Pub Date : 2024-09-13DOI: 10.1007/s10529-024-03530-y
Chao Feng, Jing Chen, Wenxin Ye, Zhanshi Wang
Amides are an important type of synthetic intermediate used in the chemical, agrochemical, pharmaceutical, and nutraceutical industries. The traditional chemical process of converting nitriles into the corresponding amides is feasible but is restricted because of the harsh conditions required. In recent decades, nitrile hydratase (NHase, EC 4.2.1.84) has attracted considerable attention because of its application in nitrile transformation as a prominent biocatalyst. In this review, we provide a comprehensive survey of recent advances in NHase research in terms of natural distribution, enzyme screening, and molecular modification on the basis of its characteristics and catalytic mechanism. Additionally, industrial applications and recent significant biotechnology advances in NHase bioengineering and immobilization techniques are systematically summarized. Moreover, the current challenges and future perspectives for its further development in industrial applications for green chemistry were also discussed. This study contributes to the current state-of-the-art, providing important technical information for new NHase applications in manufacturing industries.
{"title":"Nitrile hydratase as a promising biocatalyst: recent advances and future prospects","authors":"Chao Feng, Jing Chen, Wenxin Ye, Zhanshi Wang","doi":"10.1007/s10529-024-03530-y","DOIUrl":"https://doi.org/10.1007/s10529-024-03530-y","url":null,"abstract":"<p>Amides are an important type of synthetic intermediate used in the chemical, agrochemical, pharmaceutical, and nutraceutical industries. The traditional chemical process of converting nitriles into the corresponding amides is feasible but is restricted because of the harsh conditions required. In recent decades, nitrile hydratase (NHase, EC 4.2.1.84) has attracted considerable attention because of its application in nitrile transformation as a prominent biocatalyst. In this review, we provide a comprehensive survey of recent advances in NHase research in terms of natural distribution, enzyme screening, and molecular modification on the basis of its characteristics and catalytic mechanism. Additionally, industrial applications and recent significant biotechnology advances in NHase bioengineering and immobilization techniques are systematically summarized. Moreover, the current challenges and future perspectives for its further development in industrial applications for green chemistry were also discussed. This study contributes to the current state-of-the-art, providing important technical information for new NHase applications in manufacturing industries.</p>","PeriodicalId":8929,"journal":{"name":"Biotechnology Letters","volume":"25 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142186271","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-12DOI: 10.1007/s10529-024-03526-8
Yu He, Ying Ren, Jiawen Tang
Precise identification of small extracellular vesicles (sEVs) is crucial for improving disease diagnosis and treatments, such as bladder cancer. However, accurate isolation and simultaneously quantification of sEVs remain a huge challenge. We have introduced a new technique that combines immobilization with aptamer-assisted dual cycle amplification to isolate and analyze sEVs with high sensitivity. In this method, the CD9 protein antibody is attached to the plate’s surface for the initial identification of sEVs, while an aptamer probe is used to detect the exosomal surface protein CD63. We have created an sEVs-surface method that combines target recognition initiated signal recycling and rolling circle amplification (RCA) for signal amplification. This approach allows for the “AND” logic analysis of dual biomarkers, enabling both sEVs quantification and tracing. The proposed approach has a broad detection range and a low limit of detection. Moreover, the established method showed good stability in detecting sEVs with a low coefficient of variation. Our method can effectively isolate certain sEVs and accurately identify them, making it suitable for many uses in biological science, biomedical engineering, and personalized medicine.
{"title":"Immobilization coupling with aptamer assisted dual cycle amplification for sensitive sEVs isolation and analysis","authors":"Yu He, Ying Ren, Jiawen Tang","doi":"10.1007/s10529-024-03526-8","DOIUrl":"https://doi.org/10.1007/s10529-024-03526-8","url":null,"abstract":"<p>Precise identification of small extracellular vesicles (sEVs) is crucial for improving disease diagnosis and treatments, such as bladder cancer. However, accurate isolation and simultaneously quantification of sEVs remain a huge challenge. We have introduced a new technique that combines immobilization with aptamer-assisted dual cycle amplification to isolate and analyze sEVs with high sensitivity. In this method, the CD9 protein antibody is attached to the plate’s surface for the initial identification of sEVs, while an aptamer probe is used to detect the exosomal surface protein CD63. We have created an sEVs-surface method that combines target recognition initiated signal recycling and rolling circle amplification (RCA) for signal amplification. This approach allows for the “AND” logic analysis of dual biomarkers, enabling both sEVs quantification and tracing. The proposed approach has a broad detection range and a low limit of detection. Moreover, the established method showed good stability in detecting sEVs with a low coefficient of variation. Our method can effectively isolate certain sEVs and accurately identify them, making it suitable for many uses in biological science, biomedical engineering, and personalized medicine.</p>","PeriodicalId":8929,"journal":{"name":"Biotechnology Letters","volume":"5 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142186270","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-11DOI: 10.1007/s10529-024-03520-0
Martina Pistek, Peter Andorfer, Reingard Grabherr, Barbara Kraus, Juan A. Hernandez Bort
The efficiency of triple-plasmid transfection in recombinant Adeno-Associated Virus (rAAV) production was analyzed by examining two distinct HEK-293 cells lines. These were categorized as high producer (HP) and low producer (LP) based on their differing levels of productivity under identical conditions. Analysis of RNA expression levels of viral genes revealed disparities in plasmid derived gene expression between the cell lines. Further assessment of transfection efficiency utilizing labeled plasmids revealed lower plasmid uptake and less efficient nuclear transport in LP cell line. Additionally, we observed inferior translation activity in LP, contributing to its shortcomings in overall productivity. In our attempt to optimize plasmid ratios to enhance fully packaged rAAV particle yield, we discovered cell-line-specific optimization potential. The findings highlight the transfection's complexity, urging tailored strategies for improved rAAV production based on each cell line's characteristics, enhancing understanding and guiding further efficiency optimization in rAAV production.
{"title":"Factors affecting rAAV titers during triple-plasmid transient transfection in HEK-293 cells","authors":"Martina Pistek, Peter Andorfer, Reingard Grabherr, Barbara Kraus, Juan A. Hernandez Bort","doi":"10.1007/s10529-024-03520-0","DOIUrl":"https://doi.org/10.1007/s10529-024-03520-0","url":null,"abstract":"<p>The efficiency of triple-plasmid transfection in recombinant Adeno-Associated Virus (rAAV) production was analyzed by examining two distinct HEK-293 cells lines. These were categorized as high producer (HP) and low producer (LP) based on their differing levels of productivity under identical conditions. Analysis of RNA expression levels of viral genes revealed disparities in plasmid derived gene expression between the cell lines. Further assessment of transfection efficiency utilizing labeled plasmids revealed lower plasmid uptake and less efficient nuclear transport in LP cell line. Additionally, we observed inferior translation activity in LP, contributing to its shortcomings in overall productivity. In our attempt to optimize plasmid ratios to enhance fully packaged rAAV particle yield, we discovered cell-line-specific optimization potential. The findings highlight the transfection's complexity, urging tailored strategies for improved rAAV production based on each cell line's characteristics, enhancing understanding and guiding further efficiency optimization in rAAV production.</p>","PeriodicalId":8929,"journal":{"name":"Biotechnology Letters","volume":"3 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142186272","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-11DOI: 10.1007/s10529-024-03528-6
Mariana Erthal Rocha, Norberto Mangiavacchi, Marcia Marques, Lia Teixeira
To assess microbial dynamics during anaerobic digestion (AD) of sewage sludge (SWS) from a municipal Wastewater Treatment Plant (WWTP), a Biochemical Methane Potential (BMP) assay at 37 °C under mono-digestion conditions was conducted. Utilizing the Illumina MiSeq platform, 16S ribosomal RNA (rRNA) gene sequencing unveiled a core bacterial community in the solid material, showcasing notable variations in profiles. The research investigates changes in microbial communities and metabolic pathways to understand their impact on the efficiency of the digestion process. Prior to AD, the relative abundance in SWS was as follows: Proteobacteria > Bacteroidota > Actinobacteriota. Post-AD, the relative abundance shifted to Firmicutes > Synergistota > Proteobacteria, with Sporanaerobacter and Clostridium emerging as dominant genera. Notably, the methanogenic community underwent a metabolic pathway shift from acetoclastic to hydrogenotrophic in the lab-scale reactors. At the genus level, Methanosaeta, Methanolinea, and Methanofastidiosum predominated initially, while post-AD, Methanobacterium, Methanosaeta, and Methanospirillum took precedence. This metabolic transition may be linked to the increased abundance of Firmicutes, particularly Clostridia, which harbor acetate-oxidizing bacteria facilitating the conversion of acetate to hydrogen.
为了评估城市污水处理厂(WWTP)污水污泥(SWS)厌氧消化(AD)过程中的微生物动态,我们在 37 °C 单消化条件下进行了生化甲烷潜能(BMP)测定。利用 Illumina MiSeq 平台,16S 核糖体 RNA (rRNA) 基因测序揭示了固体材料中的核心细菌群落,并显示出明显的特征变化。该研究调查了微生物群落和代谢途径的变化,以了解它们对消化过程效率的影响。在使用厌氧消化技术之前,固体物质中的相对丰度如下:蛋白菌群;类杆菌群;放线菌群。添加厌氧消化剂后,相对丰度转变为固醇菌群、协同菌群和变形菌群,其中孢子杆菌和梭状芽孢杆菌成为优势菌属。值得注意的是,在实验室规模的反应器中,产甲烷群落的代谢途径发生了转变,从嗜乙酰转变为嗜氢。在属的层面上,Methanosaeta、Methanolinea 和 Methanofastidiosum 最初占主导地位,而在 AD 后,Methanobacterium、Methanosaeta 和 Methanospirillum 占主导地位。这种新陈代谢的转变可能与固着菌(尤其是梭状芽孢杆菌)数量的增加有关,因为梭状芽孢杆菌中含有醋酸盐氧化细菌,能促进醋酸盐向氢的转化。
{"title":"Succession from acetoclastic to hydrogenotrophic microbial community during sewage sludge anaerobic digestion for bioenergy production","authors":"Mariana Erthal Rocha, Norberto Mangiavacchi, Marcia Marques, Lia Teixeira","doi":"10.1007/s10529-024-03528-6","DOIUrl":"https://doi.org/10.1007/s10529-024-03528-6","url":null,"abstract":"<p>To assess microbial dynamics during anaerobic digestion (AD) of sewage sludge (SWS) from a municipal Wastewater Treatment Plant (WWTP), a Biochemical Methane Potential (BMP) assay at 37 °C under mono-digestion conditions was conducted. Utilizing the Illumina MiSeq platform, 16S ribosomal RNA (rRNA) gene sequencing unveiled a core bacterial community in the solid material, showcasing notable variations in profiles. The research investigates changes in microbial communities and metabolic pathways to understand their impact on the efficiency of the digestion process. Prior to AD, the relative abundance in SWS was as follows: <i>Proteobacteria</i> > <i>Bacteroidota</i> > <i>Actinobacteriota</i>. Post-AD, the relative abundance shifted to <i>Firmicutes</i> > <i>Synergistota</i> > <i>Proteobacteria</i>, with <i>Sporanaerobacter</i> and <i>Clostridium</i> emerging as dominant genera. Notably, the methanogenic community underwent a metabolic pathway shift from acetoclastic to hydrogenotrophic in the lab-scale reactors. At the genus level, <i>Methanosaeta</i>, <i>Methanolinea</i>, and <i>Methanofastidiosum</i> predominated initially, while post-AD, <i>Methanobacterium</i>, <i>Methanosaeta</i>, and <i>Methanospirillum</i> took precedence. This metabolic transition may be linked to the increased abundance of <i>Firmicutes</i>, particularly <i>Clostridia</i>, which harbor acetate-oxidizing bacteria facilitating the conversion of acetate to hydrogen.</p>","PeriodicalId":8929,"journal":{"name":"Biotechnology Letters","volume":"60 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142224326","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Inoculating heterotrophic nitrification-aerobic denitrification bacteria (HN-AD) to enhance membrane bioreactor (MBR) efficiency may result in the loss of functional bacteria. Therefore, this study compares the application results of enhancing MBR with a self-designed biological amplifier coupled with HN-AD against the performance of conventional MBR. After enhancement, the MBR achieved a removal efficiency of 96.7% for NH4+-N (100 mg/L) and 96.4% for COD (400 mg/L) in synthetic wastewater. There was a 33% increase in TN (100 mg/L) removal efficiency. The dominant bacteria in the MBR were Alcaligenes (48.4%) and Thauera (15.2%). Additionally, the abundance of denitrification genes (nirK, norB, nosZ) increased in the enhanced MBR, contributing to improved TN removal efficiency. The use of a biological amplifier effectively solved the problem of HN-AD loss in sewage treatment.
{"title":"Research on the application of heterotrophic nitrification-aerobic denitrification bacteria in membrane bioreactor (MBR)","authors":"Tianrui Zhai, Tiantao Zhao, Yuhao Zhong, Peipei Chen, Guojian Li, Liang Teng, Lijie Zhang, Hao Liu","doi":"10.1007/s10529-024-03529-5","DOIUrl":"https://doi.org/10.1007/s10529-024-03529-5","url":null,"abstract":"<p>Inoculating heterotrophic nitrification-aerobic denitrification bacteria (HN-AD) to enhance membrane bioreactor (MBR) efficiency may result in the loss of functional bacteria. Therefore, this study compares the application results of enhancing MBR with a self-designed biological amplifier coupled with HN-AD against the performance of conventional MBR. After enhancement, the MBR achieved a removal efficiency of 96.7% for NH<sub>4</sub><sup>+</sup>-N (100 mg/L) and 96.4% for COD (400 mg/L) in synthetic wastewater. There was a 33% increase in TN (100 mg/L) removal efficiency. The dominant bacteria in the MBR were <i>Alcaligenes</i> (48.4%) and <i>Thauera</i> (15.2%). Additionally, the abundance of denitrification genes (<i>nir</i>K, <i>nor</i>B, <i>nos</i>Z) increased in the enhanced MBR, contributing to improved TN removal efficiency. The use of a biological amplifier effectively solved the problem of HN-AD loss in sewage treatment.</p>","PeriodicalId":8929,"journal":{"name":"Biotechnology Letters","volume":"9 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142186273","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-01Epub Date: 2024-06-06DOI: 10.1007/s10529-024-03500-4
Tomasz Boruta, Grzegorz Englart, Martyna Foryś, Weronika Pawlikowska
Objective: The aim of this study was to determine the influence of the inoculation volume ratio on the production of secondary metabolites in submerged cocultures of Aspergillus terreus and Streptomyces rimosus.
Results: The shake flask cocultures were initiated by using 23 inoculum variants that included different volumes of A. terreus and S. rimosus precultures. In addition, the axenic controls were propagated in parallel with the cocultures. UPLC‒MS analysis revealed the presence of 15 secondary metabolites, 12 of which were found both in the "A. terreus vs. S. rimosus" cocultures and axenic cultures of either A. terreus or S. rimosus. The production of the remaining 3 molecules was recorded solely in the cocultures. The repertoire and quantity of secondary metabolites were evidently dependent on the inoculation ratio. It was also noted that detecting filamentous structures resembling typical morphological forms of a given species was insufficient to predict the presence of a given metabolite.
Conclusions: The modification of the inoculation ratio is an effective strategy for awakening and enhancing the production of secondary metabolites that are not biosynthesized under axenic conditions.
{"title":"The repertoire and levels of secondary metabolites in microbial cocultures depend on the inoculation ratio: a case study involving Aspergillus terreus and Streptomyces rimosus.","authors":"Tomasz Boruta, Grzegorz Englart, Martyna Foryś, Weronika Pawlikowska","doi":"10.1007/s10529-024-03500-4","DOIUrl":"10.1007/s10529-024-03500-4","url":null,"abstract":"<p><strong>Objective: </strong>The aim of this study was to determine the influence of the inoculation volume ratio on the production of secondary metabolites in submerged cocultures of Aspergillus terreus and Streptomyces rimosus.</p><p><strong>Results: </strong>The shake flask cocultures were initiated by using 23 inoculum variants that included different volumes of A. terreus and S. rimosus precultures. In addition, the axenic controls were propagated in parallel with the cocultures. UPLC‒MS analysis revealed the presence of 15 secondary metabolites, 12 of which were found both in the \"A. terreus vs. S. rimosus\" cocultures and axenic cultures of either A. terreus or S. rimosus. The production of the remaining 3 molecules was recorded solely in the cocultures. The repertoire and quantity of secondary metabolites were evidently dependent on the inoculation ratio. It was also noted that detecting filamentous structures resembling typical morphological forms of a given species was insufficient to predict the presence of a given metabolite.</p><p><strong>Conclusions: </strong>The modification of the inoculation ratio is an effective strategy for awakening and enhancing the production of secondary metabolites that are not biosynthesized under axenic conditions.</p>","PeriodicalId":8929,"journal":{"name":"Biotechnology Letters","volume":" ","pages":"601-614"},"PeriodicalIF":2.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11217084/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141282895","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-01Epub Date: 2024-06-13DOI: 10.1007/s10529-024-03505-z
Chang-Hee Lee, Hyeon Jeong Lee, Si-Won Park, Jiyoon Shin, Seok-Jin Kang, In-Byung Park, Hyun Kyung Kim, Taehoon Chun
Blood coagulation mediated by pig tissue factor (TF), which is expressed in pig tissues, causes an instant blood-mediated inflammatory reaction during pig-to-human xenotransplantation. Previously, we generated a soluble pig tissue factor pathway inhibitor α fusion immunoglobulin (TFPI-Ig) which inhibits pig TF activity more efficiently than human TFPI-Ig in human plasma. In this study, we generated several pig TFPI-Ig mutants and tested the efficacy of these mutants in preventing pig-to-human xenogeneic blood coagulation. Structurally important amino acid residues of pig TFPI-Ig were changed into different residues by site-directed mutagenesis. Subsequently, a retroviral vector encoding each cDNA of several pig TFPI-Ig mutants was cloned and transduced into CHO-K1 cells. After establishing stable cell lines expressing each of the pig TFPI-Ig mutants, soluble proteins were produced and purified for evaluating their inhibitory effects on pig TF-mediated blood coagulation in human plasma. The replacement of K36 and K257 with R36 and H257, respectively, in pig TFPI-Ig more efficiently blocked pig TF activity in human plasma when compared with the wild-type pig TFPI-Ig. These results may provide additional information to understand the structure of pig TFPIα, and an improved pig TFPI-Ig variant that more efficiently blocks pig TF-mediated blood coagulation during pig-to-human xenotransplantation.
{"title":"Mutational analysis of pig tissue factor pathway inhibitor α to increase anti-coagulation activity in pig-to-human xenotransplantation.","authors":"Chang-Hee Lee, Hyeon Jeong Lee, Si-Won Park, Jiyoon Shin, Seok-Jin Kang, In-Byung Park, Hyun Kyung Kim, Taehoon Chun","doi":"10.1007/s10529-024-03505-z","DOIUrl":"10.1007/s10529-024-03505-z","url":null,"abstract":"<p><p>Blood coagulation mediated by pig tissue factor (TF), which is expressed in pig tissues, causes an instant blood-mediated inflammatory reaction during pig-to-human xenotransplantation. Previously, we generated a soluble pig tissue factor pathway inhibitor α fusion immunoglobulin (TFPI-Ig) which inhibits pig TF activity more efficiently than human TFPI-Ig in human plasma. In this study, we generated several pig TFPI-Ig mutants and tested the efficacy of these mutants in preventing pig-to-human xenogeneic blood coagulation. Structurally important amino acid residues of pig TFPI-Ig were changed into different residues by site-directed mutagenesis. Subsequently, a retroviral vector encoding each cDNA of several pig TFPI-Ig mutants was cloned and transduced into CHO-K1 cells. After establishing stable cell lines expressing each of the pig TFPI-Ig mutants, soluble proteins were produced and purified for evaluating their inhibitory effects on pig TF-mediated blood coagulation in human plasma. The replacement of K<sup>36</sup> and K<sup>257</sup> with R<sup>36</sup> and H<sup>257</sup>, respectively, in pig TFPI-Ig more efficiently blocked pig TF activity in human plasma when compared with the wild-type pig TFPI-Ig. These results may provide additional information to understand the structure of pig TFPIα, and an improved pig TFPI-Ig variant that more efficiently blocks pig TF-mediated blood coagulation during pig-to-human xenotransplantation.</p>","PeriodicalId":8929,"journal":{"name":"Biotechnology Letters","volume":" ","pages":"521-530"},"PeriodicalIF":2.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141316697","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-01Epub Date: 2024-05-17DOI: 10.1007/s10529-024-03493-0
Clara Lüchtrath, Felix Lamping, Sven Hansen, Maurice Finger, Jørgen Magnus, Jochen Büchs
Purpose: Simultaneous membrane-based feeding and monitoring of the oxygen transfer rate shall be introduced to the newly established perforated ring flask, which consists of a cylindrical glass flask with an additional perforated inner glass ring, for rapid bioprocess development.
Methods: A 3D-printed adapter was constructed to enable monitoring of the oxygen transfer rate in the perforated ring flasks. Escherichia coli experiments in batch were performed to validate the adapter. Fed-batch experiments with different diffusion rates and feed solutions were performed.
Results: The adapter and the performed experiments allowed a direct comparison of the perforated ring flasks with Erlenmeyer flasks. In batch cultivations, maximum oxygen transfer capacities of 80 mmol L-1 h-1 were reached with perforated ring flasks, corresponding to a 3.5 times higher capacity than in Erlenmeyer flasks. Fed-batch experiments with a feed reservoir concentration of 500 g glucose L-1 were successfully conducted. Based on the oxygen transfer rate, an ammonium limitation could be observed. By adding 40 g ammonium sulfate L-1 to the feed reservoir, the limitation could be prevented.
Conclusion: The membrane-based feeding, an online monitoring technique, and the perforated ring flask were successfully combined and offer a new and promising tool for screening and process development in biotechnology.
{"title":"Diffusion-driven fed-batch fermentation in perforated ring flasks.","authors":"Clara Lüchtrath, Felix Lamping, Sven Hansen, Maurice Finger, Jørgen Magnus, Jochen Büchs","doi":"10.1007/s10529-024-03493-0","DOIUrl":"10.1007/s10529-024-03493-0","url":null,"abstract":"<p><strong>Purpose: </strong>Simultaneous membrane-based feeding and monitoring of the oxygen transfer rate shall be introduced to the newly established perforated ring flask, which consists of a cylindrical glass flask with an additional perforated inner glass ring, for rapid bioprocess development.</p><p><strong>Methods: </strong>A 3D-printed adapter was constructed to enable monitoring of the oxygen transfer rate in the perforated ring flasks. Escherichia coli experiments in batch were performed to validate the adapter. Fed-batch experiments with different diffusion rates and feed solutions were performed.</p><p><strong>Results: </strong>The adapter and the performed experiments allowed a direct comparison of the perforated ring flasks with Erlenmeyer flasks. In batch cultivations, maximum oxygen transfer capacities of 80 mmol L<sup>-1</sup> h<sup>-1</sup> were reached with perforated ring flasks, corresponding to a 3.5 times higher capacity than in Erlenmeyer flasks. Fed-batch experiments with a feed reservoir concentration of 500 g glucose L<sup>-1</sup> were successfully conducted. Based on the oxygen transfer rate, an ammonium limitation could be observed. By adding 40 g ammonium sulfate L<sup>-1</sup> to the feed reservoir, the limitation could be prevented.</p><p><strong>Conclusion: </strong>The membrane-based feeding, an online monitoring technique, and the perforated ring flask were successfully combined and offer a new and promising tool for screening and process development in biotechnology.</p>","PeriodicalId":8929,"journal":{"name":"Biotechnology Letters","volume":" ","pages":"571-582"},"PeriodicalIF":2.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11217090/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140955731","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-01Epub Date: 2024-05-29DOI: 10.1007/s10529-024-03496-x
Kim-Ngan T Tran, Jaehoon Jeong, Soon Ho Hong
Itaconic acid is an excellent polymeric precursor with a wide range of industrial applications. The efficient production of itaconate from various renewable substrates was demonstrated by engineered Escherichia coli. However, limitation in the itaconic acid precursor supply was revealed by finding out the key intermediate of the tricarboxylic acid in the itaconic acid pathway. Efforts of enhancing the cis-aconitate flux and preserving the isocitrate pool to increase itaconic acid productivity are required. In this study, we introduce a synthetic protein scaffold system between CadA and AcnA to physically combine the two enzymes. Through the introduction of a synthetic protein scaffold, 2.1 g L-1 of itaconic acid was produced at pH 7 and 37 °C. By fermentation, 20.1 g L-1 for 48 h of itaconic acid was produced with a yield of 0.34 g g-1 glycerol. These results suggest that carbon flux was successfully increased itaconic acid productivity.
衣康酸是一种优良的聚合物前体,具有广泛的工业用途。经改造的大肠杆菌证明,可以从各种可再生底物中高效生产衣康酸。然而,通过发现衣康酸途径中三羧酸的关键中间体,发现了衣康酸前体供应的局限性。因此,需要努力提高顺式-乌头酸通量并保留异柠檬酸池,以提高衣康酸的生产率。在这项研究中,我们在 CadA 和 AcnA 之间引入了一个合成蛋白支架系统,将这两种酶进行物理结合。通过引入合成蛋白支架,在 pH 值为 7、温度为 37 ℃ 的条件下产生了 2.1 g L-1 的衣康酸。通过发酵,48 小时内产生了 20.1 g L-1 的衣康酸,甘油产量为 0.34 g-1。这些结果表明,碳通量成功地提高了衣康酸的生产率。
{"title":"Engineering of itaconic acid pathway via co-localization of CadA and AcnA in recombinant Escherichia coli.","authors":"Kim-Ngan T Tran, Jaehoon Jeong, Soon Ho Hong","doi":"10.1007/s10529-024-03496-x","DOIUrl":"10.1007/s10529-024-03496-x","url":null,"abstract":"<p><p>Itaconic acid is an excellent polymeric precursor with a wide range of industrial applications. The efficient production of itaconate from various renewable substrates was demonstrated by engineered Escherichia coli. However, limitation in the itaconic acid precursor supply was revealed by finding out the key intermediate of the tricarboxylic acid in the itaconic acid pathway. Efforts of enhancing the cis-aconitate flux and preserving the isocitrate pool to increase itaconic acid productivity are required. In this study, we introduce a synthetic protein scaffold system between CadA and AcnA to physically combine the two enzymes. Through the introduction of a synthetic protein scaffold, 2.1 g L<sup>-1</sup> of itaconic acid was produced at pH 7 and 37 °C. By fermentation, 20.1 g L<sup>-1</sup> for 48 h of itaconic acid was produced with a yield of 0.34 g g<sup>-1</sup> glycerol. These results suggest that carbon flux was successfully increased itaconic acid productivity.</p>","PeriodicalId":8929,"journal":{"name":"Biotechnology Letters","volume":" ","pages":"593-600"},"PeriodicalIF":2.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141160082","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Methanotrophs of the genus Methylocystis are frequently found in rice paddies. Although more than ten facultative methanotrophs have been reported since 2005, none of these strains was isolated from paddy soil. Here, a facultative methane-oxidizing bacterium, Methylocystis iwaonis SD4, was isolated and characterized from rhizosphere samples of rice plants in Nanjing, China. This strain grew well on methane or methanol but was able to grow slowly using acetate or ethanol. Moreover, strain SD4 showed sustained growth at low concentrations of methane (100 and 500 ppmv). M. iwaonis SD4 could utilize diverse nitrogen sources, including nitrate, urea, ammonium as well as dinitrogen. Strain SD4 possessed genes encoding both the particulate methane monooxygenase and the soluble methane monooxygenase. Simple and rapid genetic manipulation methods were established for this strain, enabling vector transformation and unmarked genetic manipulation. Fast growth rate and efficient genetic tools make M. iwaonis SD4 an ideal model to study facultative methanotrophs, and the ability to grow on low concentration of methane implies its potential in methane removal.
{"title":"Isolation of a facultative methanotroph Methylocystis iwaonis SD4 from rice rhizosphere and establishment of rapid genetic tools for it.","authors":"Yinghui Wang, Yuying Wang, Keyu Zhou, Haili Zhang, Minggen Cheng, Baozhan Wang, Xin Yan","doi":"10.1007/s10529-024-03495-y","DOIUrl":"10.1007/s10529-024-03495-y","url":null,"abstract":"<p><p>Methanotrophs of the genus Methylocystis are frequently found in rice paddies. Although more than ten facultative methanotrophs have been reported since 2005, none of these strains was isolated from paddy soil. Here, a facultative methane-oxidizing bacterium, Methylocystis iwaonis SD4, was isolated and characterized from rhizosphere samples of rice plants in Nanjing, China. This strain grew well on methane or methanol but was able to grow slowly using acetate or ethanol. Moreover, strain SD4 showed sustained growth at low concentrations of methane (100 and 500 ppmv). M. iwaonis SD4 could utilize diverse nitrogen sources, including nitrate, urea, ammonium as well as dinitrogen. Strain SD4 possessed genes encoding both the particulate methane monooxygenase and the soluble methane monooxygenase. Simple and rapid genetic manipulation methods were established for this strain, enabling vector transformation and unmarked genetic manipulation. Fast growth rate and efficient genetic tools make M. iwaonis SD4 an ideal model to study facultative methanotrophs, and the ability to grow on low concentration of methane implies its potential in methane removal.</p>","PeriodicalId":8929,"journal":{"name":"Biotechnology Letters","volume":" ","pages":"713-724"},"PeriodicalIF":2.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140908047","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}