首页 > 最新文献

Biomolecules最新文献

英文 中文
Sigma-1 Receptor Modulates CFA-Induced Inflammatory Pain via Sodium Channels in Small DRG Neurons.
IF 4.8 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-01-06 DOI: 10.3390/biom15010073
Yuanlong Song, Zifen Xu, Liangpin Zhang, Linlin Gao

The sigma-1 receptor (Sig-1R) has emerged as a significant target in the realm of pain management and has been the subject of extensive research. Nonetheless, its specific function in inflammatory pain within dorsal root ganglion (DRG) neurons remains inadequately elucidated. This study utilized whole-cell patch clamp techniques, single-cell real-time PCR, and immunohistochemistry to examine the influence of Sig-1R on inflammatory pain induced by complete Freund's adjuvant (CFA) in a rat model. Our results revealed several key findings: (1) The expression of Sig-1R was found to be upregulated during the progression of inflammatory pain, with a notable translocation from the cytoplasm to the membrane; (2) Inhibition of peripheral Sig-1R using S1RA resulted in a reduction of CFA-induced allodynia; (3) Activation of Sig-1R through PRE-084 led to a decrease in the fast sodium current in isolated DRG neurons from CFA-treated rats, which was associated with a diminished action potential (AP) peak and maximum depolarizing rate (MDR), as well as an increased rheobase; (4) Furthermore, PRE-084 was observed to enhance the slow component of the sodium current, resulting in hyperpolarization of the threshold potential and an increase in AP firing frequency, alongside an elevation in the mRNA expression of the slow sodium channel Nav1.9 in CFA-treated rats. In conclusion, our findings suggest that the modulation of sodium channels by Sig-1R in DRG neurons plays a significant role in the mechanisms underlying inflammatory pain.

{"title":"Sigma-1 Receptor Modulates CFA-Induced Inflammatory Pain via Sodium Channels in Small DRG Neurons.","authors":"Yuanlong Song, Zifen Xu, Liangpin Zhang, Linlin Gao","doi":"10.3390/biom15010073","DOIUrl":"10.3390/biom15010073","url":null,"abstract":"<p><p>The sigma-1 receptor (Sig-1R) has emerged as a significant target in the realm of pain management and has been the subject of extensive research. Nonetheless, its specific function in inflammatory pain within dorsal root ganglion (DRG) neurons remains inadequately elucidated. This study utilized whole-cell patch clamp techniques, single-cell real-time PCR, and immunohistochemistry to examine the influence of Sig-1R on inflammatory pain induced by complete Freund's adjuvant (CFA) in a rat model. Our results revealed several key findings: (1) The expression of Sig-1R was found to be upregulated during the progression of inflammatory pain, with a notable translocation from the cytoplasm to the membrane; (2) Inhibition of peripheral Sig-1R using S1RA resulted in a reduction of CFA-induced allodynia; (3) Activation of Sig-1R through PRE-084 led to a decrease in the fast sodium current in isolated DRG neurons from CFA-treated rats, which was associated with a diminished action potential (AP) peak and maximum depolarizing rate (MDR), as well as an increased rheobase; (4) Furthermore, PRE-084 was observed to enhance the slow component of the sodium current, resulting in hyperpolarization of the threshold potential and an increase in AP firing frequency, alongside an elevation in the mRNA expression of the slow sodium channel Nav1.9 in CFA-treated rats. In conclusion, our findings suggest that the modulation of sodium channels by Sig-1R in DRG neurons plays a significant role in the mechanisms underlying inflammatory pain.</p>","PeriodicalId":8943,"journal":{"name":"Biomolecules","volume":"15 1","pages":""},"PeriodicalIF":4.8,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11764217/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143057881","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Varroa Volatiles Offer Chemical Cues to Honey Bees for Initial Parasitic Recognition.
IF 4.8 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-01-06 DOI: 10.3390/biom15010066
Qinglong Zhao, Xinning Wang, Ahsan Mustafa, Ying Wang, Hongfang Wang, Xuepeng Chi, Baohua Xu, Zhenguo Liu

Olfaction mediated by the antennae is a vital sensory modality for arthropods and could be applied as a tool in pest control. The ectoparasitic mite Varroa destructor poses a significant threat to the health of the honey bee Apis mellifera worldwide and has garnered global attention. To better understand the chemical ecology of this host-parasite relationship, we collected and characterized the volatile organic compounds (VOCs) from V. destructor and used electroantennography (EAG) to record the responses of honey bee (A. c. cerana and A. m. ligustica) antennae to the different VOCs. Fifteen VOCs were detected from V. destructor using gas chromatography-mass spectrometry (GC-MS), which mainly contained ethyl palmitate, followed by isoamyl alcohol, nonanal, and ethyl oleate. The EAGs for ethyl palmitate were higher at the lowest stimulus loading (5 μg/μL in liquid paraffin) in A. c. cerana compared to A. m. ligustica, suggesting that A. c. cerana may have acute sensitivity to low concentrations of some VOCs from V. destructor. After exposure to ethyl palmitate for 1 h, the relative expression levels of AcerCSP1 and AcerOBP21 in A. c. cerana significantly increased, as well as the level of AmelCSP1 in A. m. ligustica, while AmelOBP8 showed no significant changes. The results indicate that the EAG response was influenced by the VOC composition and concentration. A. c. cerana tended to be more responsive than A. m. ligustica to the VOCs of V. destructor. Our findings offer a deeper understanding of how bees recognize V. destructor, potentially using ethyl palmitate as a chemical cue.

{"title":"Varroa Volatiles Offer Chemical Cues to Honey Bees for Initial Parasitic Recognition.","authors":"Qinglong Zhao, Xinning Wang, Ahsan Mustafa, Ying Wang, Hongfang Wang, Xuepeng Chi, Baohua Xu, Zhenguo Liu","doi":"10.3390/biom15010066","DOIUrl":"10.3390/biom15010066","url":null,"abstract":"<p><p>Olfaction mediated by the antennae is a vital sensory modality for arthropods and could be applied as a tool in pest control. The ectoparasitic mite <i>Varroa destructor</i> poses a significant threat to the health of the honey bee <i>Apis mellifera</i> worldwide and has garnered global attention. To better understand the chemical ecology of this host-parasite relationship, we collected and characterized the volatile organic compounds (VOCs) from <i>V. destructor</i> and used electroantennography (EAG) to record the responses of honey bee (<i>A. c. cerana</i> and <i>A. m. ligustica</i>) antennae to the different VOCs. Fifteen VOCs were detected from <i>V. destructor</i> using gas chromatography-mass spectrometry (GC-MS), which mainly contained ethyl palmitate, followed by isoamyl alcohol, nonanal, and ethyl oleate. The EAGs for ethyl palmitate were higher at the lowest stimulus loading (5 μg/μL in liquid paraffin) in <i>A. c. cerana</i> compared to <i>A. m. ligustica</i>, suggesting that <i>A. c. cerana</i> may have acute sensitivity to low concentrations of some VOCs from <i>V. destructor</i>. After exposure to ethyl palmitate for 1 h, the relative expression levels of <i>AcerCSP1</i> and <i>AcerOBP21</i> in <i>A. c. cerana</i> significantly increased, as well as the level of <i>AmelCSP1</i> in <i>A. m. ligustica</i>, while <i>AmelOBP8</i> showed no significant changes. The results indicate that the EAG response was influenced by the VOC composition and concentration. <i>A. c. cerana</i> tended to be more responsive than <i>A. m. ligustica</i> to the VOCs of <i>V. destructor</i>. Our findings offer a deeper understanding of how bees recognize <i>V. destructor</i>, potentially using ethyl palmitate as a chemical cue.</p>","PeriodicalId":8943,"journal":{"name":"Biomolecules","volume":"15 1","pages":""},"PeriodicalIF":4.8,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11764367/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143036679","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
No Relation Between Cognitive Impairment, Physical Disability and Serum Biomarkers in a Cohort of Progressive Multiple Sclerosis Patients.
IF 4.8 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-01-06 DOI: 10.3390/biom15010068
Bartosz Gajewski, Iwona Karlińska, Małgorzata Domowicz, Igor Bednarski, Mariola Świderek-Matysiak, Mariusz Stasiołek

Despite significant efforts, there is still an existing need to identify diagnostic tools that would enable fast and reliable detection of the progressive stage of multiple sclerosis (MS) and help in monitoring the disease course and/or treatment effects. The aim of this prospective study in a group of people with progressive MS was to determine whether changes in the levels of selected serum biomarkers and in cognitive function may predict disease progression, and therefore refine the decision-making process in the evaluation of MS patients. Forty two (42) patients with progressive MS completed all the study procedures; the mean duration of follow-up was 12.97 months. During the observation period, serum concentration of chitinase-3 like-protein-1 (CHI3L1/YKL-40) decreased significantly in the whole study group (from 4034.95 ± 262.62 to 2866.43 ± 173.37; p = 0.0005), as well as in subgroups of people with secondary progressive and primary progressive MS (SPMS: from 3693.81 ± 388.68 to 2542.76 ± 256.59; p = 0.0207; and PPMS: from 4376.09 ± 353.27 to 3190.09 ± 233.22; p = 0.0089, respectively). A significant worsening of Brief International Cognitive Assessment for Multiple Sclerosis (BICAMS) scores was detected in the whole study group (from 1.18 ± 0.14 to 1.34 ± 0.15; p = 0.0331) as well as in the PPMS subgroup (from 1.04 ± 0.18 to 1.26 ± 0.20; p = 0.0216). No correlations between the analyzed molecular parameters or the results of neuropsychological tests and physical disability were observed. In conclusion, an emphasis should be placed on furthering the search for multimodal biomarkers of disease progression, especially in the PMS population, based on simultaneous analysis of several factors, such as blood biomarkers and cognitive profiles.

{"title":"No Relation Between Cognitive Impairment, Physical Disability and Serum Biomarkers in a Cohort of Progressive Multiple Sclerosis Patients.","authors":"Bartosz Gajewski, Iwona Karlińska, Małgorzata Domowicz, Igor Bednarski, Mariola Świderek-Matysiak, Mariusz Stasiołek","doi":"10.3390/biom15010068","DOIUrl":"10.3390/biom15010068","url":null,"abstract":"<p><p>Despite significant efforts, there is still an existing need to identify diagnostic tools that would enable fast and reliable detection of the progressive stage of multiple sclerosis (MS) and help in monitoring the disease course and/or treatment effects. The aim of this prospective study in a group of people with progressive MS was to determine whether changes in the levels of selected serum biomarkers and in cognitive function may predict disease progression, and therefore refine the decision-making process in the evaluation of MS patients. Forty two (42) patients with progressive MS completed all the study procedures; the mean duration of follow-up was 12.97 months. During the observation period, serum concentration of chitinase-3 like-protein-1 (CHI3L1/YKL-40) decreased significantly in the whole study group (from 4034.95 ± 262.62 to 2866.43 ± 173.37; <i>p</i> = 0.0005), as well as in subgroups of people with secondary progressive and primary progressive MS (SPMS: from 3693.81 ± 388.68 to 2542.76 ± 256.59; <i>p</i> = 0.0207; and PPMS: from 4376.09 ± 353.27 to 3190.09 ± 233.22; <i>p</i> = 0.0089, respectively). A significant worsening of Brief International Cognitive Assessment for Multiple Sclerosis (BICAMS) scores was detected in the whole study group (from 1.18 ± 0.14 to 1.34 ± 0.15; <i>p</i> = 0.0331) as well as in the PPMS subgroup (from 1.04 ± 0.18 to 1.26 ± 0.20; <i>p</i> = 0.0216). No correlations between the analyzed molecular parameters or the results of neuropsychological tests and physical disability were observed. In conclusion, an emphasis should be placed on furthering the search for multimodal biomarkers of disease progression, especially in the PMS population, based on simultaneous analysis of several factors, such as blood biomarkers and cognitive profiles.</p>","PeriodicalId":8943,"journal":{"name":"Biomolecules","volume":"15 1","pages":""},"PeriodicalIF":4.8,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11763174/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143036740","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantification of Free Circulating DNA and Differential Methylation Profiling of Selected Genes as Novel Non-Invasive Biomarkers for Endometriosis Diagnosis.
IF 4.8 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-01-06 DOI: 10.3390/biom15010069
Moncef Benkhalifa, Pierre Alain Menoud, David Piquemal, Jack Y Hazout, Sami Mahjoub, Mohammed Zarquaoui, Noureddine Louanjli, Rosalie Cabry, Andre Hazout

Endometriosis is a chronic, estrogen-dependent disorder associated with the presence of endometrial cells mainly in the pelvic cavity, causing systemic immune inflammation, infertility, epigenetic dysregulation of differential DNA methylation, coelomic metaplasia, and pain. It affects approximately 10-12% of women. Despite decades of research, full pathophysiology, a diagnostic roadmap, and clinical management strategies for endometriosis are not yet fully elucidated. Cell-free DNA (Cf-DNA) in the peripheral blood of diseased and healthy individuals was discovered in the 1950s. Quantifying peripheral Cf-DNA and the specific differential methylation of a group of genes have been proposed as potential non-invasive diagnostic biomarkers for somatic and constitutional genetics and for various other pathological disorders. In this study, we investigated the Cf-DNA levels of 78 young women, 38 of whom had endometriosis confirmed via laparoscopy and 40 of whom were healthy. We found a significant difference between the two groups when Cf-DNA was quantified, with 3.9 times more Cf-DNA in the serum of women with endometriosis. We also identified nine target genes potentially involved in the pathogenesis of endometriosis, with a different methylation profile between the two groups. Our data suggest that the combination of cell-free DNA quantification and the assessment of the epigenetic signature of differential methylation of nine genes can be proposed as a non-invasive predictive and diagnostic test for endometriosis.

{"title":"Quantification of Free Circulating DNA and Differential Methylation Profiling of Selected Genes as Novel Non-Invasive Biomarkers for Endometriosis Diagnosis.","authors":"Moncef Benkhalifa, Pierre Alain Menoud, David Piquemal, Jack Y Hazout, Sami Mahjoub, Mohammed Zarquaoui, Noureddine Louanjli, Rosalie Cabry, Andre Hazout","doi":"10.3390/biom15010069","DOIUrl":"10.3390/biom15010069","url":null,"abstract":"<p><p>Endometriosis is a chronic, estrogen-dependent disorder associated with the presence of endometrial cells mainly in the pelvic cavity, causing systemic immune inflammation, infertility, epigenetic dysregulation of differential DNA methylation, coelomic metaplasia, and pain. It affects approximately 10-12% of women. Despite decades of research, full pathophysiology, a diagnostic roadmap, and clinical management strategies for endometriosis are not yet fully elucidated. Cell-free DNA (Cf-DNA) in the peripheral blood of diseased and healthy individuals was discovered in the 1950s. Quantifying peripheral Cf-DNA and the specific differential methylation of a group of genes have been proposed as potential non-invasive diagnostic biomarkers for somatic and constitutional genetics and for various other pathological disorders. In this study, we investigated the Cf-DNA levels of 78 young women, 38 of whom had endometriosis confirmed via laparoscopy and 40 of whom were healthy. We found a significant difference between the two groups when Cf-DNA was quantified, with 3.9 times more Cf-DNA in the serum of women with endometriosis. We also identified nine target genes potentially involved in the pathogenesis of endometriosis, with a different methylation profile between the two groups. Our data suggest that the combination of cell-free DNA quantification and the assessment of the epigenetic signature of differential methylation of nine genes can be proposed as a non-invasive predictive and diagnostic test for endometriosis.</p>","PeriodicalId":8943,"journal":{"name":"Biomolecules","volume":"15 1","pages":""},"PeriodicalIF":4.8,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11763320/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143036769","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Epithelial-Mesenchymal Transition Suppression by ML210 Enhances Gemcitabine Anti-Tumor Effects on PDAC Cells.
IF 4.8 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-01-06 DOI: 10.3390/biom15010070
Keisuke Takemura, Kyohei Ikeda, Hayato Miyake, Yoshio Sogame, Hiroaki Yasuda, Nobuhiro Okada, Kazumi Iwata, Junichi Sakagami, Kanji Yamaguchi, Yoshito Itoh, Atsushi Umemura

Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers in the world. Neoadjuvant chemotherapy (NAC) has become a standard treatment for patients scheduled for surgical resection, but the high rate of postoperative recurrence is a critical problem. Optimization of NAC is desirable to reduce postoperative recurrence and achieve long-term survival. However, if a patient's general condition deteriorates due to NAC toxicity, surgical outcomes may be compromised. Therefore, we aimed to identify drug(s) that can be used in combination with gemcitabine (GEM), a drug widely used for the treatment of PDAC, to inhibit distant metastatic recurrence, particularly after surgery. After several screening steps, ML210, a low molecular weight chemical, was found to suppress the epithelial-mesenchymal transition (EMT) in PDAC cells in combination with GEM. Specifically, low dose ML210 in combination with GEM was sufficient for cell migration without apparent toxicity or cell death. Mechanistically, ML210, which was developed as a glutathione peroxidase 4 (GPX4) inhibitor to induce lipid peroxidation, increased the oxidized lipid concentrations in PDAC cells. The oxidization of the cell membrane lipids may suppress EMT, including cell migration. Since EMT is a major malignant phenotype of PDAC, our findings may lead to the advancement of PDAC therapy, especially in the prevention of postoperative recurrence.

{"title":"Epithelial-Mesenchymal Transition Suppression by ML210 Enhances Gemcitabine Anti-Tumor Effects on PDAC Cells.","authors":"Keisuke Takemura, Kyohei Ikeda, Hayato Miyake, Yoshio Sogame, Hiroaki Yasuda, Nobuhiro Okada, Kazumi Iwata, Junichi Sakagami, Kanji Yamaguchi, Yoshito Itoh, Atsushi Umemura","doi":"10.3390/biom15010070","DOIUrl":"10.3390/biom15010070","url":null,"abstract":"<p><p>Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers in the world. Neoadjuvant chemotherapy (NAC) has become a standard treatment for patients scheduled for surgical resection, but the high rate of postoperative recurrence is a critical problem. Optimization of NAC is desirable to reduce postoperative recurrence and achieve long-term survival. However, if a patient's general condition deteriorates due to NAC toxicity, surgical outcomes may be compromised. Therefore, we aimed to identify drug(s) that can be used in combination with gemcitabine (GEM), a drug widely used for the treatment of PDAC, to inhibit distant metastatic recurrence, particularly after surgery. After several screening steps, ML210, a low molecular weight chemical, was found to suppress the epithelial-mesenchymal transition (EMT) in PDAC cells in combination with GEM. Specifically, low dose ML210 in combination with GEM was sufficient for cell migration without apparent toxicity or cell death. Mechanistically, ML210, which was developed as a glutathione peroxidase 4 (GPX4) inhibitor to induce lipid peroxidation, increased the oxidized lipid concentrations in PDAC cells. The oxidization of the cell membrane lipids may suppress EMT, including cell migration. Since EMT is a major malignant phenotype of PDAC, our findings may lead to the advancement of PDAC therapy, especially in the prevention of postoperative recurrence.</p>","PeriodicalId":8943,"journal":{"name":"Biomolecules","volume":"15 1","pages":""},"PeriodicalIF":4.8,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11763895/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143036735","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Epigenetic Regulation of Stromal and Immune Cells and Therapeutic Targets in the Tumor Microenvironment.
IF 4.8 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-01-06 DOI: 10.3390/biom15010071
Kang Liu, Yue Li, Minmin Shen, Wei Xu, Shanshan Wu, Xinxin Yang, Bo Zhang, Nengming Lin

The tumor microenvironment (TME) plays a pivotal role in neoplastic initiation and progression. Epigenetic machinery, governing the expression of core oncogenes and tumor suppressor genes in transformed cells, significantly contributes to tumor development at both primary and distant sites. Recent studies have illuminated how epigenetic mechanisms integrate external cues and downstream signals, altering the phenotype of stromal cells and immune cells. This remolds the area surrounding tumor cells, ultimately fostering an immunosuppressive microenvironment. Therefore, correcting the TME by targeting the epigenetic modifications holds substantial promise for cancer treatment. This review synthesizes recent research that elucidates the impact of specific epigenetic regulations-ranging from DNA methylation to histone modifications and chromatin remodeling-on stromal and immune cells within the TME. Notably, we highlight their functional roles in either promoting or restricting tumor progression. We also discuss the potential applications of epigenetic agents for cancer treatment, envisaging their ability to normalize the ecosystem. This review aims to assist researchers in understanding the dynamic interplay between epigenetics and the TME, paving the way for better epigenetic therapy.

{"title":"Epigenetic Regulation of Stromal and Immune Cells and Therapeutic Targets in the Tumor Microenvironment.","authors":"Kang Liu, Yue Li, Minmin Shen, Wei Xu, Shanshan Wu, Xinxin Yang, Bo Zhang, Nengming Lin","doi":"10.3390/biom15010071","DOIUrl":"10.3390/biom15010071","url":null,"abstract":"<p><p>The tumor microenvironment (TME) plays a pivotal role in neoplastic initiation and progression. Epigenetic machinery, governing the expression of core oncogenes and tumor suppressor genes in transformed cells, significantly contributes to tumor development at both primary and distant sites. Recent studies have illuminated how epigenetic mechanisms integrate external cues and downstream signals, altering the phenotype of stromal cells and immune cells. This remolds the area surrounding tumor cells, ultimately fostering an immunosuppressive microenvironment. Therefore, correcting the TME by targeting the epigenetic modifications holds substantial promise for cancer treatment. This review synthesizes recent research that elucidates the impact of specific epigenetic regulations-ranging from DNA methylation to histone modifications and chromatin remodeling-on stromal and immune cells within the TME. Notably, we highlight their functional roles in either promoting or restricting tumor progression. We also discuss the potential applications of epigenetic agents for cancer treatment, envisaging their ability to normalize the ecosystem. This review aims to assist researchers in understanding the dynamic interplay between epigenetics and the TME, paving the way for better epigenetic therapy.</p>","PeriodicalId":8943,"journal":{"name":"Biomolecules","volume":"15 1","pages":""},"PeriodicalIF":4.8,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11764280/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143036733","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unveiling the Mechanisms of a Remission in Major Depressive Disorder (MDD)-like Syndrome: The Role of Hippocampal Palmitoyltransferase Expression and Stress Susceptibility.
IF 4.8 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-01-05 DOI: 10.3390/biom15010067
Careen A Schroeter, Anna Gorlova, Michael Sicker, Aleksei Umriukhin, Alisa Burova, Boris Shulgin, Sergey Morozov, Joao P Costa-Nunes, Tatyana Strekalova

Post-translational modifications of proteins via palmitoylation, a thioester linkage of a 16-carbon fatty acid to a cysteine residue, reversibly increases their affinity for cholesterol-rich lipid rafts in membranes, changing their function. Little is known about how altered palmitoylation affects function at the systemic level and contributes to CNS pathology. However, recent studies suggested a role for the downregulation of palmitoyl acetyltransferase (DHHC) 21 gene expression in the development of Major Depressive Disorder (MDD)-like syndrome. Here, we sought to investigate how susceptibility (sucrose preference below 65%) or resilience (sucrose preference > 65%) to stress-induced anhedonia affects DHHC gene expression in the hippocampus of C57BL/6J mice during the phase of spontaneous recovery from anhedonia. Because MDD is a recurrent disorder, it is important to understand the molecular mechanisms underlying not only the symptomatic phase of the disease but also a state of temporary remission. Indeed, molecular changes associated with the application of pharmacotherapy at the remission stage are currently not well understood. Therefore, we used a mouse model of chronic stress to address these questions. The stress protocol consisted of rat exposure, social defeat, restraint stress, and tail suspension. Mice from the stress group were not treated, received imipramine via drinking water (7 mg/kg/day), or received intraperitoneal injections of dicholine succinate (DS; 25 mg/kg/day) starting 7 days prior to stress and continuing during a 14-day stress procedure. Controls were either untreated or treated with either of the two drugs. At the 1st after-stress week, sucrose preference, forced swim, novel cage, and fear-conditioning tests were carried out; the sucrose test and 5-day Morris water maze test followed by a sacrifice of mice on post-stress day 31 for all mice were performed. Transcriptome Illumina analysis of hippocampi was carried out. Using the RT-PCR, the hippocampal gene expression of Dhhc3, Dhhc7, Dhhc8, Dhhc13, Dhhc14, and Dhhc21 was studied. We found that chronic stress lowered sucrose preference in a subgroup of mice that also exhibited prolonged floating behavior, behavioral invigoration, and impaired contextual fear conditioning, while auditory conditioning was unaltered. At the remission phase, no changes in the sucrose test were found, and the acquisition of the Morris water maze was unchanged in all groups. In anhedonic, but not resilient animals, Dhhc8 expression was lowered, and the expression of Dhhc14 was increased. Antidepressant treatment with either drug partially preserved gene expression changes and behavioral abnormalities. Our data suggest that Dhhc8 and Dhhc14 are likely to be implicated in the mechanisms of depression at the remission stage, serving as targets for preventive therapy.

通过棕榈酰化(16 碳脂肪酸与半胱氨酸残基的硫酯连接)对蛋白质进行翻译后修饰,可逆地增加其对膜中富含胆固醇的脂质筏的亲和力,从而改变其功能。人们对棕榈酰化的改变如何影响系统水平的功能并导致中枢神经系统病理学知之甚少。然而,最近的研究表明,棕榈酰乙酰转移酶(DHHC)21 基因表达的下调在重度抑郁症(MDD)样综合征的发生中起着一定的作用。在此,我们试图研究在失乐症自发恢复阶段,压力诱导的失乐症易感性(蔗糖偏好低于65%)或恢复性(蔗糖偏好大于65%)如何影响C57BL/6J小鼠海马中的DHHC基因表达。由于多发性抑郁症是一种反复发作的疾病,因此了解该疾病症状阶段以及暂时缓解状态的分子机制非常重要。事实上,目前对缓解期应用药物治疗的相关分子变化还不甚了解。因此,我们利用小鼠慢性应激模型来解决这些问题。应激方案包括大鼠暴露、社交失败、束缚应激和悬尾。应激组的小鼠未接受任何治疗,或通过饮用水接受丙咪嗪(7 毫克/千克/天),或在应激前 7 天开始腹腔注射琥珀酸地高辛(DS;25 毫克/千克/天),并在为期 14 天的应激过程中持续注射。对照组要么未接受治疗,要么接受两种药物中任何一种的治疗。在应激后的第 1 周,进行了蔗糖偏好、强迫游泳、新笼和恐惧条件反射测试;在应激后第 31 天,对所有小鼠进行了蔗糖测试和为期 5 天的莫里斯水迷宫测试,然后将小鼠处死。对海马进行了转录组Illumina分析。利用 RT-PCR 技术研究了海马中 Dhhc3、Dhhc7、Dhhc8、Dhhc13、Dhhc14 和 Dhhc21 基因的表达。我们发现,慢性应激降低了亚组小鼠的蔗糖偏好,这些小鼠还表现出长时间的漂浮行为、行为振奋和情境恐惧条件反射受损,而听觉条件反射则没有改变。在缓解阶段,蔗糖测试没有发现任何变化,而莫里斯水迷宫的习得在所有组别中都没有变化。在失神动物中,Dhhc8的表达降低,而Dhhc14的表达升高。使用其中一种药物进行抗抑郁治疗可部分缓解基因表达变化和行为异常。我们的数据表明,Dhhc8和Dhhc14很可能与抑郁症缓解阶段的机制有关,可作为预防性治疗的靶点。
{"title":"Unveiling the Mechanisms of a Remission in Major Depressive Disorder (MDD)-like Syndrome: The Role of Hippocampal Palmitoyltransferase Expression and Stress Susceptibility.","authors":"Careen A Schroeter, Anna Gorlova, Michael Sicker, Aleksei Umriukhin, Alisa Burova, Boris Shulgin, Sergey Morozov, Joao P Costa-Nunes, Tatyana Strekalova","doi":"10.3390/biom15010067","DOIUrl":"10.3390/biom15010067","url":null,"abstract":"<p><p>Post-translational modifications of proteins via palmitoylation, a thioester linkage of a 16-carbon fatty acid to a cysteine residue, reversibly increases their affinity for cholesterol-rich lipid rafts in membranes, changing their function. Little is known about how altered palmitoylation affects function at the systemic level and contributes to CNS pathology. However, recent studies suggested a role for the downregulation of palmitoyl acetyltransferase (DHHC) 21 gene expression in the development of Major Depressive Disorder (MDD)-like syndrome. Here, we sought to investigate how susceptibility (sucrose preference below 65%) or resilience (sucrose preference > 65%) to stress-induced anhedonia affects DHHC gene expression in the hippocampus of C57BL/6J mice during the phase of spontaneous recovery from anhedonia. Because MDD is a recurrent disorder, it is important to understand the molecular mechanisms underlying not only the symptomatic phase of the disease but also a state of temporary remission. Indeed, molecular changes associated with the application of pharmacotherapy at the remission stage are currently not well understood. Therefore, we used a mouse model of chronic stress to address these questions. The stress protocol consisted of rat exposure, social defeat, restraint stress, and tail suspension. Mice from the stress group were not treated, received imipramine via drinking water (7 mg/kg/day), or received intraperitoneal injections of dicholine succinate (DS; 25 mg/kg/day) starting 7 days prior to stress and continuing during a 14-day stress procedure. Controls were either untreated or treated with either of the two drugs. At the 1st after-stress week, sucrose preference, forced swim, novel cage, and fear-conditioning tests were carried out; the sucrose test and 5-day Morris water maze test followed by a sacrifice of mice on post-stress day 31 for all mice were performed. Transcriptome Illumina analysis of hippocampi was carried out. Using the RT-PCR, the hippocampal gene expression of <i>Dhhc3</i>, <i>Dhhc7</i>, <i>Dhhc8</i>, <i>Dhhc13</i>, <i>Dhhc14</i>, and <i>Dhhc21</i> was studied. We found that chronic stress lowered sucrose preference in a subgroup of mice that also exhibited prolonged floating behavior, behavioral invigoration, and impaired contextual fear conditioning, while auditory conditioning was unaltered. At the remission phase, no changes in the sucrose test were found, and the acquisition of the Morris water maze was unchanged in all groups. In anhedonic, but not resilient animals, <i>Dhhc8</i> expression was lowered, and the expression of <i>Dhhc14</i> was increased. Antidepressant treatment with either drug partially preserved gene expression changes and behavioral abnormalities. Our data suggest that <i>Dhhc8</i> and <i>Dhhc14</i> are likely to be implicated in the mechanisms of depression at the remission stage, serving as targets for preventive therapy.</p>","PeriodicalId":8943,"journal":{"name":"Biomolecules","volume":"15 1","pages":""},"PeriodicalIF":4.8,"publicationDate":"2025-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11764023/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143036663","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Isolation of Actinobacteria from Date Palm Rhizosphere with Enzymatic, Antimicrobial, Antioxidant, and Protein Denaturation Inhibitory Activities.
IF 4.8 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-01-05 DOI: 10.3390/biom15010065
Maria Smati, Amina Bramki, Fatima Zohra Makhlouf, Rihab Djebaili, Beatrice Farda, Fatima Zohra Abdelhadi, Nahla Abdelli, Mahmoud Kitouni, Marika Pellegrini

Arid ecosystems constitute a promising source of actinobacteria producing new bioactive molecules. This study aimed to explore different biological activities of actinomycetes isolated from the rhizosphere of Phoenix dactylifera L. in the Ghardaia region, Algeria. A total of 18 actinobacteria were isolated and studied for their enzymatic and antimicrobial activities. All isolates shared cellulase and catalase activity; most of them produced amylase (94%), esterase (84%), lecithinase and lipoproteins (78%), caseinase (94%), and gelatinase (72%). The isolates could coagulate (56%) or peptonize (28%) skim milk. Overall, 72% of the isolates exhibited significant antibacterial activity against at least one test bacteria, while 56% demonstrated antifungal activity against at least one test fungi. Based on enzyme production and antimicrobial activity, isolate SGI16 was selected for secondary metabolite extraction by ethyl acetate. The crude extract of SGI16 was analyzed using DPPH and BSA denaturation inhibition tests, revealing significant antioxidant power (IC50 = 7.24 ± 0.21 μg mL-1) and protein denaturation inhibitory capacity (IC50 = 492.41 ± 0.47 μg mL-1). Molecular identification based on 16S rDNA analysis showed that SGI16 belonged to the genus Streptomyces. The findings highlight that date palms' rhizosphere actinobacteria are a valuable source of biomolecules of biotechnological interest.

{"title":"Isolation of Actinobacteria from Date Palm Rhizosphere with Enzymatic, Antimicrobial, Antioxidant, and Protein Denaturation Inhibitory Activities.","authors":"Maria Smati, Amina Bramki, Fatima Zohra Makhlouf, Rihab Djebaili, Beatrice Farda, Fatima Zohra Abdelhadi, Nahla Abdelli, Mahmoud Kitouni, Marika Pellegrini","doi":"10.3390/biom15010065","DOIUrl":"10.3390/biom15010065","url":null,"abstract":"<p><p>Arid ecosystems constitute a promising source of actinobacteria producing new bioactive molecules. This study aimed to explore different biological activities of actinomycetes isolated from the rhizosphere of <i>Phoenix dactylifera</i> L. in the Ghardaia region, Algeria. A total of 18 actinobacteria were isolated and studied for their enzymatic and antimicrobial activities. All isolates shared cellulase and catalase activity; most of them produced amylase (94%), esterase (84%), lecithinase and lipoproteins (78%), caseinase (94%), and gelatinase (72%). The isolates could coagulate (56%) or peptonize (28%) skim milk. Overall, 72% of the isolates exhibited significant antibacterial activity against at least one test bacteria, while 56% demonstrated antifungal activity against at least one test fungi. Based on enzyme production and antimicrobial activity, isolate SGI16 was selected for secondary metabolite extraction by ethyl acetate. The crude extract of SGI16 was analyzed using DPPH and BSA denaturation inhibition tests, revealing significant antioxidant power (IC<sub>50</sub> = 7.24 ± 0.21 μg mL<sup>-1</sup>) and protein denaturation inhibitory capacity (IC<sub>50</sub> = 492.41 ± 0.47 μg mL<sup>-1</sup>). Molecular identification based on <i>16S rDNA</i> analysis showed that SGI16 belonged to the genus <i>Streptomyces</i>. The findings highlight that date palms' rhizosphere actinobacteria are a valuable source of biomolecules of biotechnological interest.</p>","PeriodicalId":8943,"journal":{"name":"Biomolecules","volume":"15 1","pages":""},"PeriodicalIF":4.8,"publicationDate":"2025-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11764267/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143036711","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SNP rs9364554 Modulates Androgen Receptor Binding and Drug Response in Prostate Cancer.
IF 4.8 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-01-04 DOI: 10.3390/biom15010064
Yuqian Yan, Lei Shi, Tao Ma, Liguo Wang, Haojie Huang

(1) Background: Prostate cancer treatment efficacy is significantly influenced by androgen receptor (AR) signaling pathways. SLC22A3, a membrane transporter, has been linked to SNP rs9364554 risk loci for drug efficacy in prostate cancer. (2) Methods: We examined the location of SNP rs9364554 in the genome and utilized TCGA and other publicly available datasets to analyze the association of this SNP with SLC22A3 transcription levels. We verified onco-mining findings in prostate cancer cell lines using quantitative PCR and Western blots. Additionally, we employed electrophoretic mobility shift assay (EMSA) to detect the binding affinity of transcription factors to this SNP. The ChIP-Seq was used to analyze the enrichment of H3K27ac on the SLC22A3 promoter. (3) Results: In this study, we revealed that SNP rs9364554 resides in the SLC22A3 gene and affects its transcription. The downregulation of SLC22A3 is associated with drug resistance. More importantly, we found that this SNP has different binding affinities with transcription factors, specifically FOXA1 and AR, which significantly affects their regulation of SLC22A3 transcription. (4) Conclusions: Our findings highlight the potential of using this SNP as a biomarker for predicting chemotherapeutic outcomes and uncover possible mechanisms underlying drug resistance in advanced prostate cancers. More importantly, it provides a clinical foundation for targeting FOXA1 to enhance drug efficacy in prostate cancer patients.

{"title":"SNP rs9364554 Modulates Androgen Receptor Binding and Drug Response in Prostate Cancer.","authors":"Yuqian Yan, Lei Shi, Tao Ma, Liguo Wang, Haojie Huang","doi":"10.3390/biom15010064","DOIUrl":"10.3390/biom15010064","url":null,"abstract":"<p><p>(1) Background: Prostate cancer treatment efficacy is significantly influenced by androgen receptor (AR) signaling pathways. SLC22A3, a membrane transporter, has been linked to SNP rs9364554 risk loci for drug efficacy in prostate cancer. (2) Methods: We examined the location of SNP rs9364554 in the genome and utilized TCGA and other publicly available datasets to analyze the association of this SNP with <i>SLC22A3</i> transcription levels. We verified onco-mining findings in prostate cancer cell lines using quantitative PCR and Western blots. Additionally, we employed electrophoretic mobility shift assay (EMSA) to detect the binding affinity of transcription factors to this SNP. The ChIP-Seq was used to analyze the enrichment of H3K27ac on the <i>SLC22A3</i> promoter. (3) Results: In this study, we revealed that SNP rs9364554 resides in the <i>SLC22A3</i> gene and affects its transcription. The downregulation of SLC22A3 is associated with drug resistance. More importantly, we found that this SNP has different binding affinities with transcription factors, specifically FOXA1 and AR, which significantly affects their regulation of <i>SLC22A3</i> transcription. (4) Conclusions: Our findings highlight the potential of using this SNP as a biomarker for predicting chemotherapeutic outcomes and uncover possible mechanisms underlying drug resistance in advanced prostate cancers. More importantly, it provides a clinical foundation for targeting FOXA1 to enhance drug efficacy in prostate cancer patients.</p>","PeriodicalId":8943,"journal":{"name":"Biomolecules","volume":"15 1","pages":""},"PeriodicalIF":4.8,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11763896/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143036795","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
HBV cccDNA: The Molecular Reservoir of Hepatitis B Persistence and Challenges to Achieve Viral Eradication.
IF 4.8 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-01-04 DOI: 10.3390/biom15010062
André Boonstra, Gulce Sari

Hepatitis B virus (HBV) is a major global health issue, with an estimated 254 million people living with chronic HBV infection worldwide as of 2022. Chronic HBV infection is the leading cause of cirrhosis and liver cancer. Current treatment with nucleos(t)ide analogs is effective in the suppression of viral activity but generally requires lifelong treatment. They fail to eradicate the HBV viral reservoir, called covalently closed circular DNA (cccDNA), which replicates in the nucleus of liver cells. The cccDNA serves as the sole template for viral replication, as it generates the pregenomic RNA (pgRNA) necessary for producing new viral genomes. This stable form of viral DNA can reactivate the virus when treatment is stopped. HBV cccDNA is therefore one of the main challenges in curing chronic HBV infections. By targeting steps such as cccDNA formation, capsid assembly, or particle secretion, researchers continue to seek ways to interfere with HBV replication and to reduce its persistence, ultimately to eradicate HBV as a global health problem. This review provides an overview of what is currently known about cccDNA formation and biogenesis and the ongoing efforts to target and eradicate it to cure chronic HBV infections.

{"title":"HBV cccDNA: The Molecular Reservoir of Hepatitis B Persistence and Challenges to Achieve Viral Eradication.","authors":"André Boonstra, Gulce Sari","doi":"10.3390/biom15010062","DOIUrl":"10.3390/biom15010062","url":null,"abstract":"<p><p>Hepatitis B virus (HBV) is a major global health issue, with an estimated 254 million people living with chronic HBV infection worldwide as of 2022. Chronic HBV infection is the leading cause of cirrhosis and liver cancer. Current treatment with nucleos(t)ide analogs is effective in the suppression of viral activity but generally requires lifelong treatment. They fail to eradicate the HBV viral reservoir, called covalently closed circular DNA (cccDNA), which replicates in the nucleus of liver cells. The cccDNA serves as the sole template for viral replication, as it generates the pregenomic RNA (pgRNA) necessary for producing new viral genomes. This stable form of viral DNA can reactivate the virus when treatment is stopped. HBV cccDNA is therefore one of the main challenges in curing chronic HBV infections. By targeting steps such as cccDNA formation, capsid assembly, or particle secretion, researchers continue to seek ways to interfere with HBV replication and to reduce its persistence, ultimately to eradicate HBV as a global health problem. This review provides an overview of what is currently known about cccDNA formation and biogenesis and the ongoing efforts to target and eradicate it to cure chronic HBV infections.</p>","PeriodicalId":8943,"journal":{"name":"Biomolecules","volume":"15 1","pages":""},"PeriodicalIF":4.8,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11763949/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143036675","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Biomolecules
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1