Pub Date : 2024-07-09DOI: 10.1007/s10533-024-01161-z
Nikhil R. Chari, Shersingh Joseph Tumber-Dávila, Richard P. Phillips, Taryn L. Bauerle, Melanie Brunn, Benjamin D. Hafner, Tamir Klein, Sophie Obersteiner, Michaela K. Reay, Sami Ullah, Benton N. Taylor
Root exudation, the export of low-molecular weight organic carbon (C) from living plant roots to soil, influences microbial activity, nutrient availability, and ecosystem feedbacks to climate change, but the magnitude of this C flux at ecosystem and global scales is largely unknown. Here, we synthesize in situ measurements of root exudation rates and couple those to estimates of fine root biomass to estimate global and biome-level root exudate C fluxes. We estimate a global root exudate flux of 13.4 (10.1–20.2) Pg C y−1, or about 9% (7–14%) of global annual gross primary productivity. We did not find differences in root mass-specific exudation rates among biomes, though total exudate fluxes are estimated to be greatest in grasslands owing to their high density of absorptive root biomass. Our synthesis highlights the global importance of root exudates in the terrestrial C cycle and identifies regions where more in situ measurements are needed to improve future estimates of root exudate C fluxes.
根系渗出是低分子量有机碳(C)从活体植物根系向土壤的输出,它影响着微生物活动、养分供应和生态系统对气候变化的反馈,但这种碳通量在生态系统和全球尺度上的大小在很大程度上是未知的。在这里,我们综合了对根系渗出率的现场测量结果,并将其与细根生物量的估计值结合起来,以估算全球和生物组水平的根系渗出碳通量。我们估计全球根外渗通量为 13.4 (10.1-20.2) Pg C y-1,约占全球年总初级生产力的 9% (7-14%)。我们没有发现不同生物群落的根系特定渗出率存在差异,但由于草地吸收性根系生物量密度高,估计草地的总渗出通量最大。我们的综述强调了根系渗出物在陆地碳循环中的全球重要性,并确定了需要进行更多现场测量的区域,以改进未来对根系渗出物碳通量的估计。
{"title":"Estimating the global root exudate carbon flux","authors":"Nikhil R. Chari, Shersingh Joseph Tumber-Dávila, Richard P. Phillips, Taryn L. Bauerle, Melanie Brunn, Benjamin D. Hafner, Tamir Klein, Sophie Obersteiner, Michaela K. Reay, Sami Ullah, Benton N. Taylor","doi":"10.1007/s10533-024-01161-z","DOIUrl":"10.1007/s10533-024-01161-z","url":null,"abstract":"<div><p>Root exudation, the export of low-molecular weight organic carbon (C) from living plant roots to soil, influences microbial activity, nutrient availability, and ecosystem feedbacks to climate change, but the magnitude of this C flux at ecosystem and global scales is largely unknown. Here, we synthesize in situ measurements of root exudation rates and couple those to estimates of fine root biomass to estimate global and biome-level root exudate C fluxes. We estimate a global root exudate flux of 13.4 (10.1–20.2) Pg C y<sup>−1</sup>, or about 9% (7–14%) of global annual gross primary productivity. We did not find differences in root mass-specific exudation rates among biomes, though total exudate fluxes are estimated to be greatest in grasslands owing to their high density of absorptive root biomass. Our synthesis highlights the global importance of root exudates in the terrestrial C cycle and identifies regions where more in situ measurements are needed to improve future estimates of root exudate C fluxes.</p></div>","PeriodicalId":8901,"journal":{"name":"Biogeochemistry","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10533-024-01161-z.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141561241","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-09DOI: 10.1007/s10533-024-01159-7
Hannelore Waska, Hanne M. Banko-Kubis
Beach wrack is an important supplier of nutrients and organic matter to sandy beach ecosystems and underlying subterranean estuaries (STEs), producing metabolic hotspots in these otherwise organic carbon- and nutrient-poor environments. To assess the impact of beach wrack type (e.g., marine, terrestrial, plant, animal) and environmental settings (e.g., tidal inundation, precipitation, and solar irradiation) on nutrient and dissolved organic matter (DOM) release, a series of leaching experiments was conducted. Quantities of leached nutrients and dissolved organic carbon (DOC) were determined, and DOM molecular composition was investigated using Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). Millimolar—to molar amounts of DOC and dissolved nitrogen were released from the beach cast per kg dry weight, with type of wrack and leaching medium (fresh- vs. saltwater) exerting the biggest influences. Exemplary for animal cast, jellyfish leached up to two 100-fold more, mostly organic, nitrogen compared to all other beach wrack types. FT-ICR-MS data of solid-phase extracted DOM indicated that beach wrack releases compounds with putative mono- and oligosaccharide-, amino acid- and vitamin-type molecular formulae, which likely serve as valuable substrate for heterotrophic microorganisms. DOM from the brown seaweed Fucus sp. was more aromatic than seawater DOM and even beach wrack of terrestrial origin, probably from structural components and secondary metabolites such as phlorotannins. We conclude that DOM and nutrient release from beach wrack strongly depends on wrack type and leaching medium, may obscure molecular provenance proxies (e.g., terrestrial indices), and adds a nutritional boost to infiltrating sea- and rainwater which likely impact microbial respiration rates in the STE.
海滩裹挟物是沙滩生态系统和地下河口(STEs)的重要营养物质和有机物质供应者,在这些原本缺乏有机碳和营养物质的环境中产生新陈代谢热点。为了评估海滩褶皱类型(如海洋、陆地、植物、动物)和环境背景(如潮汐淹没、降水和太阳辐射)对养分和溶解有机物(DOM)释放的影响,进行了一系列浸出实验。测定了浸出养分和溶解有机碳(DOC)的数量,并使用傅立叶变换离子回旋共振质谱法(FT-ICR-MS)研究了 DOM 的分子组成。每千克干重的海滩弃置物释放出的 DOC 和溶解氮的摩尔至摩尔量,对其影响最大的是栅栏类型和沥滤介质(淡水和海水)。与其他所有类型的海滩缠绕物相比,水母沥滤的动物粪便中的氮含量(主要是有机氮)要高出两倍到 100 倍。固相萃取 DOM 的 FT-ICR-MS 数据表明,海滩鞭痕释放出的化合物具有假定的单糖和寡糖、氨基酸和维生素类分子式,这些化合物可能是异养微生物的宝贵底物。褐藻 Fucus sp.产生的 DOM 比海水 DOM 甚至是陆源海滩栅栏产生的 DOM 更芳香,这可能是结构成分和次生代谢物(如绿单宁)的作用。我们的结论是,海滩栅栏释放的 DOM 和营养物质在很大程度上取决于栅栏类型和沥滤介质,可能会掩盖分子来源代用指标(如陆地指数),并为渗入的海水和雨水增加营养,这可能会影响 STE 中的微生物呼吸速率。
{"title":"Dissolved organic matter released from beach wrack is source-specific and molecularly highly diverse","authors":"Hannelore Waska, Hanne M. Banko-Kubis","doi":"10.1007/s10533-024-01159-7","DOIUrl":"10.1007/s10533-024-01159-7","url":null,"abstract":"<div><p>Beach wrack is an important supplier of nutrients and organic matter to sandy beach ecosystems and underlying subterranean estuaries (STEs), producing metabolic hotspots in these otherwise organic carbon- and nutrient-poor environments. To assess the impact of beach wrack type (e.g., marine, terrestrial, plant, animal) and environmental settings (e.g., tidal inundation, precipitation, and solar irradiation) on nutrient and dissolved organic matter (DOM) release, a series of leaching experiments was conducted. Quantities of leached nutrients and dissolved organic carbon (DOC) were determined, and DOM molecular composition was investigated using Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). Millimolar—to molar amounts of DOC and dissolved nitrogen were released from the beach cast per kg dry weight, with type of wrack and leaching medium (fresh- vs. saltwater) exerting the biggest influences. Exemplary for animal cast, jellyfish leached up to two 100-fold more, mostly organic, nitrogen compared to all other beach wrack types. FT-ICR-MS data of solid-phase extracted DOM indicated that beach wrack releases compounds with putative mono- and oligosaccharide-, amino acid- and vitamin-type molecular formulae, which likely serve as valuable substrate for heterotrophic microorganisms. DOM from the brown seaweed <i>Fucus</i> sp. was more aromatic than seawater DOM and even beach wrack of terrestrial origin, probably from structural components and secondary metabolites such as phlorotannins. We conclude that DOM and nutrient release from beach wrack strongly depends on wrack type and leaching medium, may obscure molecular provenance proxies (e.g., terrestrial indices), and adds a nutritional boost to infiltrating sea- and rainwater which likely impact microbial respiration rates in the STE.</p></div>","PeriodicalId":8901,"journal":{"name":"Biogeochemistry","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10533-024-01159-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141561242","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-28DOI: 10.1007/s10533-024-01155-x
Yongli Zhou, Teri O’Meara, Zoe G. Cardon, Jiaze Wang, Benjamin N. Sulman, Anne E. Giblin, Inke Forbrich
{"title":"Correction to: Simulated plant-mediated oxygen input has strong impacts on fine-scale porewater biogeochemistry and weak impacts on integrated methane fluxes in coastal wetlands","authors":"Yongli Zhou, Teri O’Meara, Zoe G. Cardon, Jiaze Wang, Benjamin N. Sulman, Anne E. Giblin, Inke Forbrich","doi":"10.1007/s10533-024-01155-x","DOIUrl":"10.1007/s10533-024-01155-x","url":null,"abstract":"","PeriodicalId":8901,"journal":{"name":"Biogeochemistry","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10533-024-01155-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142414710","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-27DOI: 10.1007/s10533-024-01156-w
Sarah M. Klionsky, Christopher Neill, Ashley M. Helton, Beth Lawrence
Restorations of former cranberry farms (“bogs”) aim to re-establish native wetland vegetation, promote cold water habitat, and attenuate nitrogen (N) delivery to coastal waters. It is unclear, though, how elements of restoration design such as microtopography, groundwater interception, and plant communities affect N removal via denitrification. In a recently restored riparian cranberry bog with created microtopography, we compared denitrification potential, nitrous oxide (N2O) yield of denitrification (ratio of N2O:N2O + N2 gases), in situ N2O fluxes, soil chemistry, and plant communities at the highest and lowest elevations within 20 plots and at four side-channel groundwater seeps. Denitrification potential was > 2 × greater at low elevations, which had plant communities distinct from high elevations, and was positively correlated with plant species richness (Spearman’s rho = 0.43). Despite detecting high N2O yield (0.86 ± 0.16) from low elevation soils, we observed small N2O emissions in situ, suggesting minimal incomplete denitrification even in saturated depressions. Groundwater seeps had an order of magnitude higher denitrification potentials and 100–300 × greater soil NO3− concentrations than the typically saturated low elevation soils. Groundwater seeps also had high N2O yield (1.05 ± 0.15) and higher, but spatially variable, in situ N2O emissions. Our results indicate that N removal is concentrated where soils interact with NO3–rich groundwater, but other factors such as low soil carbon (C) also limit denitrification. Designing restoration features to increase groundwater residence time, particularly in low lying, species rich areas, may promote more N attenuation in restored cranberry bogs and other herbaceous riparian wetlands.
{"title":"Groundwater seeps are hot spots of denitrification and N2O emissions in a restored wetland","authors":"Sarah M. Klionsky, Christopher Neill, Ashley M. Helton, Beth Lawrence","doi":"10.1007/s10533-024-01156-w","DOIUrl":"10.1007/s10533-024-01156-w","url":null,"abstract":"<div><p>Restorations of former cranberry farms (“bogs”) aim to re-establish native wetland vegetation, promote cold water habitat, and attenuate nitrogen (N) delivery to coastal waters. It is unclear, though, how elements of restoration design such as microtopography, groundwater interception, and plant communities affect N removal via denitrification. In a recently restored riparian cranberry bog with created microtopography, we compared denitrification potential, nitrous oxide (N<sub>2</sub>O) yield of denitrification (ratio of N<sub>2</sub>O:N<sub>2</sub>O + N<sub>2</sub> gases), in situ N<sub>2</sub>O fluxes, soil chemistry, and plant communities at the highest and lowest elevations within 20 plots and at four side-channel groundwater seeps. Denitrification potential was > 2 × greater at low elevations, which had plant communities distinct from high elevations, and was positively correlated with plant species richness (Spearman’s rho = 0.43). Despite detecting high N<sub>2</sub>O yield (0.86 ± 0.16) from low elevation soils, we observed small N<sub>2</sub>O emissions in situ, suggesting minimal incomplete denitrification even in saturated depressions. Groundwater seeps had an order of magnitude higher denitrification potentials and 100–300 × greater soil NO<sub>3</sub>− concentrations than the typically saturated low elevation soils. Groundwater seeps also had high N<sub>2</sub>O yield (1.05 ± 0.15) and higher, but spatially variable, in situ N<sub>2</sub>O emissions. Our results indicate that N removal is concentrated where soils interact with NO<sub>3</sub>–rich groundwater, but other factors such as low soil carbon (C) also limit denitrification. Designing restoration features to increase groundwater residence time, particularly in low lying, species rich areas, may promote more N attenuation in restored cranberry bogs and other herbaceous riparian wetlands.</p></div>","PeriodicalId":8901,"journal":{"name":"Biogeochemistry","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10533-024-01156-w.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141461987","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-21DOI: 10.1007/s10533-024-01158-8
Robyn C. O’Halloran, Jennifer J. Guerard, Delphis F. Levia
Stemflow is a conduit for the transport of canopy-derived dissolved organic matter (DOM) to the forest floor. This study examined the character of stemflow DOM for four tree species over four phenophases (leafless, emergence, leafed, and senescence for deciduous species and leafed-winter, emergence, leafed- spring/summer, and senescence for coniferous species) occurring in temperate forests; namely, Betula lenta L. (sweet birch), Fagus grandifolia Ehrh. (American beech), Liriodendron tulipifera L. (yellow poplar), and Pinus rigida Mill. (pitch pine). American beech exhibited the lowest average specific UV absorbance at 254 nm (SUVA254) values, while yellow poplar displayed the highest values. SUVA254 values were largest in senescence and smallest in emergence. The spectral slope ratio was lower for pitch pine than the deciduous tree species. Humification index (HIX) values decreased across all species during the emergence phenophase. The developed and validated stemflow-specific four-component parallel factor analysis (PARAFAC) model demonstrated the combined influence of interspecific and temporal fluctuations on the composition of humic and protein-like substances within stemflow. By separating and examining stemflow DOM independent of throughfall, our study provides fresh insights into the spatiotemporal dynamics of stemflow inputs to near-trunk soils that may inform hot spots and hot moments theories.
{"title":"Stemflow dissolved organic matter in mixed temperate forests: temporal and interspecific variation of optical indices and development of a stemflow-specific PARAFAC model","authors":"Robyn C. O’Halloran, Jennifer J. Guerard, Delphis F. Levia","doi":"10.1007/s10533-024-01158-8","DOIUrl":"10.1007/s10533-024-01158-8","url":null,"abstract":"<div><p>Stemflow is a conduit for the transport of canopy-derived dissolved organic matter (DOM) to the forest floor. This study examined the character of stemflow DOM for four tree species over four phenophases (leafless, emergence, leafed, and senescence for deciduous species and leafed-winter, emergence, leafed- spring/summer, and senescence for coniferous species) occurring in temperate forests; namely, <i>Betula lenta</i> L. (sweet birch), <i>Fagus grandifolia</i> Ehrh. (American beech), <i>Liriodendron tulipifera</i> L. (yellow poplar), and <i>Pinus rigida</i> Mill. (pitch pine). American beech exhibited the lowest average specific UV absorbance at 254 nm (SUVA<sub>254</sub>) values, while yellow poplar displayed the highest values. SUVA<sub>254</sub> values were largest in senescence and smallest in emergence. The spectral slope ratio was lower for pitch pine than the deciduous tree species. Humification index (HIX) values decreased across all species during the emergence phenophase. The developed and validated stemflow-specific four-component parallel factor analysis (PARAFAC) model demonstrated the combined influence of interspecific and temporal fluctuations on the composition of humic and protein-like substances within stemflow. By separating and examining stemflow DOM independent of throughfall, our study provides fresh insights into the spatiotemporal dynamics of stemflow inputs to near-trunk soils that may inform hot spots and hot moments theories.</p></div>","PeriodicalId":8901,"journal":{"name":"Biogeochemistry","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10533-024-01158-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141436174","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-13DOI: 10.1007/s10533-024-01153-z
Audrey H. Goeckner, Ashley R. Smyth, Meredith A. Holgerson, Alexander J. Reisinger
Urban stormwater ponds (SWPs) are engineered ecosystems designed to prevent flooding and protect downstream ecosystems by retaining nutrients associated with stormwater runoff, including nitrogen (N). Despite these expectations, multiple studies have found that SWPs have low N removal efficiencies and can be sources of N to downstream ecosystems. To understand mechanisms controlling the fate of N in SWPs, we quantified dinitrogen (N2) gas saturation to characterize net N2 exchange as either net denitrification or net N-fixation. We assessed temporal and spatial patterns of N2 dynamics in fifteen SWPs and six naturally occurring ponds in undisturbed watersheds (Florida, USA) by sampling in two seasons (dry and wet) and from multiple depths of the water column. Samples from SWPs were equally likely to exhibit N2 supersaturation (net denitrification; 50%) or undersaturation (net N-fixation; 50%). In contrast, the majority (82%) of samples from natural ponds were supersaturated with N2, indicating net denitrification. The mean SWP air–water N2 flux was − 1.7 μg N2-N m−2 h−1 (range − 500 to 433 μg N2-N m−2 h−1), which was lower than clear (40 μg N2-N m−2 h−1; range − 68 to 74 μg N2-N m−2 h−1) and humic (202 μg N2-N m−2 h−1; range 41 to 407 μg N2-N m−2 h−1) natural ponds despite considerably higher variation in SWPs. These results indicate that SWPs may have low N removal efficiencies in part due to N-fixation adding new N to the system. Overall, this study shows that SWPs are less effective than natural ponds at removing reactive N from the environment, potentially impacting downstream water quality.
{"title":"Subtropical stormwater ponds are more frequently net nitrogen fixing compared to natural ponds","authors":"Audrey H. Goeckner, Ashley R. Smyth, Meredith A. Holgerson, Alexander J. Reisinger","doi":"10.1007/s10533-024-01153-z","DOIUrl":"10.1007/s10533-024-01153-z","url":null,"abstract":"<div><p>Urban stormwater ponds (SWPs) are engineered ecosystems designed to prevent flooding and protect downstream ecosystems by retaining nutrients associated with stormwater runoff, including nitrogen (N). Despite these expectations, multiple studies have found that SWPs have low N removal efficiencies and can be sources of N to downstream ecosystems. To understand mechanisms controlling the fate of N in SWPs, we quantified dinitrogen (N<sub>2</sub>) gas saturation to characterize net N<sub>2</sub> exchange as either net denitrification or net N-fixation. We assessed temporal and spatial patterns of N<sub>2</sub> dynamics in fifteen SWPs and six naturally occurring ponds in undisturbed watersheds (Florida, USA) by sampling in two seasons (dry and wet) and from multiple depths of the water column. Samples from SWPs were equally likely to exhibit N<sub>2</sub> supersaturation (net denitrification; 50%) or undersaturation (net N-fixation; 50%). In contrast, the majority (82%) of samples from natural ponds were supersaturated with N<sub>2</sub>, indicating net denitrification. The mean SWP air–water N<sub>2</sub> flux was − 1.7 μg N<sub>2</sub>-N m<sup>−2</sup> h<sup>−1</sup> (range − 500 to 433 μg N<sub>2</sub>-N m<sup>−2</sup> h<sup>−1</sup>), which was lower than clear (40 μg N<sub>2</sub>-N m<sup>−2</sup> h<sup>−1</sup>; range − 68 to 74 μg N<sub>2</sub>-N m<sup>−2</sup> h<sup>−1</sup>) and humic (202 μg N<sub>2</sub>-N m<sup>−2</sup> h<sup>−1</sup>; range 41 to 407 μg N<sub>2</sub>-N m<sup>−2</sup> h<sup>−1</sup>) natural ponds despite considerably higher variation in SWPs. These results indicate that SWPs may have low N removal efficiencies in part due to N-fixation adding new N to the system. Overall, this study shows that SWPs are less effective than natural ponds at removing reactive N from the environment, potentially impacting downstream water quality.</p></div>","PeriodicalId":8901,"journal":{"name":"Biogeochemistry","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10533-024-01153-z.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141315572","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-07DOI: 10.1007/s10533-024-01154-y
Heili Lowman, Joanna Blaszczak, Ashley Cale, Xiaoli Dong, Stevan Earl, Julia Grabow, Nancy B. Grimm, Tamara K. Harms, John Melack, Ann Marie Reinhold, Betsy Summers, Alex J. Webster
Increased occurrence, size, and intensity of fire result in significant but variable changes to hydrology and material retention in watersheds with concomitant effects on stream biogeochemistry. In arid regions, seasonal and episodic precipitation results in intermittency in flows connecting watersheds to recipient streams that can delay the effects of fire on stream chemistry. We investigated how the spatial extent of fire within watersheds interacts with variability in amount and timing of precipitation to influence stream chemistry of three forested, montane watersheds in a monsoonal climate and four coastal, chaparral watersheds in a Mediterranean climate. We applied state-space models to estimate effects of precipitation, fire, and their interaction on stream chemistry up to five years following fire using 15 + years of monthly observations. Precipitation alone diluted specific conductance and flushed nitrate and phosphate to Mediterranean streams. Fire had positive and negative effects on specific conductance in both climates, whereas ammonium and nitrate concentrations increased following fire in Mediterranean streams. Fire and precipitation had positive interactive effects on specific conductance in monsoonal streams and on ammonium in Mediterranean streams. In most cases, the effects of fire and its interaction with precipitation persisted or were lagged 2–5 years. These results suggest that precipitation influences the timing and intensity of the effects of fire on stream solute dynamics in aridland watersheds, but these responses vary by climate, solute, and watershed characteristics. Time series models were applied to data from long-term monitoring that included observations before and after fire, yielding estimated effects of fire on aridland stream chemistry. This statistical approach captured effects of local-scale temporal variation, including delayed responses to fire, and may be used to reduce uncertainty in predicted responses of water quality under changing fire and precipitation regimes of arid lands.
{"title":"Persistent and lagged effects of fire on stream solutes linked to intermittent precipitation in arid lands","authors":"Heili Lowman, Joanna Blaszczak, Ashley Cale, Xiaoli Dong, Stevan Earl, Julia Grabow, Nancy B. Grimm, Tamara K. Harms, John Melack, Ann Marie Reinhold, Betsy Summers, Alex J. Webster","doi":"10.1007/s10533-024-01154-y","DOIUrl":"10.1007/s10533-024-01154-y","url":null,"abstract":"<div><p>Increased occurrence, size, and intensity of fire result in significant but variable changes to hydrology and material retention in watersheds with concomitant effects on stream biogeochemistry. In arid regions, seasonal and episodic precipitation results in intermittency in flows connecting watersheds to recipient streams that can delay the effects of fire on stream chemistry. We investigated how the spatial extent of fire within watersheds interacts with variability in amount and timing of precipitation to influence stream chemistry of three forested, montane watersheds in a monsoonal climate and four coastal, chaparral watersheds in a Mediterranean climate. We applied state-space models to estimate effects of precipitation, fire, and their interaction on stream chemistry up to five years following fire using 15 + years of monthly observations. Precipitation alone diluted specific conductance and flushed nitrate and phosphate to Mediterranean streams. Fire had positive and negative effects on specific conductance in both climates, whereas ammonium and nitrate concentrations increased following fire in Mediterranean streams. Fire and precipitation had positive interactive effects on specific conductance in monsoonal streams and on ammonium in Mediterranean streams. In most cases, the effects of fire and its interaction with precipitation persisted or were lagged 2–5 years. These results suggest that precipitation influences the timing and intensity of the effects of fire on stream solute dynamics in aridland watersheds, but these responses vary by climate, solute, and watershed characteristics. Time series models were applied to data from long-term monitoring that included observations before and after fire, yielding estimated effects of fire on aridland stream chemistry. This statistical approach captured effects of local-scale temporal variation, including delayed responses to fire, and may be used to reduce uncertainty in predicted responses of water quality under changing fire and precipitation regimes of arid lands.</p></div>","PeriodicalId":8901,"journal":{"name":"Biogeochemistry","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10533-024-01154-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141287134","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-05DOI: 10.1007/s10533-024-01149-9
Anne Breznikar, Daniel L. Pönisch, Marvin Lorenz, Gerald Jurasinski, Gregor Rehder, Maren Voss
Coastal nutrient loads from point sources such as rivers are mostly well-monitored. This is not the case for diffuse nutrient inputs from coastal catchments unconnected to rivers, despite the potential for high inputs due to intensive land use. The German Baltic Sea coastline consists of numerous peatlands that have been diked and drained. However, some of the dikes have been removed in order to re-establish the hydrological connection to the Baltic Sea, restore local biodiversity, and promote natural CO2 uptake. Since these peatlands were used for agriculture, their rewetting may release accumulated nutrients, leading to nutrient export into the Baltic Sea and intensified coastal eutrophication. Data on these potential nutrient exports are mostly lacking. Therefore, this study investigated nutrient exports from two former agricultural, coastal peatlands: Drammendorfer Wiesen, rewetted in 2019, and Karrendorfer Wiesen, rewetted in 1993. Nutrients (NO3–, NO2–, NH4+, PO43–), nitrous oxide (N2O), particulate organic matter (POM, comprising POC and PON; δ13C-POC), chlorophyll-a, and nitrification rates were analyzed in surface water and porewater sampled weekly to monthly in 2019 and 2020 to compare the effects of different time scales after rewetting on nutrient cycling and potential exports. NH4+, NO2−, and PO43− concentrations were higher in the porewater than in the overlying water at both sites, while nutrient concentrations were generally higher at the recently rewetted Drammendorfer Wiesen than at the Karrendorfer Wiesen. NO3− concentrations in porewater, however, were lower than in the overlying water, indicating NO3− retention within the peat, likely due to denitrification. Nitrification rates and N2O concentrations were generally low, except for a high N2O peak immediately after rewetting. These results suggest that denitrification was the dominant process of N2O production at the study sites. Both peatlands exported nutrients to their adjacent bays of the Baltic Sea; however, N exports were 75% lower in the longer-rewetted peatland. Compared to major Baltic Sea rivers, both sites exported larger area-normalized nutrient loads. Our study highlights the need to monitor the impact of rewetting measures over time to obtain accurate estimates of nutrient exports, better assess negative effects on coastal waters, and to improve peatland management.
{"title":"Rewetting effects on nitrogen cycling and nutrient export from coastal peatlands to the Baltic Sea","authors":"Anne Breznikar, Daniel L. Pönisch, Marvin Lorenz, Gerald Jurasinski, Gregor Rehder, Maren Voss","doi":"10.1007/s10533-024-01149-9","DOIUrl":"10.1007/s10533-024-01149-9","url":null,"abstract":"<div><p>Coastal nutrient loads from point sources such as rivers are mostly well-monitored. This is not the case for diffuse nutrient inputs from coastal catchments unconnected to rivers, despite the potential for high inputs due to intensive land use. The German Baltic Sea coastline consists of numerous peatlands that have been diked and drained. However, some of the dikes have been removed in order to re-establish the hydrological connection to the Baltic Sea, restore local biodiversity, and promote natural CO<sub>2</sub> uptake. Since these peatlands were used for agriculture, their rewetting may release accumulated nutrients, leading to nutrient export into the Baltic Sea and intensified coastal eutrophication. Data on these potential nutrient exports are mostly lacking. Therefore, this study investigated nutrient exports from two former agricultural, coastal peatlands: Drammendorfer Wiesen, rewetted in 2019, and Karrendorfer Wiesen, rewetted in 1993. Nutrients (NO<sub>3</sub><sup>–</sup>, NO<sub>2</sub><sup>–</sup>, NH<sub>4</sub><sup>+</sup>, PO<sub>4</sub><sup>3–</sup>), nitrous oxide (N<sub>2</sub>O), particulate organic matter (POM, comprising POC and PON; δ<sup>13</sup>C-POC), chlorophyll-<i>a,</i> and nitrification rates were analyzed in surface water and porewater sampled weekly to monthly in 2019 and 2020 to compare the effects of different time scales after rewetting on nutrient cycling and potential exports. NH<sub>4</sub><sup>+</sup>, NO<sub>2</sub><sup>−</sup>, and PO<sub>4</sub><sup>3−</sup> concentrations were higher in the porewater than in the overlying water at both sites, while nutrient concentrations were generally higher at the recently rewetted Drammendorfer Wiesen than at the Karrendorfer Wiesen. NO<sub>3</sub><sup>−</sup> concentrations in porewater, however, were lower than in the overlying water, indicating NO<sub>3</sub><sup>−</sup> retention within the peat, likely due to denitrification. Nitrification rates and N<sub>2</sub>O concentrations were generally low, except for a high N<sub>2</sub>O peak immediately after rewetting. These results suggest that denitrification was the dominant process of N<sub>2</sub>O production at the study sites. Both peatlands exported nutrients to their adjacent bays of the Baltic Sea; however, N exports were 75% lower in the longer-rewetted peatland. Compared to major Baltic Sea rivers, both sites exported larger area-normalized nutrient loads. Our study highlights the need to monitor the impact of rewetting measures over time to obtain accurate estimates of nutrient exports, better assess negative effects on coastal waters, and to improve peatland management.</p></div>","PeriodicalId":8901,"journal":{"name":"Biogeochemistry","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10533-024-01149-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141251713","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-23DOI: 10.1007/s10533-024-01145-z
Yongli Zhou, Teri O’Meara, Zoe G. Cardon, Jiaze Wang, Benjamin N. Sulman, Anne E. Giblin, Inke Forbrich
Methane (CH4) emissions from wetland ecosystems are controlled by redox conditions in the soil, which are currently underrepresented in Earth system models. Plant-mediated radial oxygen loss (ROL) can increase soil O2 availability, affect local redox conditions, and cause heterogeneous distribution of redox-sensitive chemical species at the root scale, which would affect CH4 emissions integrated over larger scales. In this study, we used a subsurface geochemical simulator (PFLOTRAN) to quantify the effects of incorporating either spatially homogeneous ROL or more complex heterogeneous ROL on model predictions of porewater solute concentration depth profiles (dissolved organic carbon, methane, sulfate, sulfide) and column integrated CH4 fluxes for a tidal coastal wetland. From the heterogeneous ROL simulation, we obtained 18% higher column averaged CH4 concentration at the rooting zone but 5% lower total CH4 flux compared to simulations of the homogeneous ROL or without ROL. This difference is because lower CH4 concentrations occurred in the same rhizosphere volume that was directly connected with plant-mediated transport of CH4 from the rooting zone to the atmosphere. Sensitivity analysis indicated that the impacts of heterogeneous ROL on model predictions of porewater oxygen and sulfide concentrations will be more important under conditions of higher ROL fluxes or more heterogeneous root distribution (lower root densities). Despite the small impact on predicted CH4 emissions, the simulated ROL drastically reduced porewater concentrations of sulfide, an effective phytotoxin, indicating that incorporating ROL combined with sulfur cycling into ecosystem models could potentially improve predictions of plant productivity in coastal wetland ecosystems.
湿地生态系统的甲烷(CH4)排放受土壤氧化还原条件的控制,而目前地球系统模型中对氧化还原条件的反映不足。植物介导的径向氧损失(ROL)可增加土壤中氧气的可用性,影响局部氧化还原条件,并导致对氧化还原敏感的化学物种在根系尺度上的异质分布,这将影响更大尺度上的综合 CH4 排放。在这项研究中,我们使用了一种地下地球化学模拟器(PFLOTRAN),以量化加入空间均质 ROL 或更复杂的异质 ROL 对潮汐沿岸湿地的孔隙水溶质浓度深度剖面(溶解有机碳、甲烷、硫酸盐、硫化物)和柱状综合 CH4 通量模型预测的影响。与同质 ROL 模拟或无 ROL 模拟相比,通过异质 ROL 模拟,根区的柱平均甲烷浓度提高了 18%,但甲烷总通量却降低了 5%。出现这种差异的原因是,在与植物介导的从生根区到大气的甲烷迁移直接相关的同一根圈体积中,甲烷浓度较低。敏感性分析表明,在 ROL 通量较高或根系分布较不均匀(根系密度较低)的条件下,异质性 ROL 对模型预测的孔隙水氧气和硫化物浓度的影响会更大。尽管对预测的甲烷排放量影响较小,但模拟的 ROL 却大大降低了硫化物(一种有效的植物毒素)在孔隙水中的浓度,这表明将 ROL 与硫循环结合到生态系统模型中,有可能改善对沿岸湿地生态系统中植物生产力的预测。
{"title":"Simulated plant-mediated oxygen input has strong impacts on fine-scale porewater biogeochemistry and weak impacts on integrated methane fluxes in coastal wetlands","authors":"Yongli Zhou, Teri O’Meara, Zoe G. Cardon, Jiaze Wang, Benjamin N. Sulman, Anne E. Giblin, Inke Forbrich","doi":"10.1007/s10533-024-01145-z","DOIUrl":"10.1007/s10533-024-01145-z","url":null,"abstract":"<div><p>Methane (CH<sub>4</sub>) emissions from wetland ecosystems are controlled by redox conditions in the soil, which are currently underrepresented in Earth system models. Plant-mediated radial oxygen loss (ROL) can increase soil O<sub>2</sub> availability, affect local redox conditions, and cause heterogeneous distribution of redox-sensitive chemical species at the root scale, which would affect CH<sub>4</sub> emissions integrated over larger scales. In this study, we used a subsurface geochemical simulator (PFLOTRAN) to quantify the effects of incorporating either spatially homogeneous ROL or more complex heterogeneous ROL on model predictions of porewater solute concentration depth profiles (dissolved organic carbon, methane, sulfate, sulfide) and column integrated CH<sub>4</sub> fluxes for a tidal coastal wetland. From the heterogeneous ROL simulation, we obtained 18% higher column averaged CH<sub>4</sub> concentration at the rooting zone but 5% lower total CH<sub>4</sub> flux compared to simulations of the homogeneous ROL or without ROL. This difference is because lower CH<sub>4</sub> concentrations occurred in the same rhizosphere volume that was directly connected with plant-mediated transport of CH<sub>4</sub> from the rooting zone to the atmosphere. Sensitivity analysis indicated that the impacts of heterogeneous ROL on model predictions of porewater oxygen and sulfide concentrations will be more important under conditions of higher ROL fluxes or more heterogeneous root distribution (lower root densities). Despite the small impact on predicted CH<sub>4</sub> emissions, the simulated ROL drastically reduced porewater concentrations of sulfide, an effective phytotoxin, indicating that incorporating ROL combined with sulfur cycling into ecosystem models could potentially improve predictions of plant productivity in coastal wetland ecosystems.</p></div>","PeriodicalId":8901,"journal":{"name":"Biogeochemistry","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10533-024-01145-z.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141092040","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-22DOI: 10.1007/s10533-024-01148-w
Karst J. Schaap, Lucia Fuchslueger, Carlos Alberto Quesada, Florian Hofhansl, Oscar Valverde-Barrantes, Plínio B. Camargo, Marcel R. Hoosbeek
{"title":"Correction to: Seasonal fluctuations of extracellular enzyme activities are related to the biogeochemical cycling of C, N and P in a tropical terra-firme forest","authors":"Karst J. Schaap, Lucia Fuchslueger, Carlos Alberto Quesada, Florian Hofhansl, Oscar Valverde-Barrantes, Plínio B. Camargo, Marcel R. Hoosbeek","doi":"10.1007/s10533-024-01148-w","DOIUrl":"10.1007/s10533-024-01148-w","url":null,"abstract":"","PeriodicalId":8901,"journal":{"name":"Biogeochemistry","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10533-024-01148-w.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141079409","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}