[This retracts the article DOI: 10.1155/2022/2682287.].
[This retracts the article DOI: 10.1155/2022/2682287.].
A series of divalent and one trivalent metal chelates of the azo ligand resulting from coupling of sulfafurazole diazonium chloride with resorcinol have been designed and synthesized. Structure investigation of the isolated chelates have been achieved by applying spectroscopic and analytical tools which collaborated to assure the formation of the metal chelates in the molar ratios of 1L: 1M for Ni(II), Co(II), and Fe(III) chelates, where Cu(II) and Zn(II) complexes formed in the ratio 2L : 1M. The geometrical arrangement around the metal canters was concluded from UV-Vis spectra to be octahedral for all metal chelates. The attachment of the ligand to the metal ions took place through the azo group nitrogen and o-hydroxyl oxygen through proton displacement leading to the ligand being in monobasic bidentate binding mode. Antimicrobial and antitumor activities of the interested compounds have been evaluated against alternative microorganisms and cancer cells, respectively, in a trial to investigate their extent of activity in addition to docking studies. The mode of interaction of the compounds with SS-DNA has been examined by UV-Vis spectra and viscosity studies.
[This retracts the article DOI: 10.1155/2021/3720571.].
[This retracts the article DOI: 10.1155/2022/4669723.].
[This retracts the article DOI: 10.1155/2022/7772305.].
Metal oxide nanoparticles have attained notable recognition due to their interesting physicochemical properties. Although these nanoparticles can be synthesized using a variety of approaches, the biological method involving plant extracts is preferred since it provides a simple, uncomplicated, ecologically friendly, efficient, rapid, and economical way for synthesis. In this study, the Azadirachta indica leaf extract was used as a reducing agent, and a green process was used to synthesize tin(ferrous: nickel)dioxide (Sn(Fe : Ni)O2) nanoparticles. The synthesized nanoparticles were subjected to characterization by using X-ray diffraction (XRD), energy-dispersive X-ray (EDX) spectroscopy analysis, field emission scanning electron microscopy (FESEM), Fourier transform infrared (FTIR) spectroscopy, dynamic light scattering (DLS), and photoluminescence (PL) measurement. Furthermore, Sn(Fe : Ni)O2 nanoparticles were analyzed for their antimicrobial activity against Gram-positive and Gram-negative organisms including Staphylococcus aureus, Streptococcus pneumoniae, Bacillus subtilis, Klebsiella pneumoniae, Escherichia coli, and Pseudomonas aeruginosa bacterial strains. XRD patterns revealed that Sn(Fe : Ni)O2 nanoparticles exhibited a tetragonal structure. The hydrodynamic diameter of the nanoparticles was 143 nm, as confirmed by the DLS spectrum. The FESEM image showed the spherical form of the synthesized nanoparticles. Chemical composites and mapping analyses were performed through the EDAX spectrum. The Sn-O-Sn and Sn-O stretching bands were 615 cm-1 and 550 cm-1 in the FTIR spectrum, respectively. Various surface defects of the synthesized Sn(Fe : Ni)O2 nanoparticles were identified by photoluminescence spectra. Compared to traditional antibiotics like amoxicillin, the inhibition zone revealed that Sn(Fe : Ni)O2 nanoparticles displayed remarkable antibacterial activity against all tested organisms, indicating the valuable potential of nanoparticles in the healthcare industry.
In this paper, the novel Schiff base ligand containing quinoline moiety and its novel copper chelate complexes were successfully prepared. The catalytic activity of the final complex in the organic reaction such as synthesis of chiral benzimidazoles and anti-HIV-1 activity of Schiff base ligand and the products of this reaction were investigated. In addition, green chemistry reactions using microwaves, powerful catalyst synthesis, green recovery and reusability, and separation of products with economic, safe, and clean methods (green chemistry) are among the advantages of this protocol. The potency of these compounds as anti-HIV-1 agents was investigated using molecular docking into integrase (IN) enzyme with code 1QS4 and the GROMACS software for molecular dynamics simulation. The final steps were evaluated in case of RMSD, RMSF, and Rg. The results revealed that the compound VII exhibit a good binding affinity to integrase (Δg = -10.99 kcal/mol) during 100 ns simulation time, and the analysis of RMSD suggested that compound VII was stable in the binding site of integrase.
The emergence of antimicrobial resistance has become a major handicap in the fight against bacterial infections, prompting researchers to develop new, more effective, and multimodal alternatives. Silver and its complexes have long been used as antimicrobial agents in medicine because of their lack of resistance to silver, their low potency at low concentrations, and their low toxicity compared to most commonly used antibiotics. N-Heterocyclic carbenes (NHCs) are widely used for coordination of transition metals, mainly in catalytic chemistry. In this study, several N-alkylated benzimidazolium salts 2a-j were synthesized. Then, the N-heterocyclic carbene (NHC) precursor was treated with Ag2O to give silver (I) NHC complexes (3a-j) at room temperature in dichloromethane for 48 h. Ten new silver-NHC complexes were fully characterized by nuclear magnetic resonance (NMR), Fourier transform infrared spectroscopy (FT-IR), elemental analysis, and LC-MSMS (for complexes) techniques. The antibacterial and antioxidant activities of salt 2 and its silver complex 3 were evaluated. All of these complexes were more effective against bacterial strains than comparable ligands. With MIC values ranging from 6.25 to 100 g/ml, the Ag-NHC complex effectively showed strong antibacterial activity. Antioxidant activity was also tested using conventional techniques, such as 2, 2-diphenyl-1-picrylhydrazine (DPPH) and hydrogen peroxide scavenging assays. In DPPH and ABTS experiments, compounds 3a, 3b, 3c, 3e, 3g, and 3i showed significant clearance.
[This retracts the article DOI: 10.1155/2022/3335581.].
An effective recovery technology will be valuable in the future because the concentration of the precious metal contained in the source can be a key driver in recycling technology. This study aims to use response surface methodology (RSM) through Minitab software to discover the optimum oxygen level (mgL-1), e-waste pulp density (% w/v), and glycine concentration (mgL-1) for the maximum recovery of gold (Au) and silver (Ag). The method of precious metals recovery used for this study was taken from the bioleaching using 2 L of batch stirred tank reactor (BSTR). A Box-Behnken of RSM experimental statistical designs was used to optimize the experimental procedure. The result of the RSM optimization showed that the highest recovery was achieved at an oxygen concentration of 0.56 mgL-1, a pulp density of 1.95%, and a glycine concentration of 2.49 mgL-1, which resulted in the recovery of 62.40% of Au. The pulp density and glycine concentration greatly impact how much Au is bioleached by C. violaceum. As a result, not all of the variables analyzed seem crucial for getting the best precious metals recovery, and some adjustments may be useful in the future.