Yogesh Pawar, Aleksandra Kopranovic, Ramaa C S, Franz-Josef Meyer-Almes
Neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD) are characterized by complex pathologies with progressive neurodegeneration, protein misfolding, oxidative stress, and persistent inflammation. Recent findings indicate the pivotal involvement of epigenetic disruption, particularly aberrant histone deacetylase (HDAC) activity, in disease initiation and progression. In the current review, we systematically discuss the mechanistic function of HDACs across all classes (I, IIa, IIb, III, and IV) in neurodegenerative disease mechanisms, such as their involvement in the modulation of gene expression, mitochondrial function, proteostasis, and neuronal survival. We discuss the therapeutic potential, as well as limitations, of HDAC inhibitors (HDACis), such as pan-inhibitors and isoenzyme-selective inhibitors, and new multi-target-directed ligands with HDAC inhibition combined with acetylcholinesterase modulation, PDE modulation, MAO-B inhibition, or NMDAR modulation. Particular emphasis is placed on the development of HDAC6-selective inhibitors with enhanced brain permeability and reduced toxicity, which have shown promising preclinical efficacy in ameliorating hallmark pathologies of AD, PD, and HD. In addition, s-triazine-based scaffolds have recently emerged as promising chemotypes in HDAC inhibitor design, offering favorable pharmacokinetic profiles, metabolic stability, and the potential for dual-target modulation relevant to neurodegeneration. The review also explores the future of HDAC-targeted therapies, including PROTAC degraders, dual-inhibitor scaffolds, and sustainable, BBB-penetrant molecules. Collectively, this review underscores the importance of HDAC modulation as a multifaceted strategy in the treatment of neurodegenerative diseases and highlights the need for continued innovation in epigenetic drug design.
{"title":"Epigenetic Dysregulation in Neurodegeneration: The Role of Histone Deacetylases and Emerging Inhibitor Strategies.","authors":"Yogesh Pawar, Aleksandra Kopranovic, Ramaa C S, Franz-Josef Meyer-Almes","doi":"10.3390/biom16010103","DOIUrl":"10.3390/biom16010103","url":null,"abstract":"<p><p>Neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD) are characterized by complex pathologies with progressive neurodegeneration, protein misfolding, oxidative stress, and persistent inflammation. Recent findings indicate the pivotal involvement of epigenetic disruption, particularly aberrant histone deacetylase (HDAC) activity, in disease initiation and progression. In the current review, we systematically discuss the mechanistic function of HDACs across all classes (I, IIa, IIb, III, and IV) in neurodegenerative disease mechanisms, such as their involvement in the modulation of gene expression, mitochondrial function, proteostasis, and neuronal survival. We discuss the therapeutic potential, as well as limitations, of HDAC inhibitors (HDACis), such as pan-inhibitors and isoenzyme-selective inhibitors, and new multi-target-directed ligands with HDAC inhibition combined with acetylcholinesterase modulation, PDE modulation, MAO-B inhibition, or NMDAR modulation. Particular emphasis is placed on the development of HDAC6-selective inhibitors with enhanced brain permeability and reduced toxicity, which have shown promising preclinical efficacy in ameliorating hallmark pathologies of AD, PD, and HD. In addition, s-triazine-based scaffolds have recently emerged as promising chemotypes in HDAC inhibitor design, offering favorable pharmacokinetic profiles, metabolic stability, and the potential for dual-target modulation relevant to neurodegeneration. The review also explores the future of HDAC-targeted therapies, including PROTAC degraders, dual-inhibitor scaffolds, and sustainable, BBB-penetrant molecules. Collectively, this review underscores the importance of HDAC modulation as a multifaceted strategy in the treatment of neurodegenerative diseases and highlights the need for continued innovation in epigenetic drug design.</p>","PeriodicalId":8943,"journal":{"name":"Biomolecules","volume":"16 1","pages":""},"PeriodicalIF":4.8,"publicationDate":"2026-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12839100/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146059826","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Suzanne M de la Monte, Ming Tong, Rolf I Carlson, Greg Sutherland
Background: Alcohol use disorder (AUD) is associated with chronic heavy or repeated binge alcohol abuse, which can cause alcohol-related brain damage (ARBD) marked by neurobehavioral, cognitive, and motor deficits. The anterior frontal lobe and cerebellar vermis are two of the major targets of ARBD in humans with AUD and in experimental alcohol exposed models. Alcohol's neurotoxic and neurodegenerative effects include impairments in signaling through insulin and insulin-like growth factor (IGF) pathways that regulate energy metabolism. This human AUD study was inspired by a recent report suggesting that dysfunction of the frontal lobe incretin network in experimental ARBD is linked to known impairments in brain insulin/IGF signaling.
Objective: The overarching goal was to investigate whether AUD is associated with dysfunction of the brain's incretin network, focusing on the cerebellum and frontal lobe.
Methods: Fresh frozen postmortem cerebellar vermis and anterior frontal lobe tissues from adult male AUD (n = 6) and control (n = 6) donors were processed for protein extraction. Duplex enzyme-linked immunosorbent assays (ELISAs) were used to assess immunoreactivity to neurofilament light chain (NfL) as a marker of neurodegeneration. A multiplex ELISA was used to measure immunoreactivity to a panel of gut hormones, including incretin polypeptides.
Results: AUD was associated with significantly increased NfL immunoreactivity in both the cerebellar vermis and anterior frontal lobe. However, the patterns of AUD-related alterations in gut hormone immunoreactivity differed regionally. AUD reduced pancreatic polypeptide immunoreactivity in the cerebellar vermis, and GIP, GLP-1, leptin, and ghrelin in the frontal lobe.
Conclusions: (1) Increased NfL may serve as a useful biomarker of neurodegeneration in AUD. (2) AUD's adverse effects on neuroendocrine signaling networks differ in the cerebellar vermis and anterior frontal region, although both are significant targets of ARBD. (3) The finding of AUD-associated reductions in frontal lobe GIP and GLP-1 suggests that therapeutic targeting with incretin receptor agonists may help restore energy metabolism and neurobehavioral and cognitive functions linked to their networks.
{"title":"Impaired Brain Incretin and Gut Hormone Expression in Human Alcohol-Related Brain Damage: Opportunities for Therapeutic Targeting.","authors":"Suzanne M de la Monte, Ming Tong, Rolf I Carlson, Greg Sutherland","doi":"10.3390/biom16010099","DOIUrl":"10.3390/biom16010099","url":null,"abstract":"<p><strong>Background: </strong>Alcohol use disorder (AUD) is associated with chronic heavy or repeated binge alcohol abuse, which can cause alcohol-related brain damage (ARBD) marked by neurobehavioral, cognitive, and motor deficits. The anterior frontal lobe and cerebellar vermis are two of the major targets of ARBD in humans with AUD and in experimental alcohol exposed models. Alcohol's neurotoxic and neurodegenerative effects include impairments in signaling through insulin and insulin-like growth factor (IGF) pathways that regulate energy metabolism. This human AUD study was inspired by a recent report suggesting that dysfunction of the frontal lobe incretin network in experimental ARBD is linked to known impairments in brain insulin/IGF signaling.</p><p><strong>Objective: </strong>The overarching goal was to investigate whether AUD is associated with dysfunction of the brain's incretin network, focusing on the cerebellum and frontal lobe.</p><p><strong>Methods: </strong>Fresh frozen postmortem cerebellar vermis and anterior frontal lobe tissues from adult male AUD (<i>n</i> = 6) and control (<i>n</i> = 6) donors were processed for protein extraction. Duplex enzyme-linked immunosorbent assays (ELISAs) were used to assess immunoreactivity to neurofilament light chain (NfL) as a marker of neurodegeneration. A multiplex ELISA was used to measure immunoreactivity to a panel of gut hormones, including incretin polypeptides.</p><p><strong>Results: </strong>AUD was associated with significantly increased NfL immunoreactivity in both the cerebellar vermis and anterior frontal lobe. However, the patterns of AUD-related alterations in gut hormone immunoreactivity differed regionally. AUD reduced pancreatic polypeptide immunoreactivity in the cerebellar vermis, and GIP, GLP-1, leptin, and ghrelin in the frontal lobe.</p><p><strong>Conclusions: </strong>(1) Increased NfL may serve as a useful biomarker of neurodegeneration in AUD. (2) AUD's adverse effects on neuroendocrine signaling networks differ in the cerebellar vermis and anterior frontal region, although both are significant targets of ARBD. (3) The finding of AUD-associated reductions in frontal lobe GIP and GLP-1 suggests that therapeutic targeting with incretin receptor agonists may help restore energy metabolism and neurobehavioral and cognitive functions linked to their networks.</p>","PeriodicalId":8943,"journal":{"name":"Biomolecules","volume":"16 1","pages":""},"PeriodicalIF":4.8,"publicationDate":"2026-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12838672/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146059911","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jianquan Tang, Qi Liu, Yuetong Liu, Hongyan Gao, Bing He, Ming Yue, Bin Li
The corolla of Rehmannia glutinosa typically exhibits a stable reddish-purple color, but a naturally occurring yellow-flowered variant has recently been identified. To clarify the molecular basis of flower color variant, metabolomics, transcriptomics, and variant analyses were integrated. Metabolomic profiling revealed that the yellow phenotype was associated with lower anthocyanin levels and higher carotenoid levels. Specifically, the decreased cyanidin-3-O-glucoside led to a loss of red, while increased lutein provided the basis for the yellow color. Transcriptomic analysis revealed a downregulation of anthocyanin biosynthetic genes, including CHS, CHI, F3H, DFR, and ANS, in the yellow-flowered variant, and three S6-subgroup R2R3-MYB genes, including the known anthocyanin activator RgMYB41 (gene-DH2020_015992), were downregulated. Variant analysis showed that A12S and G255E in the gene-DH2020_015992 transcription factor were predicted to markedly alter protein conformation and potentially impair regulatory function. Subcellular localization and transcriptional activation assays further supported the functional characterization of gene-DH2020_015992 as a transcription factor. Collectively, these findings suggest that flower color variation in R. glutinosa is driven by MYB-mediated repression of anthocyanin biosynthesis and by carotenoid accumulation. This study provides a comprehensive genetic explanation for flower color variation in R. glutinosa and offers a theoretical foundation for floral pigmentation in plants.
地黄的花冠通常呈现稳定的红紫色,但最近发现了一种自然发生的黄花变体。为了阐明花色变异的分子基础,我们将代谢组学、转录组学和变异分析相结合。代谢组学分析显示,黄色表型与较低的花青素水平和较高的类胡萝卜素水平有关。具体来说,花青素-3- o -葡萄糖苷的减少导致红色的损失,而叶黄素的增加为黄色提供了基础。转录组学分析显示,黄花变体中花青素生物合成基因CHS、CHI、F3H、DFR和ANS下调,3个s6亚群R2R3-MYB基因下调,包括已知的花青素激活因子RgMYB41(基因- dh2020_015992)。变异分析显示,基因- dh2020_015992转录因子中的A12S和G255E预计会显著改变蛋白质构象,并可能损害调节功能。亚细胞定位和转录激活实验进一步支持了基因- dh2020_015992作为转录因子的功能表征。综上所述,这些研究结果表明,myb介导的花青素生物合成抑制和类胡萝卜素积累驱动了黄姜的花色变化。本研究为地黄花颜色变异提供了全面的遗传解释,为植物花色素沉着研究提供了理论基础。
{"title":"Sequence Variations in MYB (v-myb Myeloblastosis Viral Oncogene Homolog) Genes Impair Anthocyanin Biosynthesis and Contribute to Yellow Flower Phenotype in <i>Rehmannia glutinosa</i>.","authors":"Jianquan Tang, Qi Liu, Yuetong Liu, Hongyan Gao, Bing He, Ming Yue, Bin Li","doi":"10.3390/biom16010095","DOIUrl":"10.3390/biom16010095","url":null,"abstract":"<p><p>The corolla of <i>Rehmannia glutinosa</i> typically exhibits a stable reddish-purple color, but a naturally occurring yellow-flowered variant has recently been identified. To clarify the molecular basis of flower color variant, metabolomics, transcriptomics, and variant analyses were integrated. Metabolomic profiling revealed that the yellow phenotype was associated with lower anthocyanin levels and higher carotenoid levels. Specifically, the decreased cyanidin-3-O-glucoside led to a loss of red, while increased lutein provided the basis for the yellow color. Transcriptomic analysis revealed a downregulation of anthocyanin biosynthetic genes, including <i>CHS</i>, <i>CHI</i>, <i>F3H</i>, <i>DFR</i>, and <i>ANS</i>, in the yellow-flowered variant, and three S6-subgroup R2R3-MYB genes, including the known anthocyanin activator <i>RgMYB41</i> (<i>gene-DH2020_015992</i>), were downregulated. Variant analysis showed that A12S and G255E in the gene-DH2020_015992 transcription factor were predicted to markedly alter protein conformation and potentially impair regulatory function. Subcellular localization and transcriptional activation assays further supported the functional characterization of <i>gene-DH2020_015992</i> as a transcription factor. Collectively, these findings suggest that flower color variation in <i>R. glutinosa</i> is driven by MYB-mediated repression of anthocyanin biosynthesis and by carotenoid accumulation. This study provides a comprehensive genetic explanation for flower color variation in <i>R. glutinosa</i> and offers a theoretical foundation for floral pigmentation in plants.</p>","PeriodicalId":8943,"journal":{"name":"Biomolecules","volume":"16 1","pages":""},"PeriodicalIF":4.8,"publicationDate":"2026-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12839424/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146059872","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Regular exercise enhances heart function and metabolism. The N6-methyladenosine (m6A) RNA modification is related to myocardial homeostasis, with the demethylase fat mass and obesity-associated protein (FTO) crucial for myocardial remodeling. However, its role in exercise-induced heart protection is unclear. We analyzed m6A levels and methylation enzymes to evaluate FTO changes in transverse aortic constriction (TAC) mice hearts after six weeks of treadmill exercise. Further in vivo experiments explored the effect of FTO. High-throughput sequencing identified the target gene enoyl-CoA delta isomerase 1 (Eci1). Cardiac-specific Eci1 knockout mice were used to assess the role of Eci1. The influence of FTO on Eci1 expression was explored by eliminating demethylase activity. The results showed that exercise increased FTO expression in TAC mice hearts. Reducing FTO in the heart diminishes exercise benefits. The differential m6A-modified genes in TAC mice hearts were enriched in fatty acid metabolism, with increased methylation of Eci1 m6A and decreased protein levels, leading to abnormal lipid accumulation. Exercise could reverse these effects. Eci1 knockout partially weakened exercise benefits. FTO regulated Eci1 expression via m6A modification, and inhibiting FTO demethylase activity blunted its protective effects on hypertrophic cardiomyocytes. Thus, FTO modulates Eci1 expression through m6A-dependent mechanisms, facilitates fatty acid metabolism and mitigates pressure overload-induced heart failure during exercise.
{"title":"FTO-Eci1 Axis Mediates Exercise-Induced Cardioprotection in Pressure Overload Mice.","authors":"Jinyun Wang, Zaoshang Chang, Shuo Lin, Guangyuan Sha, Wenyan Zeng, Qirong Huang, Qibin Deng, Shen Wang, Min Hu, Jingbo Xia","doi":"10.3390/biom16010098","DOIUrl":"10.3390/biom16010098","url":null,"abstract":"<p><p>Regular exercise enhances heart function and metabolism. The N6-methyladenosine (m<sup>6</sup>A) RNA modification is related to myocardial homeostasis, with the demethylase fat mass and obesity-associated protein (FTO) crucial for myocardial remodeling. However, its role in exercise-induced heart protection is unclear. We analyzed m<sup>6</sup>A levels and methylation enzymes to evaluate FTO changes in transverse aortic constriction (TAC) mice hearts after six weeks of treadmill exercise. Further in vivo experiments explored the effect of FTO. High-throughput sequencing identified the target gene enoyl-CoA delta isomerase 1 (Eci1). Cardiac-specific <i>Eci1</i> knockout mice were used to assess the role of Eci1. The influence of FTO on Eci1 expression was explored by eliminating demethylase activity. The results showed that exercise increased FTO expression in TAC mice hearts. Reducing FTO in the heart diminishes exercise benefits. The differential m<sup>6</sup>A-modified genes in TAC mice hearts were enriched in fatty acid metabolism, with increased methylation of <i>Eci1</i> m<sup>6</sup>A and decreased protein levels, leading to abnormal lipid accumulation. Exercise could reverse these effects. <i>Eci1</i> knockout partially weakened exercise benefits. FTO regulated Eci1 expression via m<sup>6</sup>A modification, and inhibiting FTO demethylase activity blunted its protective effects on hypertrophic cardiomyocytes. Thus, FTO modulates Eci1 expression through m<sup>6</sup>A-dependent mechanisms, facilitates fatty acid metabolism and mitigates pressure overload-induced heart failure during exercise.</p>","PeriodicalId":8943,"journal":{"name":"Biomolecules","volume":"16 1","pages":""},"PeriodicalIF":4.8,"publicationDate":"2026-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12839096/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146059774","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Vaibhav Tiwari, James Elste, Chunyu Wang, Fuming Zhang
Herpes simplex viruses (HSV-1 and HSV-2) are highly prevalent human pathogens that establish lifelong latency in sensory neurons, posing a persistent challenge to global public health. Their clinical manifestations range from mild, self-limiting orolabial lesions to severe, life-threatening conditions such as disseminated neonatal infections, focal encephalitis, and herpetic stromal keratitis, which can lead to irreversible corneal blindness. Beyond direct pathology, HSV-mediated genital ulcerative disease (GUD) significantly enhances mucosal susceptibility to HIV-1 and other sexually transmitted infections, amplifying co-infection risk and disease burden. Despite decades of clinical reliance on nucleoside analogues such as acyclovir, the therapeutic landscape has stagnated with rising antiviral resistance, toxicity associated with prolonged use, and the complete inability of current drugs to eliminate latency or prevent reactivation continue to undermine effective disease control. These persistent gaps underscore an urgent need for next-generation antivirals that operate through fundamentally new mechanisms. Marine ecosystems, the planet's most chemically diverse environments, are providing an expanding repertoire of antiviral compounds with significant therapeutic promise. Recent discoveries reveal that marine-derived polysaccharides, sulfated glycans, peptides, alkaloids, and microbial metabolites exhibit remarkably potent and multi-targeted anti-HSV activities, disrupting viral attachment, fusion, replication, and egress, while also reshaping host antiviral immunity. Together, these agents showcase mechanisms and scaffolds entirely distinct from existing therapeutics. This review integrates emerging evidence on structural diversity, mechanistic breadth, and translational promise of marine natural products with anti-HSV activity. Collectively, these advances position marine-derived compounds as powerful, untapped scaffolds capable of reshaping the future of HSV therapeutics.
{"title":"Marine Derived Natural Products: Emerging Therapeutics Against Herpes Simplex Virus Infection.","authors":"Vaibhav Tiwari, James Elste, Chunyu Wang, Fuming Zhang","doi":"10.3390/biom16010100","DOIUrl":"10.3390/biom16010100","url":null,"abstract":"<p><p>Herpes simplex viruses (HSV-1 and HSV-2) are highly prevalent human pathogens that establish lifelong latency in sensory neurons, posing a persistent challenge to global public health. Their clinical manifestations range from mild, self-limiting orolabial lesions to severe, life-threatening conditions such as disseminated neonatal infections, focal encephalitis, and herpetic stromal keratitis, which can lead to irreversible corneal blindness. Beyond direct pathology, HSV-mediated genital ulcerative disease (GUD) significantly enhances mucosal susceptibility to HIV-1 and other sexually transmitted infections, amplifying co-infection risk and disease burden. Despite decades of clinical reliance on nucleoside analogues such as acyclovir, the therapeutic landscape has stagnated with rising antiviral resistance, toxicity associated with prolonged use, and the complete inability of current drugs to eliminate latency or prevent reactivation continue to undermine effective disease control. These persistent gaps underscore an urgent need for next-generation antivirals that operate through fundamentally new mechanisms. Marine ecosystems, the planet's most chemically diverse environments, are providing an expanding repertoire of antiviral compounds with significant therapeutic promise. Recent discoveries reveal that marine-derived polysaccharides, sulfated glycans, peptides, alkaloids, and microbial metabolites exhibit remarkably potent and multi-targeted anti-HSV activities, disrupting viral attachment, fusion, replication, and egress, while also reshaping host antiviral immunity. Together, these agents showcase mechanisms and scaffolds entirely distinct from existing therapeutics. This review integrates emerging evidence on structural diversity, mechanistic breadth, and translational promise of marine natural products with anti-HSV activity. Collectively, these advances position marine-derived compounds as powerful, untapped scaffolds capable of reshaping the future of HSV therapeutics.</p>","PeriodicalId":8943,"journal":{"name":"Biomolecules","volume":"16 1","pages":""},"PeriodicalIF":4.8,"publicationDate":"2026-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12839294/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146059610","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xihong Li, Kaili Zhang, Yue Zhang, Zhijie Li, Zhangfan Chen, Hongyan Wang, Songlin Chen, Na Wang
Transforming growth factor β (TGF-β) superfamily members are critical in teleost sex determination and differentiation. Tgfb2b is an important TGF-β ligand gene exhibiting dominant expression in the ovary of Chinese tongue sole (Cynoglossus semilaevis), yet its function in sex regulation remains unclear. In the present study, the gene expression pattern, transcriptional regulation, and knockdown effect were examined. Its expression persisted and showed a gradual increase throughout ovarian development from 3 months to 1.5 years post-hatching. In situ hybridization (ISH) revealed that the gene was distributed across oocytes at stages I-III, while scarcely detectable in the testis. The transcriptional factors CCAAT/enhancer binding protein α (C/EBPα) and Jun proto-oncogene AP-1 transcription factor subunit (c-Jun) could repress the activity of tgfb2b promoter. In vitro knockdown of tgfb2b in C. semilaevis ovarian cells led to downregulation of its downstream genes (e.g., smad1 and smad2) as well as other sex-related genes (e.g., foxl2 and esr2b). Moreover, multi-omics analysis indicated that, in C. semilaevis gonads, a miRNA named novel-m0083-3p showed an opposite expression pattern with tgfb2b and might have a binding site with the gene. By dual-luciferase assay, tgfb2b was validated to be directly targeted and suppressed by the miRNA. These results demonstrate that tgfb2b plays a significant role in ovarian differentiation and development. Further functional and molecular studies on the interplay between tgfb2b and the foxl2-cyp19a-esr axis will help elucidate the regulatory network underlying sex development in teleost.
{"title":"Identification and Functional Analysis of <i>tgfb2b</i> Gene in Ovarian Development of Chinese Tongue Sole (<i>Cynoglossus semilaevis</i>).","authors":"Xihong Li, Kaili Zhang, Yue Zhang, Zhijie Li, Zhangfan Chen, Hongyan Wang, Songlin Chen, Na Wang","doi":"10.3390/biom16010105","DOIUrl":"10.3390/biom16010105","url":null,"abstract":"<p><p>Transforming growth factor β (TGF-β) superfamily members are critical in teleost sex determination and differentiation. <i>Tgfb2b</i> is an important TGF-β ligand gene exhibiting dominant expression in the ovary of Chinese tongue sole (<i>Cynoglossus semilaevis</i>), yet its function in sex regulation remains unclear. In the present study, the gene expression pattern, transcriptional regulation, and knockdown effect were examined. Its expression persisted and showed a gradual increase throughout ovarian development from 3 months to 1.5 years post-hatching. <i>In situ</i> hybridization (ISH) revealed that the gene was distributed across oocytes at stages I-III, while scarcely detectable in the testis. The transcriptional factors CCAAT/enhancer binding protein α (C/EBPα) and Jun proto-oncogene AP-1 transcription factor subunit (c-Jun) could repress the activity of <i>tgfb2b</i> promoter. <i>In vitro</i> knockdown of <i>tgfb2b</i> in <i>C. semilaevis</i> ovarian cells led to downregulation of its downstream genes (e.g., <i>smad1</i> and <i>smad2</i>) as well as other sex-related genes (e.g., <i>foxl2</i> and <i>esr2b</i>). Moreover, multi-omics analysis indicated that, in <i>C. semilaevis</i> gonads, a miRNA named novel-m0083-3p showed an opposite expression pattern with <i>tgfb2b</i> and might have a binding site with the gene. By dual-luciferase assay, <i>tgfb2b</i> was validated to be directly targeted and suppressed by the miRNA. These results demonstrate that <i>tgfb2b</i> plays a significant role in ovarian differentiation and development. Further functional and molecular studies on the interplay between <i>tgfb2b</i> and the <i>foxl2-cyp19a-esr</i> axis will help elucidate the regulatory network underlying sex development in teleost.</p>","PeriodicalId":8943,"journal":{"name":"Biomolecules","volume":"16 1","pages":""},"PeriodicalIF":4.8,"publicationDate":"2026-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12839324/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146059803","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Transmembrane facilitation of substrates by channels and secondary active transporters results in a defined steady-state concentration ratio across the membrane. Evidence is accumulating that asymmetry in the structural build of the transporters, or interaction with asymmetric partner proteins, can shift the position of the transmembrane equilibrium by biased transport directionality. For instance, the bacterial lactose transporter, LacY, and two amino acid transporters, i.e., the human excitatory amino acid carrier, EAAC1, and the yeast lysine permease, Lyp1, were reported to exhibit distinct transport kinetics in the inward and outward direction by protein-intrinsic properties. A recent example is transport modulation of human monocarboxylate transporters, MCT, by shedding of the extracellular domain of an ancillary protein, basigin. Loss of the domain selectively increases export of lactate from lung cancer cells by a factor of four, contributing to the Warburg effect and malignancy. Further, intrinsic properties of monocarboxylate transporters involving asymmetric affinities of substrate binding, or biased open probabilities were shown to generate preference for one transport direction. Here, we discuss molecular mechanisms and physiological contexts of asymmetric secondary active transmembrane transport. Focus is laid on experimentally established cases, and examples are given in which putative bias in transport directionality may have been overlooked.
{"title":"Intrinsic Asymmetry in Weak Acid Transmembrane Transporters.","authors":"Emmi Jaeger, Sebastian Buss, Eric Beitz","doi":"10.3390/biom16010091","DOIUrl":"10.3390/biom16010091","url":null,"abstract":"<p><p>Transmembrane facilitation of substrates by channels and secondary active transporters results in a defined steady-state concentration ratio across the membrane. Evidence is accumulating that asymmetry in the structural build of the transporters, or interaction with asymmetric partner proteins, can shift the position of the transmembrane equilibrium by biased transport directionality. For instance, the bacterial lactose transporter, LacY, and two amino acid transporters, i.e., the human excitatory amino acid carrier, EAAC1, and the yeast lysine permease, Lyp1, were reported to exhibit distinct transport kinetics in the inward and outward direction by protein-intrinsic properties. A recent example is transport modulation of human monocarboxylate transporters, MCT, by shedding of the extracellular domain of an ancillary protein, basigin. Loss of the domain selectively increases export of lactate from lung cancer cells by a factor of four, contributing to the Warburg effect and malignancy. Further, intrinsic properties of monocarboxylate transporters involving asymmetric affinities of substrate binding, or biased open probabilities were shown to generate preference for one transport direction. Here, we discuss molecular mechanisms and physiological contexts of asymmetric secondary active transmembrane transport. Focus is laid on experimentally established cases, and examples are given in which putative bias in transport directionality may have been overlooked.</p>","PeriodicalId":8943,"journal":{"name":"Biomolecules","volume":"16 1","pages":""},"PeriodicalIF":4.8,"publicationDate":"2026-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12838822/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146059595","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cyclin-dependent kinase 4/6 inhibitors (CDK4/6i) have transformed the treatment landscape for estrogen receptor-positive (ER+) breast cancer, yet resistance remains a major clinical challenge. Although CDK4/6i induce G1 arrest and therapy-induced senescence (TIS), the exact nature of this senescent state and its contribution to resistance are not well understood. To explore this, we developed palbociclib- (2PR, 9PR, TPR) and abemaciclib- (2AR, 9AR, TAR) resistant ER+ breast cancer sublines through prolonged drug exposure over six months. Resistant cells demonstrated distinct phenotypic alterations, including cellular senescence, reduced mitochondrial membrane potential, and impaired glycolytic activity. Cytokine profiling and enzyme-linked immunosorbent assay (ELISA) validation revealed a non-canonical senescence-associated secretory phenotype (SASP) characterized by elevated growth/differentiation factor 15 (GDF-15) and serpin E1 (plasminogen activator inhibitor-1, PAI-1) and absence of classical pro-inflammatory interleukins, including IL-1α and IL-6. IL-8 levels were significantly elevated, but no association with epithelial-mesenchymal transition (EMT) was observed. Resistant cells preserved their epithelial morphology, showed no upregulation of EMT markers, and lacked aldehyde dehydrogenase 1-positive (ALDH1+) stem-like populations. Additionally, Regulated upon Activation, Normal T-cell Expressed, and Secreted (RANTES) was strongly upregulated in palbociclib-resistant cells. Together, these findings identify a distinct, non-canonical senescence phenotype associated with CDK4/6i resistance and may provide a foundation for identifying new vulnerabilities in resistant ER+ breast cancers through targeting SASP-related signaling.
{"title":"Non-Canonical Senescence Phenotype in Resistance to CDK4/6 Inhibitors in ER-Positive Breast Cancer.","authors":"Aynura Mammadova, Yuan Gu, Ling Ruan, Sunil S Badve, Yesim Gökmen-Polar","doi":"10.3390/biom16010093","DOIUrl":"10.3390/biom16010093","url":null,"abstract":"<p><p>Cyclin-dependent kinase 4/6 inhibitors (CDK4/6i) have transformed the treatment landscape for estrogen receptor-positive (ER+) breast cancer, yet resistance remains a major clinical challenge. Although CDK4/6i induce G<sub>1</sub> arrest and therapy-induced senescence (TIS), the exact nature of this senescent state and its contribution to resistance are not well understood. To explore this, we developed palbociclib- (2PR, 9PR, TPR) and abemaciclib- (2AR, 9AR, TAR) resistant ER+ breast cancer sublines through prolonged drug exposure over six months. Resistant cells demonstrated distinct phenotypic alterations, including cellular senescence, reduced mitochondrial membrane potential, and impaired glycolytic activity. Cytokine profiling and enzyme-linked immunosorbent assay (ELISA) validation revealed a non-canonical senescence-associated secretory phenotype (SASP) characterized by elevated growth/differentiation factor 15 (GDF-15) and serpin E1 (plasminogen activator inhibitor-1, PAI-1) and absence of classical pro-inflammatory interleukins, including IL-1α and IL-6. IL-8 levels were significantly elevated, but no association with epithelial-mesenchymal transition (EMT) was observed. Resistant cells preserved their epithelial morphology, showed no upregulation of EMT markers, and lacked aldehyde dehydrogenase 1-positive (ALDH1+) stem-like populations. Additionally, Regulated upon Activation, Normal T-cell Expressed, and Secreted (RANTES) was strongly upregulated in palbociclib-resistant cells. Together, these findings identify a distinct, non-canonical senescence phenotype associated with CDK4/6i resistance and may provide a foundation for identifying new vulnerabilities in resistant ER+ breast cancers through targeting SASP-related signaling.</p>","PeriodicalId":8943,"journal":{"name":"Biomolecules","volume":"16 1","pages":""},"PeriodicalIF":4.8,"publicationDate":"2026-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12838639/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146059823","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Magdalena Czarnecka-Czapczyńska, David Aebisher, Alina Pietryszyn-Bilińska, Magdalena Moś, Sara Czech, Jakub Szpara, Dorota Bartusik-Aebisher, Aleksandra Kawczyk-Krupka
Bakuchiol (BAK), a natural meroterpenoid with antioxidant, anti-inflammatory and anticancer properties, has recently gained attention as a potential adjunct in breast cancer therapy. This review contextualizes breast cancer as a major global health challenge and highlights BAK as a bioactive compound capable of modulating pathways relevant to tumor development and progression. A structured literature search identified studies examining its molecular activity, pharmacological profile, and effects on breast cancer cells and stem cells. Results show that BAK influences oxidative stress regulation, mitochondrial function, apoptosis and estrogen receptor signaling while also affecting PI3K/AKT, MAPK, NF-κB, and EMT-related pathways. In breast cancer models, BAK acts as a selective phytoestrogen, induces S-phase arrest, activates the ATM/ATR-Chk1/Chk2 axis, and triggers mitochondrial apoptosis, particularly in ERα-positive cells. It also suppresses breast cancer stem-cell renewal, promotes BNIP3- and DAPK2-mediated apoptosis, reduces metabolic and transcriptional drivers of metastasis, and shows enhanced anticancer activity in derivative forms. These findings suggest that BAK may provide therapeutic benefit across several mechanisms central to breast cancer biology. In this review, the inclusion criteria encompassed publications describing the action of bakuchiol, its chemical and pharmacological properties, as well as its role in the treatment of various conditions, including cancers. Exclusion criteria included works not related to BAK or its therapeutic use in breast cancer, as well as publications that did not meet basic scientific standards, such as lacking methodological rigor or presenting a low level of scientific evidence. However, current evidence is predominantly in vitro, and limitations such as poor bioavailability and lack of clinical validation underscore the need for further in vivo and translational studies before therapeutic application can be established.
{"title":"From Phytochemistry to Oncology: The Role of Bakuchiol in the Treatment of Breast Cancer.","authors":"Magdalena Czarnecka-Czapczyńska, David Aebisher, Alina Pietryszyn-Bilińska, Magdalena Moś, Sara Czech, Jakub Szpara, Dorota Bartusik-Aebisher, Aleksandra Kawczyk-Krupka","doi":"10.3390/biom16010094","DOIUrl":"10.3390/biom16010094","url":null,"abstract":"<p><p>Bakuchiol (BAK), a natural meroterpenoid with antioxidant, anti-inflammatory and anticancer properties, has recently gained attention as a potential adjunct in breast cancer therapy. This review contextualizes breast cancer as a major global health challenge and highlights BAK as a bioactive compound capable of modulating pathways relevant to tumor development and progression. A structured literature search identified studies examining its molecular activity, pharmacological profile, and effects on breast cancer cells and stem cells. Results show that BAK influences oxidative stress regulation, mitochondrial function, apoptosis and estrogen receptor signaling while also affecting PI3K/AKT, MAPK, NF-κB, and EMT-related pathways. In breast cancer models, BAK acts as a selective phytoestrogen, induces S-phase arrest, activates the ATM/ATR-Chk1/Chk2 axis, and triggers mitochondrial apoptosis, particularly in ERα-positive cells. It also suppresses breast cancer stem-cell renewal, promotes BNIP3- and DAPK2-mediated apoptosis, reduces metabolic and transcriptional drivers of metastasis, and shows enhanced anticancer activity in derivative forms. These findings suggest that BAK may provide therapeutic benefit across several mechanisms central to breast cancer biology. In this review, the inclusion criteria encompassed publications describing the action of bakuchiol, its chemical and pharmacological properties, as well as its role in the treatment of various conditions, including cancers. Exclusion criteria included works not related to BAK or its therapeutic use in breast cancer, as well as publications that did not meet basic scientific standards, such as lacking methodological rigor or presenting a low level of scientific evidence. However, current evidence is predominantly in vitro, and limitations such as poor bioavailability and lack of clinical validation underscore the need for further in vivo and translational studies before therapeutic application can be established.</p>","PeriodicalId":8943,"journal":{"name":"Biomolecules","volume":"16 1","pages":""},"PeriodicalIF":4.8,"publicationDate":"2026-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12838981/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146059747","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Metabolic reprogramming allows cancer cells to proliferate rapidly, survive nutrient limitation, and resist stress, making tumor metabolism an important therapeutic target. However, pharmacological inhibition of metabolic enzymes often causes systemic toxicity and compensatory pathway activation. To overcome these limitations, recent studies have highlighted an alternative host-centered strategy based on increasing systemic energy expenditure. Recent studies highlight an alternative strategy in which the host increases energy expenditure through uncoupling protein 1 (UCP1) dependent thermogenesis, thereby lowering systemic glucose, fatty acid, and nucleotide availability for tumors. Engineered beige adipocytes overexpressing UCP1, PR domain-containing protein 16 (PRDM16), or peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PPARGC1A/PGC1A) suppress tumor growth through nutrient competition, suggesting that activating endogenous UCP1 may provide a non-genetic and physiologically aligned anticancer approach. Building on this concept, natural products such as polyphenols, terpenoids, alkaloids, and carotenoids have emerged as promising UCP1 activators that stimulate beige and brown adipocyte thermogenesis through pathways involving AMP-activated protein kinase (AMPK), sirtuin 1 (SIRT1), PGC1A, PRDM16, and mitochondrial biogenesis. In parallel, computational studies further indicate that several plant-derived compounds bind directly to the central cavity of UCP1 with high affinity, offering structural support for their thermogenic action. Importantly, many of these compounds also inhibit cancer cell intrinsic metabolism by reducing glycolysis, oxidative phosphorylation, lipid synthesis, and amino acid dependent anaplerosis. This review integrates UCP1 biology, natural product mediated thermogenesis, molecular docking evidence, and tumor metabolic suppression, proposing a unified framework in which natural compounds impose coordinated metabolic pressure on cancer through both adipocyte-driven nutrient competition and direct inhibition of tumor metabolism.
代谢重编程使癌细胞能够快速增殖,在营养限制下存活,并抵抗应激,使肿瘤代谢成为重要的治疗靶点。然而,代谢酶的药理抑制常常引起全身毒性和代偿通路激活。为了克服这些限制,最近的研究强调了一种基于增加全身能量消耗的以宿主为中心的替代策略。最近的研究强调了另一种策略,即宿主通过解偶联蛋白1 (uncoupling protein 1, UCP1)依赖性产热来增加能量消耗,从而降低肿瘤的全身葡萄糖、脂肪酸和核苷酸的可用性。工程米色脂肪细胞过表达UCP1、PR结构域蛋白16 (PRDM16)或过氧化物酶体增殖物激活受体γ辅助激活因子1 α (PPARGC1A/PGC1A)通过营养竞争抑制肿瘤生长,这表明激活内源性UCP1可能提供了一种非遗传和生理一致的抗癌方法。基于这一概念,天然产物如多酚、萜类、生物碱和类胡萝卜素已经成为有希望的UCP1激活剂,通过amp激活的蛋白激酶(AMPK)、sirtuin 1 (SIRT1)、PGC1A、PRDM16和线粒体生物发生等途径刺激米色和棕色脂肪细胞产热。同时,计算研究进一步表明,几种植物源化合物以高亲和力直接与UCP1的中心空腔结合,为其产热作用提供了结构支持。重要的是,许多这些化合物还通过减少糖酵解、氧化磷酸化、脂质合成和氨基酸依赖性过敏来抑制癌细胞的内在代谢。本文综合UCP1生物学、天然产物介导的产热作用、分子对接证据和肿瘤代谢抑制等方面,提出了天然化合物通过脂肪细胞驱动的营养竞争和直接抑制肿瘤代谢对癌症施加协调代谢压力的统一框架。
{"title":"Natural Product Driven Activation of UCP1 and Tumor Metabolic Suppression: Integrating Thermogenic Nutrient Competition with Cancer Metabolic Reprogramming.","authors":"Dong Oh Moon","doi":"10.3390/biom16010090","DOIUrl":"10.3390/biom16010090","url":null,"abstract":"<p><p>Metabolic reprogramming allows cancer cells to proliferate rapidly, survive nutrient limitation, and resist stress, making tumor metabolism an important therapeutic target. However, pharmacological inhibition of metabolic enzymes often causes systemic toxicity and compensatory pathway activation. To overcome these limitations, recent studies have highlighted an alternative host-centered strategy based on increasing systemic energy expenditure. Recent studies highlight an alternative strategy in which the host increases energy expenditure through uncoupling protein 1 (UCP1) dependent thermogenesis, thereby lowering systemic glucose, fatty acid, and nucleotide availability for tumors. Engineered beige adipocytes overexpressing UCP1, PR domain-containing protein 16 (PRDM16), or peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PPARGC1A/PGC1A) suppress tumor growth through nutrient competition, suggesting that activating endogenous UCP1 may provide a non-genetic and physiologically aligned anticancer approach. Building on this concept, natural products such as polyphenols, terpenoids, alkaloids, and carotenoids have emerged as promising UCP1 activators that stimulate beige and brown adipocyte thermogenesis through pathways involving AMP-activated protein kinase (AMPK), sirtuin 1 (SIRT1), PGC1A, PRDM16, and mitochondrial biogenesis. In parallel, computational studies further indicate that several plant-derived compounds bind directly to the central cavity of UCP1 with high affinity, offering structural support for their thermogenic action. Importantly, many of these compounds also inhibit cancer cell intrinsic metabolism by reducing glycolysis, oxidative phosphorylation, lipid synthesis, and amino acid dependent anaplerosis. This review integrates UCP1 biology, natural product mediated thermogenesis, molecular docking evidence, and tumor metabolic suppression, proposing a unified framework in which natural compounds impose coordinated metabolic pressure on cancer through both adipocyte-driven nutrient competition and direct inhibition of tumor metabolism.</p>","PeriodicalId":8943,"journal":{"name":"Biomolecules","volume":"16 1","pages":""},"PeriodicalIF":4.8,"publicationDate":"2026-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12839171/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146059750","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}