the longevity and lifetime reproductive success (LRS) of female Columbian ground squirrels (Urocitellus columbianus). We hypothesized that early life conditions such as offspring weight would not only have lifetime fitness consequences but also intergenerational effects. We found that weight at weaning had a significant impact on longevity, with heavier individuals living longer. The relative timing of an individual’s birth did not have a significant association with either longevity or LRS. Individuals born to heavier mothers were found to have significantly higher LRS than those born to lighter mothers. Finally, maternal age was found to be significantly associated with their offspring’s LRS, with older mothers having less successful offspring. Our results provide evidence that early life conditions do have lifelong fitness and sometimes intergenerational consequences for Columbian ground squirrels.","PeriodicalId":8840,"journal":{"name":"Behavioral Ecology","volume":"46 7 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140002775","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rita Fortuna, Rita Covas, Pietro B D’Amelio, Liliana R Silva, Charline Parenteau, Louis Bliard, Fanny Rybak, Claire Doutrelant, Matthieu Paquet
Predation risk can influence behaviour, reproductive investment and, ultimately, individuals’ fitness. In high-risk environments, females often reduce allocation to reproduction, which can affect offspring phenotype and breeding success. In cooperative breeders, helpers contribute to feed the offspring, and groups often live and forage together. Helpers can therefore improve reproductive success, but also influence breeders’ condition, stress levels and predation risk. Yet, whether helper presence can buffer the effects of predation risk on maternal reproductive allocation remains unstudied. Here, we used the cooperatively breeding sociable weaver Philetairus socius to test interactive effects of predation risk and breeding group size on maternal allocation to clutch size, egg mass, yolk mass, and yolk corticosterone. We increased perceived predation risk before egg laying using playbacks of the adults’ main predator, gabar goshawk (Micronisus gabar). We also tested interactive effects of group size and prenatal predator-playbacks on offspring hatching and fledging probability. Predator-exposed females laid eggs with 4% lighter yolks, but predator-calls’ exposure did not clearly affect clutch size, egg mass or egg corticosterone levels. Playback-treatment effects on yolk mass were independent of group size, suggesting that helpers’ presence did not mitigate predation risk effects on maternal allocation. Although predator-induced reductions in yolk mass may decrease nutrients’ availability to offspring, potentially affecting their survival, playback-treatment effects on hatching and fledging success were not evident. The interplay between helper presence and predator effects on maternal reproductive investment is still an overlooked area of life history and physiological evolutionary trade-offs that requires further studies.
{"title":"Interplay of cooperative breeding and predation risk on egg allocation and reproductive output","authors":"Rita Fortuna, Rita Covas, Pietro B D’Amelio, Liliana R Silva, Charline Parenteau, Louis Bliard, Fanny Rybak, Claire Doutrelant, Matthieu Paquet","doi":"10.1093/beheco/arae010","DOIUrl":"https://doi.org/10.1093/beheco/arae010","url":null,"abstract":"Predation risk can influence behaviour, reproductive investment and, ultimately, individuals’ fitness. In high-risk environments, females often reduce allocation to reproduction, which can affect offspring phenotype and breeding success. In cooperative breeders, helpers contribute to feed the offspring, and groups often live and forage together. Helpers can therefore improve reproductive success, but also influence breeders’ condition, stress levels and predation risk. Yet, whether helper presence can buffer the effects of predation risk on maternal reproductive allocation remains unstudied. Here, we used the cooperatively breeding sociable weaver Philetairus socius to test interactive effects of predation risk and breeding group size on maternal allocation to clutch size, egg mass, yolk mass, and yolk corticosterone. We increased perceived predation risk before egg laying using playbacks of the adults’ main predator, gabar goshawk (Micronisus gabar). We also tested interactive effects of group size and prenatal predator-playbacks on offspring hatching and fledging probability. Predator-exposed females laid eggs with 4% lighter yolks, but predator-calls’ exposure did not clearly affect clutch size, egg mass or egg corticosterone levels. Playback-treatment effects on yolk mass were independent of group size, suggesting that helpers’ presence did not mitigate predation risk effects on maternal allocation. Although predator-induced reductions in yolk mass may decrease nutrients’ availability to offspring, potentially affecting their survival, playback-treatment effects on hatching and fledging success were not evident. The interplay between helper presence and predator effects on maternal reproductive investment is still an overlooked area of life history and physiological evolutionary trade-offs that requires further studies.","PeriodicalId":8840,"journal":{"name":"Behavioral Ecology","volume":"18 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140003014","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In species that provide biparental care, there is sexual conflict between parents over how much each should contribute towards caring for their joint offspring. Theoretical models for the resolution of this conflict through behavioral negotiation between parents assume that parents cannot assess their partner’s state directly but do so indirectly by monitoring their partner's contribution. Here, we test whether parents can assess their partner’s state directly by investigating the effect of nutritional state on cooperation between parents in the burying beetle Nicrophorus vespilloides. We used a two-by-two factorial design, in which a well-fed or food-deprived female was paired with a well-fed or food-deprived male. We found that females adjusted their level of care in response to both their own nutritional state and that of their partner and that these decisions were independent of their partner’s contribution. We found no evidence that males responded directly to nutritional state. Males instead responded indirectly based on the contribution of their partner. Our results suggest that parents are able to assess the state of their partner, in contrast to what has been assumed, and that these assessments play an important role in the mediation of sexual conflict between caring parents.
{"title":"Flexible females: nutritional state influences biparental cooperation in a burying beetle","authors":"Georgia A Lambert, Per T Smiseth","doi":"10.1093/beheco/arae009","DOIUrl":"https://doi.org/10.1093/beheco/arae009","url":null,"abstract":"In species that provide biparental care, there is sexual conflict between parents over how much each should contribute towards caring for their joint offspring. Theoretical models for the resolution of this conflict through behavioral negotiation between parents assume that parents cannot assess their partner’s state directly but do so indirectly by monitoring their partner's contribution. Here, we test whether parents can assess their partner’s state directly by investigating the effect of nutritional state on cooperation between parents in the burying beetle Nicrophorus vespilloides. We used a two-by-two factorial design, in which a well-fed or food-deprived female was paired with a well-fed or food-deprived male. We found that females adjusted their level of care in response to both their own nutritional state and that of their partner and that these decisions were independent of their partner’s contribution. We found no evidence that males responded directly to nutritional state. Males instead responded indirectly based on the contribution of their partner. Our results suggest that parents are able to assess the state of their partner, in contrast to what has been assumed, and that these assessments play an important role in the mediation of sexual conflict between caring parents.","PeriodicalId":8840,"journal":{"name":"Behavioral Ecology","volume":"40 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139956939","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Behavior, like most other traits, can have a spatial component and variability of behavior at the population level is predicted. In the present paper we explore male mate choice at this level. Male mate choice, while maybe not as common as female choice, is expected to evolve when males respond to significant variation in female quality and for example prefer females with higher fecundity. In fishes, higher fecundity is associated with larger body size, an easily measured trait. In the present study we investigated the presence of male mate choice for larger females in a widespread species of livebearing fish, Limia perugiae, while comparing preferences between populations. We hypothesized that environmental variation, for example in the form of salinity, might result in population differences. Using dichotomous choice tests, we analyzed behavioral data for 80 individuals from seven distinct populations from Hispaniola. We found that L. perugiae males significantly preferred large females, but that there was no significant statistical variation between populations.
{"title":"No geographical differences in male mate choice in a widespread fish, Limia perugiae","authors":"Chance Powell, Ingo Schlupp","doi":"10.1093/beheco/arae008","DOIUrl":"https://doi.org/10.1093/beheco/arae008","url":null,"abstract":"Behavior, like most other traits, can have a spatial component and variability of behavior at the population level is predicted. In the present paper we explore male mate choice at this level. Male mate choice, while maybe not as common as female choice, is expected to evolve when males respond to significant variation in female quality and for example prefer females with higher fecundity. In fishes, higher fecundity is associated with larger body size, an easily measured trait. In the present study we investigated the presence of male mate choice for larger females in a widespread species of livebearing fish, Limia perugiae, while comparing preferences between populations. We hypothesized that environmental variation, for example in the form of salinity, might result in population differences. Using dichotomous choice tests, we analyzed behavioral data for 80 individuals from seven distinct populations from Hispaniola. We found that L. perugiae males significantly preferred large females, but that there was no significant statistical variation between populations.","PeriodicalId":8840,"journal":{"name":"Behavioral Ecology","volume":"66 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139755267","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Parental overproduction is hypothesized to hedge against uncertainty over food availability and stochastic death of offspring, and to improve brood fitness. Understanding the evolution of overproduction requires quantifying its benefits to parents across a wide range of ecological conditions, which has rarely been done. Using a multiple hypotheses approach and 30 years of data, we evaluated the benefits of overproduction in the Blue-footed booby, a seabird that lays up to three eggs asynchronously, resulting in an aggressive brood hierarchy that facilitates the death of last-hatched chicks under low food abundance. Results support the resource-tracking hypothesis, as low prey abundance (estimated from sea surface temperature and chlorophyll-a concentration) led to rapid brood reduction. The insurance hypothesis was supported in broods of three, where last-hatched chicks’ survival increased after a sibling’s death. Conversely, in broods of two, results suggested that parents abandoned last-hatched chicks following first-hatched chicks’ deaths. No direct evidence supported the facilitation hypothesis: presence of a last-hatched chick during development did not enhance its sibling’s fitness in the short or long term. The value of last-hatched offspring to parents, as “extra” or “insurance” varied with indices of food abundance, brood size, and parental age. Ninety percent of overproduction benefit came from enabling parents to capitalize on favorable conditions by fledging additional offspring. Our study provides insight into the forces driving overproduction, explaining the adaptiveness of this apparently wasteful behavior and allowing us to better predict how overproduction’s benefits might be modified by ocean warming.
{"title":"Parental overproduction allows siblicidal bird to adjust brood size to climate-driven prey variation","authors":"Iván Bizberg-Barraza, Cristina Rodríguez, Hugh Drummond","doi":"10.1093/beheco/arae007","DOIUrl":"https://doi.org/10.1093/beheco/arae007","url":null,"abstract":"Parental overproduction is hypothesized to hedge against uncertainty over food availability and stochastic death of offspring, and to improve brood fitness. Understanding the evolution of overproduction requires quantifying its benefits to parents across a wide range of ecological conditions, which has rarely been done. Using a multiple hypotheses approach and 30 years of data, we evaluated the benefits of overproduction in the Blue-footed booby, a seabird that lays up to three eggs asynchronously, resulting in an aggressive brood hierarchy that facilitates the death of last-hatched chicks under low food abundance. Results support the resource-tracking hypothesis, as low prey abundance (estimated from sea surface temperature and chlorophyll-a concentration) led to rapid brood reduction. The insurance hypothesis was supported in broods of three, where last-hatched chicks’ survival increased after a sibling’s death. Conversely, in broods of two, results suggested that parents abandoned last-hatched chicks following first-hatched chicks’ deaths. No direct evidence supported the facilitation hypothesis: presence of a last-hatched chick during development did not enhance its sibling’s fitness in the short or long term. The value of last-hatched offspring to parents, as “extra” or “insurance” varied with indices of food abundance, brood size, and parental age. Ninety percent of overproduction benefit came from enabling parents to capitalize on favorable conditions by fledging additional offspring. Our study provides insight into the forces driving overproduction, explaining the adaptiveness of this apparently wasteful behavior and allowing us to better predict how overproduction’s benefits might be modified by ocean warming.","PeriodicalId":8840,"journal":{"name":"Behavioral Ecology","volume":"14 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139666771","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Skye D Fissette, Tyler J Buchinger, Sonam Tamrakar, Anne M Scott, Weiming Li
The sensory trap model of signal evolution suggests that males manipulate females into mating using traits that mimic cues used in a nonsexual context. Despite much empirical support for sensory traps, little is known about how females evolve in response to these deceptive signals. Female sea lamprey (Petromyzon marinus) evolved to discriminate a male sex pheromone from the larval odor it mimics and orient only towards males during mate search. Larvae and males release the attractant 3-keto petromyzonol sulfate (3kPZS), but spawning females avoid larval odor using the pheromone antagonist, petromyzonol sulfate (PZS), which larvae but not males, release at higher rates than 3kPZS. We tested the hypothesis that migratory females also discriminate between larval odor and the male pheromone and orient only to larval odor during anadromous migration, when they navigate within spawning streams using larval odor before they begin mate search. In-stream behavioral assays revealed that, unlike spawning females, migratory females do not discriminate between mixtures of 3kPZS and PZS applied at ratios typical of larval versus male odorants. Our results indicate females discriminate between the sexual and nonsexual sources of 3kPZS during but not outside of mating and show sensory traps can lead to reliable sexual communication without females shifting their responses in the original context.
{"title":"Sensory trap leads to reliable communication without a shift in nonsexual responses to the model cue","authors":"Skye D Fissette, Tyler J Buchinger, Sonam Tamrakar, Anne M Scott, Weiming Li","doi":"10.1093/beheco/arae006","DOIUrl":"https://doi.org/10.1093/beheco/arae006","url":null,"abstract":"The sensory trap model of signal evolution suggests that males manipulate females into mating using traits that mimic cues used in a nonsexual context. Despite much empirical support for sensory traps, little is known about how females evolve in response to these deceptive signals. Female sea lamprey (Petromyzon marinus) evolved to discriminate a male sex pheromone from the larval odor it mimics and orient only towards males during mate search. Larvae and males release the attractant 3-keto petromyzonol sulfate (3kPZS), but spawning females avoid larval odor using the pheromone antagonist, petromyzonol sulfate (PZS), which larvae but not males, release at higher rates than 3kPZS. We tested the hypothesis that migratory females also discriminate between larval odor and the male pheromone and orient only to larval odor during anadromous migration, when they navigate within spawning streams using larval odor before they begin mate search. In-stream behavioral assays revealed that, unlike spawning females, migratory females do not discriminate between mixtures of 3kPZS and PZS applied at ratios typical of larval versus male odorants. Our results indicate females discriminate between the sexual and nonsexual sources of 3kPZS during but not outside of mating and show sensory traps can lead to reliable sexual communication without females shifting their responses in the original context.","PeriodicalId":8840,"journal":{"name":"Behavioral Ecology","volume":"14 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139667021","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Miraim Benita, Ariel Menahem, Inon Scharf, Daphna Gottlieb
Temporal niche segregation is a way to reduce competition over shared resources. Species with overlapping spatial niches often show plasticity and can use different activity times to minimize competition with and disturbance by other species. In many granivores, especially those living in their food resources, there is low competition over food, but other selective forces can drive distinct temporal activity times. Reproductive interference, that is, the interaction between individuals of different species during mate acquisition, can be such a driving force. Reproductive interference is a strong driving force for niche segregation between the co-occurring flour beetles Tribolium castaneum and Tribolium confusum (Coleoptera: Tenebrionidae). Nevertheless, most studies on Tribolium spp. evaluated other selective forces, such as resource competition, which are potentially weaker. Here, we aimed to characterize the species’ peak activity time and its plasticity when exposed to a possible reproductive interference cue. We used a synthetic aggregative pheromone, shared by both species, as a cue for potential reproductive interference. We compared temporal niche plasticity between the sexes because reproductive interference is known mainly to reduce the female’s fitness. We found that both species’ activity times were hard-wired to an endogenous clock and that the sexes differed in their peak activity time and activity level. However, once exposed to the aggregation pheromone, only females shifted their activity time to match that of conspecific males, hence expressing more plasticity than the males to reduce Reproductive interference. These findings suggest an important role of the aggregation pheromone in the process of niche segregation.
{"title":"Inter- and intraspecific female behavioral plasticity drive temporal niche segregation in two Tribolium species","authors":"Miraim Benita, Ariel Menahem, Inon Scharf, Daphna Gottlieb","doi":"10.1093/beheco/arad116","DOIUrl":"https://doi.org/10.1093/beheco/arad116","url":null,"abstract":"Temporal niche segregation is a way to reduce competition over shared resources. Species with overlapping spatial niches often show plasticity and can use different activity times to minimize competition with and disturbance by other species. In many granivores, especially those living in their food resources, there is low competition over food, but other selective forces can drive distinct temporal activity times. Reproductive interference, that is, the interaction between individuals of different species during mate acquisition, can be such a driving force. Reproductive interference is a strong driving force for niche segregation between the co-occurring flour beetles Tribolium castaneum and Tribolium confusum (Coleoptera: Tenebrionidae). Nevertheless, most studies on Tribolium spp. evaluated other selective forces, such as resource competition, which are potentially weaker. Here, we aimed to characterize the species’ peak activity time and its plasticity when exposed to a possible reproductive interference cue. We used a synthetic aggregative pheromone, shared by both species, as a cue for potential reproductive interference. We compared temporal niche plasticity between the sexes because reproductive interference is known mainly to reduce the female’s fitness. We found that both species’ activity times were hard-wired to an endogenous clock and that the sexes differed in their peak activity time and activity level. However, once exposed to the aggregation pheromone, only females shifted their activity time to match that of conspecific males, hence expressing more plasticity than the males to reduce Reproductive interference. These findings suggest an important role of the aggregation pheromone in the process of niche segregation.","PeriodicalId":8840,"journal":{"name":"Behavioral Ecology","volume":"44 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139509626","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}