Irene M G M Hemel, Ilja C W Arts, Michelle Moerel, Mike Gerards
Mitochondria play a crucial role in human biology, affecting cellular processes at the smallest spatial scale as well as those involved in the functionality of the whole system. Imaging is the most important research tool for studying the fundamental role of mitochondria across these diverse spatial scales. A wide array of available imaging techniques have enabled us to visualize mitochondrial structure and behavior, as well as their effect on cells and tissues in a range from micrometers to centimeters. Each of the various imaging techniques that are available offers unique advantages tailored to specific research needs. Selecting an appropriate technique suitable for the scale and application of interest is therefore crucial, but can be challenging due to the large range of possibilities. The aim of this review is two-fold. First, we provide an overview of the available imaging techniques and discuss their strengths and limitations for applications across the sub-mitochondrial, cellular, tissue and organ levels for the imaging of mitochondria. Second, we identify opportunities for novel applications and advancement in the field. We emphasize the importance of integration across scales in mitochondrial imaging studies, particularly to bridge the gap between microscopic and non-invasive techniques. While integrating these diverse scales is challenging, primarily because such multi-scale approaches require expertise that spans different imaging modalities, we argue that integration has the potential to provide groundbreaking insights into mitochondrial biology. By providing a comprehensive overview of imaging techniques, this review paves the way for multi-scale imaging initiatives in mitochondrial research.
{"title":"The Matrix of Mitochondrial Imaging: Exploring Spatial Dimensions.","authors":"Irene M G M Hemel, Ilja C W Arts, Michelle Moerel, Mike Gerards","doi":"10.3390/biom15020229","DOIUrl":"10.3390/biom15020229","url":null,"abstract":"<p><p>Mitochondria play a crucial role in human biology, affecting cellular processes at the smallest spatial scale as well as those involved in the functionality of the whole system. Imaging is the most important research tool for studying the fundamental role of mitochondria across these diverse spatial scales. A wide array of available imaging techniques have enabled us to visualize mitochondrial structure and behavior, as well as their effect on cells and tissues in a range from micrometers to centimeters. Each of the various imaging techniques that are available offers unique advantages tailored to specific research needs. Selecting an appropriate technique suitable for the scale and application of interest is therefore crucial, but can be challenging due to the large range of possibilities. The aim of this review is two-fold. First, we provide an overview of the available imaging techniques and discuss their strengths and limitations for applications across the sub-mitochondrial, cellular, tissue and organ levels for the imaging of mitochondria. Second, we identify opportunities for novel applications and advancement in the field. We emphasize the importance of integration across scales in mitochondrial imaging studies, particularly to bridge the gap between microscopic and non-invasive techniques. While integrating these diverse scales is challenging, primarily because such multi-scale approaches require expertise that spans different imaging modalities, we argue that integration has the potential to provide groundbreaking insights into mitochondrial biology. By providing a comprehensive overview of imaging techniques, this review paves the way for multi-scale imaging initiatives in mitochondrial research.</p>","PeriodicalId":8943,"journal":{"name":"Biomolecules","volume":"15 2","pages":""},"PeriodicalIF":4.8,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11853629/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143498510","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jan Taudul, Joanna Celej, Kinga Żelechowska-Matysiak, Daria Kępińska, Agnieszka Majkowska-Pilip, Marcin Strawski, Paweł Krysiński, Dorota Nieciecka
We present a novel, multicomponent nanoparticulate carrier system based on superparamagnetic iron oxide nanoparticles with a designed hydrophilic/hydrophobic balance based on oleic acid and TWEEN 80 to incorporate hydrophobic cannabinoids-cannabigerol and cannabidiol-as well as the hydrophilic anthracycline drug epirubicin, forming a conjugate anticancer system. Additionally, the superparamagnetic iron oxide-based nanoparticles formed the core of the system, thus providing it with magnetic hyperthermia capabilities with a specific absorption rate comparable to the corresponding systems in the literature. The interaction of the conjugate with the cell membrane was studied using the Langmuir monolayers at the air/water interface formed of selected lipids modeling the healthy and cancerous cell membranes. Finally, cytotoxicity tests were carried out against the SKOV-3 cell line in vitro. A synergistic effect was observed when both the cannabinoid and epirubicin were present in the conjugate, as compared to the cannabinoid or epirubicin alone, making our system advantageous for further development for tentative therapeutic use.
{"title":"Tailored Iron Oxide Nanoparticles as Potential Cannabinoid Carriers for Anti-Cancer Treatment.","authors":"Jan Taudul, Joanna Celej, Kinga Żelechowska-Matysiak, Daria Kępińska, Agnieszka Majkowska-Pilip, Marcin Strawski, Paweł Krysiński, Dorota Nieciecka","doi":"10.3390/biom15020230","DOIUrl":"10.3390/biom15020230","url":null,"abstract":"<p><p>We present a novel, multicomponent nanoparticulate carrier system based on superparamagnetic iron oxide nanoparticles with a designed hydrophilic/hydrophobic balance based on oleic acid and TWEEN 80 to incorporate hydrophobic cannabinoids-cannabigerol and cannabidiol-as well as the hydrophilic anthracycline drug epirubicin, forming a conjugate anticancer system. Additionally, the superparamagnetic iron oxide-based nanoparticles formed the core of the system, thus providing it with magnetic hyperthermia capabilities with a specific absorption rate comparable to the corresponding systems in the literature. The interaction of the conjugate with the cell membrane was studied using the Langmuir monolayers at the air/water interface formed of selected lipids modeling the healthy and cancerous cell membranes. Finally, cytotoxicity tests were carried out against the SKOV-3 cell line in vitro. A synergistic effect was observed when both the cannabinoid and epirubicin were present in the conjugate, as compared to the cannabinoid or epirubicin alone, making our system advantageous for further development for tentative therapeutic use.</p>","PeriodicalId":8943,"journal":{"name":"Biomolecules","volume":"15 2","pages":""},"PeriodicalIF":4.8,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11853022/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143498884","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Michele Malaguarnera, Omar Cauli, Andrea Cabrera-Pastor
Obesity, a global epidemic, is a major risk factor for chronic diseases such as type 2 diabetes, cardiovascular disorders, and metabolic syndrome. Adipose tissue, once viewed as a passive fat storage site, is now recognized as an active endocrine organ involved in metabolic regulation and inflammation. In obesity, adipose tissue dysfunction disrupts metabolic balance, leading to insulin resistance and increased production of adipose-derived extracellular vesicles (AdEVs). These vesicles play a key role in intercellular communication and contribute to metabolic dysregulation, affecting organs such as the heart, liver, and brain. AdEVs carry bioactive molecules, including microRNAs, which influence inflammation, insulin sensitivity, and tissue remodeling. In the cardiovascular system, AdEVs can promote atherosclerosis and vascular dysfunction, while those derived from brown adipose tissue offer cardioprotective effects. In type 2 diabetes, AdEVs exacerbate insulin resistance and contribute to complications such as diabetic cardiomyopathy and cognitive decline. Additionally, AdEVs are implicated in metabolic liver diseases, including fatty liver disease, by transferring inflammatory molecules and lipotoxic microRNAs to hepatocytes. These findings highlight the role of AdEVs in obesity-related metabolic disorders and their promise as therapeutic targets for related diseases.
{"title":"Obesity and Adipose-Derived Extracellular Vesicles: Implications for Metabolic Regulation and Disease.","authors":"Michele Malaguarnera, Omar Cauli, Andrea Cabrera-Pastor","doi":"10.3390/biom15020231","DOIUrl":"10.3390/biom15020231","url":null,"abstract":"<p><p>Obesity, a global epidemic, is a major risk factor for chronic diseases such as type 2 diabetes, cardiovascular disorders, and metabolic syndrome. Adipose tissue, once viewed as a passive fat storage site, is now recognized as an active endocrine organ involved in metabolic regulation and inflammation. In obesity, adipose tissue dysfunction disrupts metabolic balance, leading to insulin resistance and increased production of adipose-derived extracellular vesicles (AdEVs). These vesicles play a key role in intercellular communication and contribute to metabolic dysregulation, affecting organs such as the heart, liver, and brain. AdEVs carry bioactive molecules, including microRNAs, which influence inflammation, insulin sensitivity, and tissue remodeling. In the cardiovascular system, AdEVs can promote atherosclerosis and vascular dysfunction, while those derived from brown adipose tissue offer cardioprotective effects. In type 2 diabetes, AdEVs exacerbate insulin resistance and contribute to complications such as diabetic cardiomyopathy and cognitive decline. Additionally, AdEVs are implicated in metabolic liver diseases, including fatty liver disease, by transferring inflammatory molecules and lipotoxic microRNAs to hepatocytes. These findings highlight the role of AdEVs in obesity-related metabolic disorders and their promise as therapeutic targets for related diseases.</p>","PeriodicalId":8943,"journal":{"name":"Biomolecules","volume":"15 2","pages":""},"PeriodicalIF":4.8,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11853251/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143498780","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chisom J Onu, Michael Adu, Mohamed Chakkour, Vikalp Kumar, Miriam L Greenberg
Inositol is a vital sugar molecule involved in numerous signaling pathways required for cellular homeostasis and cell survival. Myo-inositol and its phospho-derivatives, inositol phosphates (IPs), are the most prevalent forms of inositol found in living cells. They are involved in regulating ion channels, metabolic flux, stress response, and other key biological processes. While emerging research has highlighted the significant roles of inositol phosphates in immunity, cancer, and metabolic diseases, there is a lack of comprehensive reviews on their roles in psychiatric and neurological disorders. This review aims to fill that gap by analyzing the existing literature on the importance of inositol phosphates in severe psychiatric and neurological conditions such as Parkinson's disease, Alzheimer's disease, bipolar disorder, amyotrophic lateral sclerosis, schizophrenia, and Huntington's disease, underscoring the potential to pave the way for new treatment regimens for these debilitating disorders targeting inositol pathways.
{"title":"Inositol Phosphates and Synthesizing Enzymes: Implications in Neurodegenerative Disorders.","authors":"Chisom J Onu, Michael Adu, Mohamed Chakkour, Vikalp Kumar, Miriam L Greenberg","doi":"10.3390/biom15020225","DOIUrl":"10.3390/biom15020225","url":null,"abstract":"<p><p>Inositol is a vital sugar molecule involved in numerous signaling pathways required for cellular homeostasis and cell survival. Myo-inositol and its phospho-derivatives, inositol phosphates (IPs), are the most prevalent forms of inositol found in living cells. They are involved in regulating ion channels, metabolic flux, stress response, and other key biological processes. While emerging research has highlighted the significant roles of inositol phosphates in immunity, cancer, and metabolic diseases, there is a lack of comprehensive reviews on their roles in psychiatric and neurological disorders. This review aims to fill that gap by analyzing the existing literature on the importance of inositol phosphates in severe psychiatric and neurological conditions such as Parkinson's disease, Alzheimer's disease, bipolar disorder, amyotrophic lateral sclerosis, schizophrenia, and Huntington's disease, underscoring the potential to pave the way for new treatment regimens for these debilitating disorders targeting inositol pathways.</p>","PeriodicalId":8943,"journal":{"name":"Biomolecules","volume":"15 2","pages":""},"PeriodicalIF":4.8,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11853280/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143498808","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Angelika V Timofeeva, Ivan S Fedorov, Alla M Tarasova, Yuliya V Sukhova, Vyacheslav G Kolod'ko, Tatiana Yu Ivanets, Gennady T Sukhikh
Background: Disruptions in epigenetic mechanisms regulating placentation, particularly imbalances in the levels of small non-coding RNAs, contribute to various pregnancy complications, including preeclampsia (PE) and placenta accreta spectrum (PAS). Given that abnormal trophoblast differentiation, invasiveness, and angiogenesis-reduced in PE and excessive in PAS-are central to the pathogenesis of these conditions, this study aimed to identify universal circulating piRNAs and their targets.
Methods: Small RNA deep sequencing, quantitative reverse transcription combined with real-time polymerase chain reaction, magnetic bead-based multiplex immunoassay, ELISA, and Western blotting were employed to quantify circulating piRNAs and proteins in the blood serum of pregnant women during the 11th-14th weeks of gestation.
Results: Statistically significant negative correlations were identified between PE- and PAS-associated piRNAs (hsa_piR_019122, hsa_piR_020497, hsa_piR_019949, and piR_019675) and several molecules, including Endoglin, IL-18, VEGF-A, VEGF-C, Angiopoietin-2, sFASL, HB-EGF, TGFα, and Clusterin. These molecules are involved in processes such as angiogenesis, inflammation, the epithelial-mesenchymal transition, cell proliferation, adhesion, and apoptosis. A first-trimester pregnancy screening algorithm was developed using logistic regression models based on Clusterin concentration and the levels of hsa_piR_020497, hsa_piR_019949, piR_019675, and hsa_piR_019122.
Conclusions: The proposed screening tool for early pregnancy monitoring may enable the prediction of PE or PAS in the first trimester, allowing timely interventions to reduce maternal and perinatal morbidity and mortality.
{"title":"Universal First-Trimester Screening Biomarkers for Diagnosis of Preeclampsia and Placenta Accreta Spectrum.","authors":"Angelika V Timofeeva, Ivan S Fedorov, Alla M Tarasova, Yuliya V Sukhova, Vyacheslav G Kolod'ko, Tatiana Yu Ivanets, Gennady T Sukhikh","doi":"10.3390/biom15020228","DOIUrl":"10.3390/biom15020228","url":null,"abstract":"<p><strong>Background: </strong>Disruptions in epigenetic mechanisms regulating placentation, particularly imbalances in the levels of small non-coding RNAs, contribute to various pregnancy complications, including preeclampsia (PE) and placenta accreta spectrum (PAS). Given that abnormal trophoblast differentiation, invasiveness, and angiogenesis-reduced in PE and excessive in PAS-are central to the pathogenesis of these conditions, this study aimed to identify universal circulating piRNAs and their targets.</p><p><strong>Methods: </strong>Small RNA deep sequencing, quantitative reverse transcription combined with real-time polymerase chain reaction, magnetic bead-based multiplex immunoassay, ELISA, and Western blotting were employed to quantify circulating piRNAs and proteins in the blood serum of pregnant women during the 11th-14th weeks of gestation.</p><p><strong>Results: </strong>Statistically significant negative correlations were identified between PE- and PAS-associated piRNAs (hsa_piR_019122, hsa_piR_020497, hsa_piR_019949, and piR_019675) and several molecules, including Endoglin, IL-18, VEGF-A, VEGF-C, Angiopoietin-2, sFASL, HB-EGF, TGFα, and Clusterin. These molecules are involved in processes such as angiogenesis, inflammation, the epithelial-mesenchymal transition, cell proliferation, adhesion, and apoptosis. A first-trimester pregnancy screening algorithm was developed using logistic regression models based on Clusterin concentration and the levels of hsa_piR_020497, hsa_piR_019949, piR_019675, and hsa_piR_019122.</p><p><strong>Conclusions: </strong>The proposed screening tool for early pregnancy monitoring may enable the prediction of PE or PAS in the first trimester, allowing timely interventions to reduce maternal and perinatal morbidity and mortality.</p>","PeriodicalId":8943,"journal":{"name":"Biomolecules","volume":"15 2","pages":""},"PeriodicalIF":4.8,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11852485/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143498608","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yulia Ilina, Paul Kaufmann, Michaela Press, Theo Ikenna Uba, Andreas Bergmann
Peptidylglycine alpha-amidating monooxygenase (PAM) is the only enzyme known to catalyze C-terminal amidation, a final post-translational modification step essential for the biological activity of over 70 bioactive peptides, including adrenomedullin (ADM), calcitonin gene-related peptide (CGRP), amylin, neuropeptide Y (NPY), and others. Bioactive (amidated) peptide hormones play crucial roles in various physiological processes and have been extensively explored as therapeutic compounds in clinical and preclinical research. However, their therapeutic viability is limited due to their short half-life and, in most cases, the need for prolonged infusion to maintain effective concentrations. PAM itself has also been considered as a therapeutic compound aiming to increase the level of amidated peptide hormones; however, similarly to peptide hormones, PAM's rapid degradation limits its utility. Here, we present a strategy to enhance PAM stability and bioavailability through PEGylation, significantly extending the enzyme's half-life in circulation assessed in healthy rats. Furthermore, single subcutaneous (s.c.), intramuscular (i.m.), or intraperitoneal (i.p.) administration of PEGylated PAM resulted in a sustained increase in circulating amidating activity, with peak activity observed at 12-24 h post-bolus administration. Notably, amidating activity remained significantly elevated above baseline levels for up to seven days post-administration, with no observable adverse effects. These findings highlight PEGylated PAM's potential as a viable therapeutic compound.
{"title":"Enhancing Stability and Bioavailability of Peptidylglycine Alpha-Amidating Monooxygenase in Circulation for Clinical Use.","authors":"Yulia Ilina, Paul Kaufmann, Michaela Press, Theo Ikenna Uba, Andreas Bergmann","doi":"10.3390/biom15020224","DOIUrl":"10.3390/biom15020224","url":null,"abstract":"<p><p>Peptidylglycine alpha-amidating monooxygenase (PAM) is the only enzyme known to catalyze C-terminal amidation, a final post-translational modification step essential for the biological activity of over 70 bioactive peptides, including adrenomedullin (ADM), calcitonin gene-related peptide (CGRP), amylin, neuropeptide Y (NPY), and others. Bioactive (amidated) peptide hormones play crucial roles in various physiological processes and have been extensively explored as therapeutic compounds in clinical and preclinical research. However, their therapeutic viability is limited due to their short half-life and, in most cases, the need for prolonged infusion to maintain effective concentrations. PAM itself has also been considered as a therapeutic compound aiming to increase the level of amidated peptide hormones; however, similarly to peptide hormones, PAM's rapid degradation limits its utility. Here, we present a strategy to enhance PAM stability and bioavailability through PEGylation, significantly extending the enzyme's half-life in circulation assessed in healthy rats. Furthermore, single subcutaneous (s.c.), intramuscular (i.m.), or intraperitoneal (i.p.) administration of PEGylated PAM resulted in a sustained increase in circulating amidating activity, with peak activity observed at 12-24 h post-bolus administration. Notably, amidating activity remained significantly elevated above baseline levels for up to seven days post-administration, with no observable adverse effects. These findings highlight PEGylated PAM's potential as a viable therapeutic compound.</p>","PeriodicalId":8943,"journal":{"name":"Biomolecules","volume":"15 2","pages":""},"PeriodicalIF":4.8,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11853079/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143498531","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The development and regulation of hair are widely influenced by biological rhythm signals. Melatonin plays a crucial role as a messenger in transmitting biological rhythm signals, and its impact on hair development has been well documented. During the process of hair follicle reconstruction, hair follicle stem cells (HFSCs) are the most important cell type, but the regulatory effect of melatonin on the state of HFSCs is still not fully understood. Therefore, it is necessary to conduct a more comprehensive characterization of the effects of melatonin on the state of hair follicle stem cells. The research results indicate that HFSCs express retinoic acid receptor-related orphan receptor alpha (Rorα), and melatonin inhibits the expression level of RORA. Experimental results from CUT&Tag, CUT&RUN, and dual luciferase reporter assays demonstrate that Foxc1 is a downstream target gene of RORA, with RORA regulating Foxc1 expression by binding to the promoter region of Foxc1. The CCK-8 assay results show that low doses of melatonin upregulate the survival rate of hair follicle stem cells, while high doses have the opposite effect. The knockdown of Foxc1 reverses the inhibitory effect of high-dose melatonin on the survival rate of hair follicle stem cells. Based on these findings, we believe that melatonin-mediated circadian signals exert a bidirectional regulatory effect on the state of HFSCs.
{"title":"Melatonin-Mediated Circadian Rhythm Signaling Exhibits Bidirectional Regulatory Effects on the State of Hair Follicle Stem Cells.","authors":"Yu Zhang, Xuefei Zhao, Shuqi Li, Yanchun Xu, Suying Bai, Wei Zhang","doi":"10.3390/biom15020226","DOIUrl":"10.3390/biom15020226","url":null,"abstract":"<p><p>The development and regulation of hair are widely influenced by biological rhythm signals. Melatonin plays a crucial role as a messenger in transmitting biological rhythm signals, and its impact on hair development has been well documented. During the process of hair follicle reconstruction, hair follicle stem cells (HFSCs) are the most important cell type, but the regulatory effect of melatonin on the state of HFSCs is still not fully understood. Therefore, it is necessary to conduct a more comprehensive characterization of the effects of melatonin on the state of hair follicle stem cells. The research results indicate that HFSCs express retinoic acid receptor-related orphan receptor alpha (<i>Rorα</i>), and melatonin inhibits the expression level of RORA. Experimental results from CUT&Tag, CUT&RUN, and dual luciferase reporter assays demonstrate that <i>Foxc1</i> is a downstream target gene of RORA, with RORA regulating <i>Foxc1</i> expression by binding to the promoter region of <i>Foxc1</i>. The CCK-8 assay results show that low doses of melatonin upregulate the survival rate of hair follicle stem cells, while high doses have the opposite effect. The knockdown of <i>Foxc1</i> reverses the inhibitory effect of high-dose melatonin on the survival rate of hair follicle stem cells. Based on these findings, we believe that melatonin-mediated circadian signals exert a bidirectional regulatory effect on the state of HFSCs.</p>","PeriodicalId":8943,"journal":{"name":"Biomolecules","volume":"15 2","pages":""},"PeriodicalIF":4.8,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11852975/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143498843","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Amanda L Barry Schroeder, Adam M Reed, Osman Radwan, Loryn L Bowen, Oscar N Ruiz, Thusitha S Gunasekera, Andrea Hoffmann
Hydrocarbon fuel biofouling and biocorrosion require expensive cleanup of aviation infrastructures unless appropriate sustainment measures are applied. The identification of novel biological control agents offers promising alternatives to the current chemical biocides used in fuel sustainment. In this study, 496 microbial fuel isolates from our in-house repository were screened to identify new endogenously produced antimicrobial compounds. Using agar plug screening, liquid culture growth testing, and Jet A fuel culture assays, the two fuel-isolate strains Pseudomonas protegens #133, and Bacillus subtilis #232 demonstrated promising biocontrol activity against bacteria, yeast, and filamentous fungi. Liquid chromatography-quadrupole time of flight tandem mass spectrometry (LC-QTOF-MS/MS) of #232 culture filtrate identified several common lipopeptide antimicrobials including gageostatin C, gageopeptin B, and miscellaneous macrolactins. In contrast, LC-QTOF-MS/MS identified the siderophore pyochelin as one of the predominant compounds in #133 culture filtrate with previously demonstrated antimicrobial effect. Jet fuel microbial consortium culture testing of #133 culture filtrate including flow-cytometry live/dead cell mechanism determination demonstrated antimicrobial action against Gram-positive bacteria. The study concludes that antimicrobial compounds secreted by #133 have bactericidal effects against Gordonia sp. and cause cell death through bacterial lysis and membrane damage with potential applications in the biocidal treatment of hydrocarbon-based aviation fuels.
{"title":"Identification of <i>Pseudomonas protegens</i> and <i>Bacillus subtilis</i> Antimicrobials for Mitigation of Fuel Biocontamination.","authors":"Amanda L Barry Schroeder, Adam M Reed, Osman Radwan, Loryn L Bowen, Oscar N Ruiz, Thusitha S Gunasekera, Andrea Hoffmann","doi":"10.3390/biom15020227","DOIUrl":"10.3390/biom15020227","url":null,"abstract":"<p><p>Hydrocarbon fuel biofouling and biocorrosion require expensive cleanup of aviation infrastructures unless appropriate sustainment measures are applied. The identification of novel biological control agents offers promising alternatives to the current chemical biocides used in fuel sustainment. In this study, 496 microbial fuel isolates from our in-house repository were screened to identify new endogenously produced antimicrobial compounds. Using agar plug screening, liquid culture growth testing, and Jet A fuel culture assays, the two fuel-isolate strains <i>Pseudomonas protegens</i> #133, and <i>Bacillus subtilis</i> #232 demonstrated promising biocontrol activity against bacteria, yeast, and filamentous fungi. Liquid chromatography-quadrupole time of flight tandem mass spectrometry (LC-QTOF-MS/MS) of #232 culture filtrate identified several common lipopeptide antimicrobials including gageostatin C, gageopeptin B, and miscellaneous macrolactins. In contrast, LC-QTOF-MS/MS identified the siderophore pyochelin as one of the predominant compounds in #133 culture filtrate with previously demonstrated antimicrobial effect. Jet fuel microbial consortium culture testing of #133 culture filtrate including flow-cytometry live/dead cell mechanism determination demonstrated antimicrobial action against Gram-positive bacteria. The study concludes that antimicrobial compounds secreted by #133 have bactericidal effects against <i>Gordonia</i> sp. and cause cell death through bacterial lysis and membrane damage with potential applications in the biocidal treatment of hydrocarbon-based aviation fuels.</p>","PeriodicalId":8943,"journal":{"name":"Biomolecules","volume":"15 2","pages":""},"PeriodicalIF":4.8,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11853459/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143498763","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gretchen A Johnson, Raghu R Krishnamoorthy, Ram H Nagaraj, Dorota L Stankowska
This study evaluated the neuroprotective potential of peptain-1 conjugated to a cell-penetrating peptide (CPP-P1) in an ocular hypertension model of glaucoma. Brown Norway (BN) rats were subjected to intraocular pressure (IOP) elevation via intracameral injection of silicone oil (SO), with concurrent intravitreal injections of either CPP-P1 or a vehicle. Retinal cross-sections were analyzed for markers of neuroprotection, including cAMP response element-binding protein (CREB), phosphorylated CREB (p-CREB), growth-associated protein-43 (GAP43), synapsin-1 (SYN1), and superoxide dismutase 2 (SOD2). Hematoxylin and eosin staining was used to assess retinal-layer thickness. SO-treated rats exhibited significant reductions in the thickness of the inner nuclear layer (INL, 41%, p = 0.016), inner plexiform layer (IPL, 52%, p = 0.0002), and ganglion cell layer (GCL, 57%, p = 0.001). CPP-P1 treatment mitigated these reductions, preserving INL thickness by 32% (p = 0.059), IPL by 19% (p = 0.119), and GCL by 31% (p = 0.057). Increased levels of CREB (p = 0.17) and p-CREB (p = 0.04) were observed in IOP-elevated, CPP-P1-treated retinas compared to IOP-elevated, vehicle-treated retinas. Although overall GAP43 levels were low, there was a modest increase in expression within the IPL and GCL in SO- and CPP-P1-treated retinas (p = 0.15 and p = 0.09, respectively) compared to SO- and vehicle-treated retinas. SO injection reduced SYN1 expression in both IPL and GCL (p = 0.01), whereas CPP-P1 treatment significantly increased SYN1 levels in the IPL (p = 0.03) and GCL (p = 0.002). While SOD2 expression in the GCL was minimal across all groups, a trend toward increased expression was observed in CPP-P1-treated animals (p = 0.16). The SO model was replicated with SO removal after 7 days and monitored for 21 days followed by retinal flat-mount preparation to assess retinal ganglion cell (RGC) survival. A 42% loss in RGCs (p = 0.009) was observed in SO-injected eyes, which were reduced by approximately 37% (p = 0.03) with CPP-P1 treatment. These findings suggest that CPP-P1 is a promising neuroprotective agent that promotes retinal ganglion cell survival and the preservation of other retinal neurons, potentially through enhanced CREB signaling in a rat model of SO-induced ocular hypertension.
{"title":"A Neuroprotective Peptide Modulates Retinal cAMP Response Element-Binding Protein (CREB), Synapsin I (SYN1), and Growth-Associated Protein 43 (GAP43) in Rats with Silicone Oil-Induced Ocular Hypertension.","authors":"Gretchen A Johnson, Raghu R Krishnamoorthy, Ram H Nagaraj, Dorota L Stankowska","doi":"10.3390/biom15020219","DOIUrl":"10.3390/biom15020219","url":null,"abstract":"<p><p>This study evaluated the neuroprotective potential of peptain-1 conjugated to a cell-penetrating peptide (CPP-P1) in an ocular hypertension model of glaucoma. Brown Norway (BN) rats were subjected to intraocular pressure (IOP) elevation via intracameral injection of silicone oil (SO), with concurrent intravitreal injections of either CPP-P1 or a vehicle. Retinal cross-sections were analyzed for markers of neuroprotection, including cAMP response element-binding protein (CREB), phosphorylated CREB (p-CREB), growth-associated protein-43 (GAP43), synapsin-1 (SYN1), and superoxide dismutase 2 (SOD2). Hematoxylin and eosin staining was used to assess retinal-layer thickness. SO-treated rats exhibited significant reductions in the thickness of the inner nuclear layer (INL, 41%, <i>p</i> = 0.016), inner plexiform layer (IPL, 52%, <i>p</i> = 0.0002), and ganglion cell layer (GCL, 57%, <i>p</i> = 0.001). CPP-P1 treatment mitigated these reductions, preserving INL thickness by 32% (<i>p</i> = 0.059), IPL by 19% (<i>p</i> = 0.119), and GCL by 31% (<i>p</i> = 0.057). Increased levels of CREB (<i>p</i> = 0.17) and p-CREB (<i>p</i> = 0.04) were observed in IOP-elevated, CPP-P1-treated retinas compared to IOP-elevated, vehicle-treated retinas. Although overall GAP43 levels were low, there was a modest increase in expression within the IPL and GCL in SO- and CPP-P1-treated retinas (<i>p</i> = 0.15 and <i>p</i> = 0.09, respectively) compared to SO- and vehicle-treated retinas. SO injection reduced SYN1 expression in both IPL and GCL (<i>p</i> = 0.01), whereas CPP-P1 treatment significantly increased SYN1 levels in the IPL (<i>p</i> = 0.03) and GCL (<i>p</i> = 0.002). While SOD2 expression in the GCL was minimal across all groups, a trend toward increased expression was observed in CPP-P1-treated animals (<i>p</i> = 0.16). The SO model was replicated with SO removal after 7 days and monitored for 21 days followed by retinal flat-mount preparation to assess retinal ganglion cell (RGC) survival. A 42% loss in RGCs (<i>p</i> = 0.009) was observed in SO-injected eyes, which were reduced by approximately 37% (<i>p</i> = 0.03) with CPP-P1 treatment. These findings suggest that CPP-P1 is a promising neuroprotective agent that promotes retinal ganglion cell survival and the preservation of other retinal neurons, potentially through enhanced CREB signaling in a rat model of SO-induced ocular hypertension.</p>","PeriodicalId":8943,"journal":{"name":"Biomolecules","volume":"15 2","pages":""},"PeriodicalIF":4.8,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11852426/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143498755","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Collagen peptides, as a natural source of peptides, possess multiple advantages such as anti-aging, anti-inflammatory properties, tissue repair, and the ability to inhibit melanin production. In this study, type I collagen extracted from pig skin was hydrolyzed with 1% and 3% hydrochloric acid, yielding collagen peptides CPH1 and CPH3. The melanin content and tyrosinase activity in B16F10 cells were compared via direct and paracrine action when CPH1 and CPH3 were used to interfere with melanogenesis. It was found that CPH3 significantly inhibited melanogenesis in B16F10 through the paracrine action involving HaCaT keratinocytes. The intracellular melanin content was measured at 65.23 ± 1.30%, and the mRNA levels of tyrosinase and microphthalmia transcription factor in cells were 55.77 ± 6.09% and 50.70 ± 8.18% of the negative control, respectively. Furthermore, pigment deposition assays in zebrafish showed that, at a concentration of 1.0 mg/mL, CPH3 significantly inhibited melanogenesis compared to the negative control. Finally, tyrosinase inhibitory peptides were identified from CPH3 through peptide segment sequence identification and molecular dynamics simulation. The peptides of Nona-AGPPGFPGA, Octa-APGPVGPA, and Octa-GLPGPPGP have a double effect on the inhibition of tyrosinase and melanin content in B16F10 cells.
{"title":"The Inhibitory Effect of Peptide Hydrolysate of Type I Collagen Derived from Pig Skin on Melanogenesis in B16F10 Melanoma Cells.","authors":"Jialin Zheng, Dandan Xu, Tianduo Li","doi":"10.3390/biom15020220","DOIUrl":"10.3390/biom15020220","url":null,"abstract":"<p><p>Collagen peptides, as a natural source of peptides, possess multiple advantages such as anti-aging, anti-inflammatory properties, tissue repair, and the ability to inhibit melanin production. In this study, type I collagen extracted from pig skin was hydrolyzed with 1% and 3% hydrochloric acid, yielding collagen peptides CPH1 and CPH3. The melanin content and tyrosinase activity in B16F10 cells were compared via direct and paracrine action when CPH1 and CPH3 were used to interfere with melanogenesis. It was found that CPH3 significantly inhibited melanogenesis in B16F10 through the paracrine action involving HaCaT keratinocytes. The intracellular melanin content was measured at 65.23 ± 1.30%, and the mRNA levels of tyrosinase and microphthalmia transcription factor in cells were 55.77 ± 6.09% and 50.70 ± 8.18% of the negative control, respectively. Furthermore, pigment deposition assays in zebrafish showed that, at a concentration of 1.0 mg/mL, CPH3 significantly inhibited melanogenesis compared to the negative control. Finally, tyrosinase inhibitory peptides were identified from CPH3 through peptide segment sequence identification and molecular dynamics simulation. The peptides of Nona-AGPPGFPGA, Octa-APGPVGPA, and Octa-GLPGPPGP have a double effect on the inhibition of tyrosinase and melanin content in B16F10 cells.</p>","PeriodicalId":8943,"journal":{"name":"Biomolecules","volume":"15 2","pages":""},"PeriodicalIF":4.8,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11852596/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143498477","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}