首页 > 最新文献

BMC Bioinformatics最新文献

英文 中文
ARGV: 3D genome structure exploration using augmented reality. ARGV:利用增强现实技术探索三维基因组结构。
IF 2.9 3区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-08-27 DOI: 10.1186/s12859-024-05882-8
Chrisostomos Drogaris, Yanlin Zhang, Eric Zhang, Elena Nazarova, Roman Sarrazin-Gendron, Sélik Wilhelm-Landry, Yan Cyr, Jacek Majewski, Mathieu Blanchette, Jérôme Waldispühl

Over the past two decades, scientists have increasingly realized the importance of the three-dimensional (3D) genome organization in regulating cellular activity. Hi-C and related experiments yield 2D contact matrices that can be used to infer 3D models of chromosome structure. Visualizing and analyzing genomes in 3D space remains challenging. Here, we present ARGV, an augmented reality 3D Genome Viewer. ARGV contains more than 350 pre-computed and annotated genome structures inferred from Hi-C and imaging data. It offers interactive and collaborative visualization of genomes in 3D space, using standard mobile phones or tablets. A user study comparing ARGV to existing tools demonstrates its benefits.

在过去的二十年里,科学家们越来越意识到三维(3D)基因组组织在调节细胞活动方面的重要性。Hi-C 和相关实验产生的二维接触矩阵可用于推断染色体结构的三维模型。在三维空间中可视化和分析基因组仍然具有挑战性。在此,我们介绍增强现实三维基因组浏览器 ARGV。ARGV 包含 350 多个根据 Hi-C 和成像数据推断的预计算和注释基因组结构。它可以使用标准手机或平板电脑在三维空间中对基因组进行交互式协作可视化。一项用户研究将 ARGV 与现有工具进行了比较,证明了 ARGV 的优势。
{"title":"ARGV: 3D genome structure exploration using augmented reality.","authors":"Chrisostomos Drogaris, Yanlin Zhang, Eric Zhang, Elena Nazarova, Roman Sarrazin-Gendron, Sélik Wilhelm-Landry, Yan Cyr, Jacek Majewski, Mathieu Blanchette, Jérôme Waldispühl","doi":"10.1186/s12859-024-05882-8","DOIUrl":"10.1186/s12859-024-05882-8","url":null,"abstract":"<p><p>Over the past two decades, scientists have increasingly realized the importance of the three-dimensional (3D) genome organization in regulating cellular activity. Hi-C and related experiments yield 2D contact matrices that can be used to infer 3D models of chromosome structure. Visualizing and analyzing genomes in 3D space remains challenging. Here, we present ARGV, an augmented reality 3D Genome Viewer. ARGV contains more than 350 pre-computed and annotated genome structures inferred from Hi-C and imaging data. It offers interactive and collaborative visualization of genomes in 3D space, using standard mobile phones or tablets. A user study comparing ARGV to existing tools demonstrates its benefits.</p>","PeriodicalId":8958,"journal":{"name":"BMC Bioinformatics","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11348660/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142079072","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
refMLST: reference-based multilocus sequence typing enables universal bacterial typing. refMLST:基于参考的多焦点序列分型可实现通用细菌分型。
IF 2.9 3区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-08-27 DOI: 10.1186/s12859-024-05913-4
Mondher Khdhiri, Ella Thomas, Chanel de Smet, Priyanka Chandar, Induja Chandrakumar, Jean M Davidson, Paul Anderson, Samuel D Chorlton

Background: Commonly used approaches for genomic investigation of bacterial outbreaks, including SNP and gene-by-gene approaches, are limited by the requirement for background genomes and curated allele schemes, respectively. As a result, they only work on a select subset of known organisms, and fail on novel or less studied pathogens. We introduce refMLST, a gene-by-gene approach using the reference genome of a bacterium to form a scalable, reproducible and robust method to perform outbreak investigation.

Results: When applied to multiple outbreak causing bacteria including 1263 Salmonella enterica, 331 Yersinia enterocolitica and 6526 Campylobacter jejuni genomes, refMLST enabled consistent clustering, improved resolution, and faster processing in comparison to commonly used tools like chewieSnake.

Conclusions: refMLST is a novel multilocus sequence typing approach that is applicable to any bacterial species with a public reference genome, does not require a curated scheme, and automatically accounts for genetic recombination.

Availability and implementation: refMLST is freely available for academic use at https://bugseq.com/academic .

背景:细菌爆发基因组调查的常用方法(包括 SNP 和逐基因方法)分别受到背景基因组和等位基因计划要求的限制。因此,这些方法只适用于部分已知生物,而对新型病原体或研究较少的病原体则无法奏效。我们引入了 refMLST,这是一种使用细菌参考基因组的逐基因方法,可形成一种可扩展、可重现且稳健的方法来执行疫情调查:结果:与 chewieSnake 等常用工具相比,当应用于包括 1263 个肠炎沙门氏菌、331 个小肠结肠炎耶尔森氏菌和 6526 个空肠弯曲菌基因组在内的多种导致疫情爆发的细菌时,refMLST 实现了一致的聚类、更高的分辨率和更快的处理速度。结论:refMLST 是一种新颖的多焦点序列分型方法,适用于任何具有公共参考基因组的细菌物种,不需要策划方案,并能自动考虑基因重组。可用性和实施:refMLST 可在 https://bugseq.com/academic 免费供学术界使用。
{"title":"refMLST: reference-based multilocus sequence typing enables universal bacterial typing.","authors":"Mondher Khdhiri, Ella Thomas, Chanel de Smet, Priyanka Chandar, Induja Chandrakumar, Jean M Davidson, Paul Anderson, Samuel D Chorlton","doi":"10.1186/s12859-024-05913-4","DOIUrl":"10.1186/s12859-024-05913-4","url":null,"abstract":"<p><strong>Background: </strong>Commonly used approaches for genomic investigation of bacterial outbreaks, including SNP and gene-by-gene approaches, are limited by the requirement for background genomes and curated allele schemes, respectively. As a result, they only work on a select subset of known organisms, and fail on novel or less studied pathogens. We introduce refMLST, a gene-by-gene approach using the reference genome of a bacterium to form a scalable, reproducible and robust method to perform outbreak investigation.</p><p><strong>Results: </strong>When applied to multiple outbreak causing bacteria including 1263 Salmonella enterica, 331 Yersinia enterocolitica and 6526 Campylobacter jejuni genomes, refMLST enabled consistent clustering, improved resolution, and faster processing in comparison to commonly used tools like chewieSnake.</p><p><strong>Conclusions: </strong>refMLST is a novel multilocus sequence typing approach that is applicable to any bacterial species with a public reference genome, does not require a curated scheme, and automatically accounts for genetic recombination.</p><p><strong>Availability and implementation: </strong>refMLST is freely available for academic use at https://bugseq.com/academic .</p>","PeriodicalId":8958,"journal":{"name":"BMC Bioinformatics","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11351335/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142079076","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimizing biomedical information retrieval with a keyword frequency-driven prompt enhancement strategy. 利用关键词频率驱动的提示增强策略优化生物医学信息检索。
IF 2.9 3区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-08-27 DOI: 10.1186/s12859-024-05902-7
Wasim Aftab, Zivkos Apostolou, Karim Bouazoune, Tobias Straub

Background: Mining the vast pool of biomedical literature to extract accurate responses and relevant references is challenging due to the domain's interdisciplinary nature, specialized jargon, and continuous evolution. Early natural language processing (NLP) approaches often led to incorrect answers as they failed to comprehend the nuances of natural language. However, transformer models have significantly advanced the field by enabling the creation of large language models (LLMs), enhancing question-answering (QA) tasks. Despite these advances, current LLM-based solutions for specialized domains like biology and biomedicine still struggle to generate up-to-date responses while avoiding "hallucination" or generating plausible but factually incorrect responses.

Results: Our work focuses on enhancing prompts using a retrieval-augmented architecture to guide LLMs in generating meaningful responses for biomedical QA tasks. We evaluated two approaches: one relying on text embedding and vector similarity in a high-dimensional space, and our proposed method, which uses explicit signals in user queries to extract meaningful contexts. For robust evaluation, we tested these methods on 50 specific and challenging questions from diverse biomedical topics, comparing their performance against a baseline model, BM25. Retrieval performance of our method was significantly better than others, achieving a median Precision@10 of 0.95, which indicates the fraction of the top 10 retrieved chunks that are relevant. We used GPT-4, OpenAI's most advanced LLM to maximize the answer quality and manually accessed LLM-generated responses. Our method achieved a median answer quality score of 2.5, surpassing both the baseline model and the text embedding-based approach. We developed a QA bot, WeiseEule ( https://github.com/wasimaftab/WeiseEule-LocalHost ), which utilizes these methods for comparative analysis and also offers advanced features for review writing and identifying relevant articles for citation.

Conclusions: Our findings highlight the importance of prompt enhancement methods that utilize explicit signals in user queries over traditional text embedding-based approaches to improve LLM-generated responses for specialized queries in specialized domains such as biology and biomedicine. By providing users complete control over the information fed into the LLM, our approach addresses some of the major drawbacks of existing web-based chatbots and LLM-based QA systems, including hallucinations and the generation of irrelevant or outdated responses.

背景:由于生物医学领域的跨学科性质、专业术语和不断演变,要从浩如烟海的生物医学文献中提取准确的答案和相关参考文献具有很大的挑战性。早期的自然语言处理(NLP)方法由于无法理解自然语言的细微差别,往往会导致错误的答案。然而,转换器模型通过创建大型语言模型(LLM),大大推进了这一领域的发展,增强了问题解答(QA)任务的能力。尽管取得了这些进步,但目前针对生物和生物医学等专业领域的基于 LLM 的解决方案仍难以生成最新的回答,同时避免 "幻觉 "或生成似是而非但与事实不符的回答:我们的工作重点是使用检索增强架构来增强提示,以指导 LLM 为生物医学质量保证任务生成有意义的回复。我们评估了两种方法:一种方法依赖于高维空间中的文本嵌入和向量相似性,另一种是我们提出的方法,它使用用户查询中的明确信号来提取有意义的上下文。为了进行稳健的评估,我们在来自不同生物医学主题的 50 个具体而具有挑战性的问题上测试了这些方法,并将它们的性能与基准模型 BM25 进行了比较。我们的方法的检索性能明显优于其他方法,Precision@10 的中位数达到了 0.95,Precision@10 表示检索到的前 10 个数据块中有多少是相关的。我们使用了 GPT-4(OpenAI 最先进的 LLM)来最大限度地提高答案质量,并手动访问 LLM 生成的回复。我们的方法获得了 2.5 分的中位答案质量分数,超过了基线模型和基于文本嵌入的方法。我们开发了一个质量保证机器人 WeiseEule ( https://github.com/wasimaftab/WeiseEule-LocalHost ),它利用这些方法进行比较分析,还为撰写评论和识别相关文章提供了高级功能。结论:我们的研究结果突出表明,与传统的基于文本嵌入的方法相比,利用用户查询中的明确信号的提示增强方法对于改进 LLM 生成的针对生物学和生物医学等专业领域的专门查询的回复具有重要意义。通过让用户完全控制输入 LLM 的信息,我们的方法解决了现有基于网络的聊天机器人和基于 LLM 的质量保证系统的一些主要缺点,包括幻觉和生成不相关或过时的回复。
{"title":"Optimizing biomedical information retrieval with a keyword frequency-driven prompt enhancement strategy.","authors":"Wasim Aftab, Zivkos Apostolou, Karim Bouazoune, Tobias Straub","doi":"10.1186/s12859-024-05902-7","DOIUrl":"10.1186/s12859-024-05902-7","url":null,"abstract":"<p><strong>Background: </strong>Mining the vast pool of biomedical literature to extract accurate responses and relevant references is challenging due to the domain's interdisciplinary nature, specialized jargon, and continuous evolution. Early natural language processing (NLP) approaches often led to incorrect answers as they failed to comprehend the nuances of natural language. However, transformer models have significantly advanced the field by enabling the creation of large language models (LLMs), enhancing question-answering (QA) tasks. Despite these advances, current LLM-based solutions for specialized domains like biology and biomedicine still struggle to generate up-to-date responses while avoiding \"hallucination\" or generating plausible but factually incorrect responses.</p><p><strong>Results: </strong>Our work focuses on enhancing prompts using a retrieval-augmented architecture to guide LLMs in generating meaningful responses for biomedical QA tasks. We evaluated two approaches: one relying on text embedding and vector similarity in a high-dimensional space, and our proposed method, which uses explicit signals in user queries to extract meaningful contexts. For robust evaluation, we tested these methods on 50 specific and challenging questions from diverse biomedical topics, comparing their performance against a baseline model, BM25. Retrieval performance of our method was significantly better than others, achieving a median Precision@10 of 0.95, which indicates the fraction of the top 10 retrieved chunks that are relevant. We used GPT-4, OpenAI's most advanced LLM to maximize the answer quality and manually accessed LLM-generated responses. Our method achieved a median answer quality score of 2.5, surpassing both the baseline model and the text embedding-based approach. We developed a QA bot, WeiseEule ( https://github.com/wasimaftab/WeiseEule-LocalHost ), which utilizes these methods for comparative analysis and also offers advanced features for review writing and identifying relevant articles for citation.</p><p><strong>Conclusions: </strong>Our findings highlight the importance of prompt enhancement methods that utilize explicit signals in user queries over traditional text embedding-based approaches to improve LLM-generated responses for specialized queries in specialized domains such as biology and biomedicine. By providing users complete control over the information fed into the LLM, our approach addresses some of the major drawbacks of existing web-based chatbots and LLM-based QA systems, including hallucinations and the generation of irrelevant or outdated responses.</p>","PeriodicalId":8958,"journal":{"name":"BMC Bioinformatics","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11351623/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142079075","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
HBeeID: a molecular tool that identifies honey bee subspecies from different geographic populations. HBeeID:一种从不同地理种群中识别蜜蜂亚种的分子工具。
IF 2.9 3区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-08-27 DOI: 10.1186/s12859-024-05776-9
Ravikiran Donthu, Jose A P Marcelino, Rosanna Giordano, Yudong Tao, Everett Weber, Arian Avalos, Mark Band, Tatsiana Akraiko, Shu-Ching Chen, Maria P Reyes, Haiping Hao, Yarira Ortiz-Alvarado, Charles A Cuff, Eddie Pérez Claudio, Felipe Soto-Adames, Allan H Smith-Pardo, William G Meikle, Jay D Evans, Tugrul Giray, Faten B Abdelkader, Mike Allsopp, Daniel Ball, Susana B Morgado, Shalva Barjadze, Adriana Correa-Benitez, Amina Chakir, David R Báez, Nabor H M Chavez, Anne Dalmon, Adrian B Douglas, Carmen Fraccica, Hermógenes Fernández-Marín, Alberto Galindo-Cardona, Ernesto Guzman-Novoa, Robert Horsburgh, Meral Kence, Joseph Kilonzo, Mert Kükrer, Yves Le Conte, Gaetana Mazzeo, Fernando Mota, Elliud Muli, Devrim Oskay, José A Ruiz-Martínez, Eugenia Oliveri, Igor Pichkhaia, Abderrahmane Romane, Cesar Guillen Sanchez, Evans Sikombwa, Alberto Satta, Alejandra A Scannapieco, Brandi Stanford, Victoria Soroker, Rodrigo A Velarde, Monica Vercelli, Zachary Huang

Background: Honey bees are the principal commercial pollinators. Along with other arthropods, they are increasingly under threat from anthropogenic factors such as the incursion of invasive honey bee subspecies, pathogens and parasites. Better tools are needed to identify bee subspecies. Genomic data for economic and ecologically important organisms is increasing, but in its basic form its practical application to address ecological problems is limited.

Results: We introduce HBeeID a means to identify honey bees. The tool utilizes a knowledge-based network and diagnostic SNPs identified by discriminant analysis of principle components and hierarchical agglomerative clustering. Tests of HBeeID showed that it identifies African, Americas-Africanized, Asian, and European honey bees with a high degree of certainty even when samples lack the full 272 SNPs of HBeeID. Its prediction capacity decreases with highly admixed samples.

Conclusion: HBeeID is a high-resolution genomic, SNP based tool, that can be used to identify honey bees and screen species that are invasive. Its flexible design allows for future improvements via sample data additions from other localities.

背景:蜜蜂是主要的商业授粉者。与其他节肢动物一样,蜜蜂正日益受到人为因素的威胁,如外来蜜蜂亚种、病原体和寄生虫的入侵。需要更好的工具来识别蜜蜂亚种。经济和生态重要生物的基因组数据正在不断增加,但以其基本形式实际应用于解决生态问题却很有限:结果:我们介绍了一种识别蜜蜂的方法--HBeeID。该工具利用基于知识的网络和通过原理成分判别分析和分层聚类确定的诊断 SNPs。对 HBeeID 的测试表明,即使样本中缺乏 HBeeID 的全部 272 个 SNPs,它也能高度准确地识别非洲、美洲-非洲化、亚洲和欧洲蜜蜂。结论:HBeeID 是一种基于 SNP 的高分辨率基因组工具,可用于识别蜜蜂和筛选入侵物种。其灵活的设计允许未来通过添加其他地区的样本数据进行改进。
{"title":"HBeeID: a molecular tool that identifies honey bee subspecies from different geographic populations.","authors":"Ravikiran Donthu, Jose A P Marcelino, Rosanna Giordano, Yudong Tao, Everett Weber, Arian Avalos, Mark Band, Tatsiana Akraiko, Shu-Ching Chen, Maria P Reyes, Haiping Hao, Yarira Ortiz-Alvarado, Charles A Cuff, Eddie Pérez Claudio, Felipe Soto-Adames, Allan H Smith-Pardo, William G Meikle, Jay D Evans, Tugrul Giray, Faten B Abdelkader, Mike Allsopp, Daniel Ball, Susana B Morgado, Shalva Barjadze, Adriana Correa-Benitez, Amina Chakir, David R Báez, Nabor H M Chavez, Anne Dalmon, Adrian B Douglas, Carmen Fraccica, Hermógenes Fernández-Marín, Alberto Galindo-Cardona, Ernesto Guzman-Novoa, Robert Horsburgh, Meral Kence, Joseph Kilonzo, Mert Kükrer, Yves Le Conte, Gaetana Mazzeo, Fernando Mota, Elliud Muli, Devrim Oskay, José A Ruiz-Martínez, Eugenia Oliveri, Igor Pichkhaia, Abderrahmane Romane, Cesar Guillen Sanchez, Evans Sikombwa, Alberto Satta, Alejandra A Scannapieco, Brandi Stanford, Victoria Soroker, Rodrigo A Velarde, Monica Vercelli, Zachary Huang","doi":"10.1186/s12859-024-05776-9","DOIUrl":"10.1186/s12859-024-05776-9","url":null,"abstract":"<p><strong>Background: </strong>Honey bees are the principal commercial pollinators. Along with other arthropods, they are increasingly under threat from anthropogenic factors such as the incursion of invasive honey bee subspecies, pathogens and parasites. Better tools are needed to identify bee subspecies. Genomic data for economic and ecologically important organisms is increasing, but in its basic form its practical application to address ecological problems is limited.</p><p><strong>Results: </strong>We introduce HBeeID a means to identify honey bees. The tool utilizes a knowledge-based network and diagnostic SNPs identified by discriminant analysis of principle components and hierarchical agglomerative clustering. Tests of HBeeID showed that it identifies African, Americas-Africanized, Asian, and European honey bees with a high degree of certainty even when samples lack the full 272 SNPs of HBeeID. Its prediction capacity decreases with highly admixed samples.</p><p><strong>Conclusion: </strong>HBeeID is a high-resolution genomic, SNP based tool, that can be used to identify honey bees and screen species that are invasive. Its flexible design allows for future improvements via sample data additions from other localities.</p>","PeriodicalId":8958,"journal":{"name":"BMC Bioinformatics","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11348773/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142079073","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
HerpesDRG: a comprehensive resource for human herpesvirus antiviral drug resistance genotyping. HerpesDRG:人类疱疹病毒抗病毒药物耐药性基因分型综合资源。
IF 2.9 3区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-08-27 DOI: 10.1186/s12859-024-05885-5
O J Charles, C Venturini, R A Goldstein, J Breuer

The prevention and treatment of many herpesvirus associated diseases is based on the utilization of antiviral therapies, however therapeutic success is limited by the development of drug resistance. Currently no single database cataloguing resistance mutations exists, which hampers the use of sequence data for patient management. We therefore developed HerpesDRG, a drug resistance mutation database that incorporates all the known resistance genes and current treatment options, built from a systematic review of available genotype to phenotype literature. The database is released along with an R package that provides a simple approach to resistance variant annotation and clinical implication analysis from common sanger and next generation sequencing data. This represents the first openly available and community maintainable database of drug resistance mutations for the human herpesviruses (HHV), developed for the community of researchers and clinicians tackling HHV drug resistance.

许多疱疹病毒相关疾病的预防和治疗都是以抗病毒疗法为基础的,然而治疗的成功却受到耐药性发展的限制。目前还没有一个单一的数据库对耐药性突变进行编目,这妨碍了利用序列数据对患者进行管理。因此,我们开发了 HerpesDRG,这是一个包含所有已知耐药基因和当前治疗方案的耐药突变数据库,它是通过对现有基因型到表型文献的系统性审查而建立的。该数据库与一个 R 软件包一起发布,该软件包提供了一种简单的方法,可从普通的 sanger 和新一代测序数据中进行耐药性变异注释和临床影响分析。该数据库是首个公开可用、可由社区维护的人类疱疹病毒(HHV)耐药性变异数据库,是为解决 HHV 耐药性问题的研究人员和临床医生开发的。
{"title":"HerpesDRG: a comprehensive resource for human herpesvirus antiviral drug resistance genotyping.","authors":"O J Charles, C Venturini, R A Goldstein, J Breuer","doi":"10.1186/s12859-024-05885-5","DOIUrl":"10.1186/s12859-024-05885-5","url":null,"abstract":"<p><p>The prevention and treatment of many herpesvirus associated diseases is based on the utilization of antiviral therapies, however therapeutic success is limited by the development of drug resistance. Currently no single database cataloguing resistance mutations exists, which hampers the use of sequence data for patient management. We therefore developed HerpesDRG, a drug resistance mutation database that incorporates all the known resistance genes and current treatment options, built from a systematic review of available genotype to phenotype literature. The database is released along with an R package that provides a simple approach to resistance variant annotation and clinical implication analysis from common sanger and next generation sequencing data. This represents the first openly available and community maintainable database of drug resistance mutations for the human herpesviruses (HHV), developed for the community of researchers and clinicians tackling HHV drug resistance.</p>","PeriodicalId":8958,"journal":{"name":"BMC Bioinformatics","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11350968/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142079074","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Smccnet 2.0: a comprehensive tool for multi-omics network inference with shiny visualization. Smccnet 2.0:多组学网络推断与闪亮可视化的综合工具。
IF 2.9 3区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-08-24 DOI: 10.1186/s12859-024-05900-9
Weixuan Liu, Thao Vu, Iain R Konigsberg, Katherine A Pratte, Yonghua Zhuang, Katerina J Kechris

Sparse multiple canonical correlation network analysis (SmCCNet) is a machine learning technique for integrating omics data along with a variable of interest (e.g., phenotype of complex disease), and reconstructing multi-omics networks that are specific to this variable. We present the second-generation SmCCNet (SmCCNet 2.0) that adeptly integrates single or multiple omics data types along with a quantitative or binary phenotype of interest. In addition, this new package offers a streamlined setup process that can be configured manually or automatically, ensuring a flexible and user-friendly experience. AVAILABILITY : This package is available in both CRAN: https://cran.r-project.org/web/packages/SmCCNet/index.html and Github: https://github.com/KechrisLab/SmCCNet under the MIT license. The network visualization tool is available at https://smccnet.shinyapps.io/smccnetnetwork/ .

稀疏多重典型相关网络分析(SmCCNet)是一种机器学习技术,用于将omics数据与感兴趣的变量(如复杂疾病的表型)整合在一起,并重建特定于该变量的多组学网络。我们推出了第二代 SmCCNet(SmCCNet 2.0),它能将单个或多个组学数据类型与感兴趣的定量或二元表型整合在一起。此外,这个新软件包还提供了简化的设置过程,可手动或自动配置,确保了灵活和用户友好的体验。可用性:该软件包在 MIT 许可下可在 CRAN: https://cran.r-project.org/web/packages/SmCCNet/index.html 和 Github: https://github.com/KechrisLab/SmCCNet 上获取。网络可视化工具可从 https://smccnet.shinyapps.io/smccnetnetwork/ 获取。
{"title":"Smccnet 2.0: a comprehensive tool for multi-omics network inference with shiny visualization.","authors":"Weixuan Liu, Thao Vu, Iain R Konigsberg, Katherine A Pratte, Yonghua Zhuang, Katerina J Kechris","doi":"10.1186/s12859-024-05900-9","DOIUrl":"10.1186/s12859-024-05900-9","url":null,"abstract":"<p><p>Sparse multiple canonical correlation network analysis (SmCCNet) is a machine learning technique for integrating omics data along with a variable of interest (e.g., phenotype of complex disease), and reconstructing multi-omics networks that are specific to this variable. We present the second-generation SmCCNet (SmCCNet 2.0) that adeptly integrates single or multiple omics data types along with a quantitative or binary phenotype of interest. In addition, this new package offers a streamlined setup process that can be configured manually or automatically, ensuring a flexible and user-friendly experience. AVAILABILITY : This package is available in both CRAN: https://cran.r-project.org/web/packages/SmCCNet/index.html and Github: https://github.com/KechrisLab/SmCCNet under the MIT license. The network visualization tool is available at https://smccnet.shinyapps.io/smccnetnetwork/ .</p>","PeriodicalId":8958,"journal":{"name":"BMC Bioinformatics","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11344457/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142046244","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MSH-DTI: multi-graph convolution with self-supervised embedding and heterogeneous aggregation for drug-target interaction prediction. MSH-DTI:利用自监督嵌入和异质聚合的多图卷积进行药物-靶点相互作用预测。
IF 2.9 3区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-08-23 DOI: 10.1186/s12859-024-05904-5
Beiyi Zhang, Dongjiang Niu, Lianwei Zhang, Qiang Zhang, Zhen Li

Background: The rise of network pharmacology has led to the widespread use of network-based computational methods in predicting drug target interaction (DTI). However, existing DTI prediction models typically rely on a limited amount of data to extract drug and target features, potentially affecting the comprehensiveness and robustness of features. In addition, although multiple networks are used for DTI prediction, the integration of heterogeneous information often involves simplistic aggregation and attention mechanisms, which may impose certain limitations.

Results: MSH-DTI, a deep learning model for predicting drug-target interactions, is proposed in this paper. The model uses self-supervised learning methods to obtain drug and target structure features. A Heterogeneous Interaction-enhanced Feature Fusion Module is designed for multi-graph construction, and the graph convolutional networks are used to extract node features. With the help of an attention mechanism, the model focuses on the important parts of different features for prediction. Experimental results show that the AUROC and AUPR of MSH-DTI are 0.9620 and 0.9605 respectively, outperforming other models on the DTINet dataset.

Conclusion: The proposed MSH-DTI is a helpful tool to discover drug-target interactions, which is also validated through case studies in predicting new DTIs.

背景:网络药理学的兴起使得基于网络的计算方法被广泛用于预测药物靶点相互作用(DTI)。然而,现有的 DTI 预测模型通常依赖于有限的数据量来提取药物和靶点特征,这可能会影响特征的全面性和稳健性。此外,虽然多种网络被用于 DTI 预测,但异构信息的整合往往涉及简单化的聚合和关注机制,这可能会带来一定的局限性:本文提出了用于预测药物靶点相互作用的深度学习模型 MSH-DTI。该模型采用自监督学习方法获取药物和靶标结构特征。设计了异质相互作用增强特征融合模块用于多图构建,并使用图卷积网络提取节点特征。在注意力机制的帮助下,该模型聚焦于不同特征的重要部分进行预测。实验结果表明,在 DTINet 数据集上,MSH-DTI 的 AUROC 和 AUPR 分别为 0.9620 和 0.9605,优于其他模型:结论:提出的 MSH-DTI 是发现药物-靶点相互作用的有用工具,在预测新的 DTI 方面也通过案例研究得到了验证。
{"title":"MSH-DTI: multi-graph convolution with self-supervised embedding and heterogeneous aggregation for drug-target interaction prediction.","authors":"Beiyi Zhang, Dongjiang Niu, Lianwei Zhang, Qiang Zhang, Zhen Li","doi":"10.1186/s12859-024-05904-5","DOIUrl":"10.1186/s12859-024-05904-5","url":null,"abstract":"<p><strong>Background: </strong>The rise of network pharmacology has led to the widespread use of network-based computational methods in predicting drug target interaction (DTI). However, existing DTI prediction models typically rely on a limited amount of data to extract drug and target features, potentially affecting the comprehensiveness and robustness of features. In addition, although multiple networks are used for DTI prediction, the integration of heterogeneous information often involves simplistic aggregation and attention mechanisms, which may impose certain limitations.</p><p><strong>Results: </strong>MSH-DTI, a deep learning model for predicting drug-target interactions, is proposed in this paper. The model uses self-supervised learning methods to obtain drug and target structure features. A Heterogeneous Interaction-enhanced Feature Fusion Module is designed for multi-graph construction, and the graph convolutional networks are used to extract node features. With the help of an attention mechanism, the model focuses on the important parts of different features for prediction. Experimental results show that the AUROC and AUPR of MSH-DTI are 0.9620 and 0.9605 respectively, outperforming other models on the DTINet dataset.</p><p><strong>Conclusion: </strong>The proposed MSH-DTI is a helpful tool to discover drug-target interactions, which is also validated through case studies in predicting new DTIs.</p>","PeriodicalId":8958,"journal":{"name":"BMC Bioinformatics","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11342675/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142046243","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
TIANA: transcription factors cooperativity inference analysis with neural attention. TIANA:利用神经注意进行转录因子合作推理分析。
IF 2.9 3区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-08-22 DOI: 10.1186/s12859-024-05852-0
Rick Z Li, Claudia Z Han, Christopher K Glass

Background: Growing evidence suggests that distal regulatory elements are essential for cellular function and states. The sequences within these distal elements, especially motifs for transcription factor binding, provide critical information about the underlying regulatory programs. However, cooperativities between transcription factors that recognize these motifs are nonlinear and multiplexed, rendering traditional modeling methods insufficient to capture the underlying mechanisms. Recent development of attention mechanism, which exhibit superior performance in capturing dependencies across input sequences, makes them well-suited to uncover and decipher intricate dependencies between regulatory elements.

Result: We present Transcription factors cooperativity Inference Analysis with Neural Attention (TIANA), a deep learning framework that focuses on interpretability. In this study, we demonstrated that TIANA could discover biologically relevant insights into co-occurring pairs of transcription factor motifs. Compared with existing tools, TIANA showed superior interpretability and robust performance in identifying putative transcription factor cooperativities from co-occurring motifs.

Conclusion: Our results suggest that TIANA can be an effective tool to decipher transcription factor cooperativities from distal sequence data. TIANA can be accessed through: https://github.com/rzzli/TIANA .

背景:越来越多的证据表明,远端调控元件对细胞功能和状态至关重要。这些远端调控元件中的序列,尤其是转录因子结合的基序,提供了有关潜在调控程序的关键信息。然而,识别这些图案的转录因子之间的合作是非线性和多重的,这使得传统的建模方法不足以捕捉潜在的机制。最近开发的注意力机制在捕捉跨输入序列的依赖性方面表现出卓越的性能,使其非常适合揭示和解读调控因子之间错综复杂的依赖关系:我们提出了神经注意力转录因子合作推理分析(TIANA),这是一种注重可解释性的深度学习框架。在这项研究中,我们证明了 TIANA 可以发现转录因子图案共现对的生物学相关见解。与现有工具相比,TIANA 在从共现图案中识别推定转录因子合作性方面表现出了卓越的可解释性和稳健的性能:我们的研究结果表明,TIANA 可以成为从远端序列数据中解读转录因子合作关系的有效工具。TIANA 可通过 https://github.com/rzzli/TIANA 访问。
{"title":"TIANA: transcription factors cooperativity inference analysis with neural attention.","authors":"Rick Z Li, Claudia Z Han, Christopher K Glass","doi":"10.1186/s12859-024-05852-0","DOIUrl":"10.1186/s12859-024-05852-0","url":null,"abstract":"<p><strong>Background: </strong>Growing evidence suggests that distal regulatory elements are essential for cellular function and states. The sequences within these distal elements, especially motifs for transcription factor binding, provide critical information about the underlying regulatory programs. However, cooperativities between transcription factors that recognize these motifs are nonlinear and multiplexed, rendering traditional modeling methods insufficient to capture the underlying mechanisms. Recent development of attention mechanism, which exhibit superior performance in capturing dependencies across input sequences, makes them well-suited to uncover and decipher intricate dependencies between regulatory elements.</p><p><strong>Result: </strong>We present Transcription factors cooperativity Inference Analysis with Neural Attention (TIANA), a deep learning framework that focuses on interpretability. In this study, we demonstrated that TIANA could discover biologically relevant insights into co-occurring pairs of transcription factor motifs. Compared with existing tools, TIANA showed superior interpretability and robust performance in identifying putative transcription factor cooperativities from co-occurring motifs.</p><p><strong>Conclusion: </strong>Our results suggest that TIANA can be an effective tool to decipher transcription factor cooperativities from distal sequence data. TIANA can be accessed through: https://github.com/rzzli/TIANA .</p>","PeriodicalId":8958,"journal":{"name":"BMC Bioinformatics","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11342676/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142035126","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
HPC-T-Annotator: an HPC tool for de novo transcriptome assembly annotation. HPC-T-Annotator:用于从头开始转录组组装注释的高性能计算工具。
IF 2.9 3区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-08-21 DOI: 10.1186/s12859-024-05887-3
Lorenzo Arcioni, Manuel Arcieri, Jessica Di Martino, Franco Liberati, Paolo Bottoni, Tiziana Castrignanò

Background: The availability of transcriptomic data for species without a reference genome enables the construction of de novo transcriptome assemblies as alternative reference resources from RNA-Seq data. A transcriptome provides direct information about a species' protein-coding genes under specific experimental conditions. The de novo assembly process produces a unigenes file in FASTA format, subsequently targeted for the annotation. Homology-based annotation, a method to infer the function of sequences by estimating similarity with other sequences in a reference database, is a computationally demanding procedure.

Results: To mitigate the computational burden, we introduce HPC-T-Annotator, a tool for de novo transcriptome homology annotation on high performance computing (HPC) infrastructures, designed for straightforward configuration via a Web interface. Once the configuration data are given, the entire parallel computing software for annotation is automatically generated and can be launched on a supercomputer using a simple command line. The output data can then be easily viewed using post-processing utilities in the form of Python notebooks integrated in the proposed software.

Conclusions: HPC-T-Annotator expedites homology-based annotation in de novo transcriptome assemblies. Its efficient parallelization strategy on HPC infrastructures significantly reduces computational load and execution times, enabling large-scale transcriptome analysis and comparison projects, while its intuitive graphical interface extends accessibility to users without IT skills.

背景:对于没有参考基因组的物种,转录组数据的可用性使得从 RNA-Seq 数据中构建全新的转录组集合作为替代参考资源成为可能。转录组提供了特定实验条件下物种蛋白质编码基因的直接信息。从头组装过程会产生一个 FASTA 格式的单基因文件,随后进行目标注释。基于同源性的注释是一种通过估计序列与参考数据库中其他序列的相似性来推断序列功能的方法,是一种计算要求很高的程序:为了减轻计算负担,我们推出了HPC-T-Annotator,这是一种在高性能计算(HPC)基础设施上进行全新转录组同源注释的工具,通过网络界面进行直接配置。一旦给出配置数据,整个用于注释的并行计算软件就会自动生成,并可通过简单的命令行在超级计算机上启动。然后,可以使用集成在拟议软件中的 Python 笔记本形式的后处理实用程序轻松查看输出数据:结论:HPC-T-Annotator 加快了全新转录组组装中基于同源性的注释工作。它在高性能计算基础设施上的高效并行化策略大大降低了计算负荷和执行时间,使大规模转录组分析和比较项目成为可能,而其直观的图形界面则使不具备信息技术技能的用户也能使用。
{"title":"HPC-T-Annotator: an HPC tool for de novo transcriptome assembly annotation.","authors":"Lorenzo Arcioni, Manuel Arcieri, Jessica Di Martino, Franco Liberati, Paolo Bottoni, Tiziana Castrignanò","doi":"10.1186/s12859-024-05887-3","DOIUrl":"10.1186/s12859-024-05887-3","url":null,"abstract":"<p><strong>Background: </strong>The availability of transcriptomic data for species without a reference genome enables the construction of de novo transcriptome assemblies as alternative reference resources from RNA-Seq data. A transcriptome provides direct information about a species' protein-coding genes under specific experimental conditions. The de novo assembly process produces a unigenes file in FASTA format, subsequently targeted for the annotation. Homology-based annotation, a method to infer the function of sequences by estimating similarity with other sequences in a reference database, is a computationally demanding procedure.</p><p><strong>Results: </strong>To mitigate the computational burden, we introduce HPC-T-Annotator, a tool for de novo transcriptome homology annotation on high performance computing (HPC) infrastructures, designed for straightforward configuration via a Web interface. Once the configuration data are given, the entire parallel computing software for annotation is automatically generated and can be launched on a supercomputer using a simple command line. The output data can then be easily viewed using post-processing utilities in the form of Python notebooks integrated in the proposed software.</p><p><strong>Conclusions: </strong>HPC-T-Annotator expedites homology-based annotation in de novo transcriptome assemblies. Its efficient parallelization strategy on HPC infrastructures significantly reduces computational load and execution times, enabling large-scale transcriptome analysis and comparison projects, while its intuitive graphical interface extends accessibility to users without IT skills.</p>","PeriodicalId":8958,"journal":{"name":"BMC Bioinformatics","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11340092/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142016292","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
VAIV bio-discovery service using transformer model and retrieval augmented generation. 使用变压器模型和检索增强生成的 VAIV 生物发现服务。
IF 2.9 3区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-08-21 DOI: 10.1186/s12859-024-05903-6
Seonho Kim, Juntae Yoon

Background: There has been a considerable advancement in AI technologies like LLM and machine learning to support biomedical knowledge discovery.

Main body: We propose a novel biomedical neural search service called 'VAIV Bio-Discovery', which supports enhanced knowledge discovery and document search on unstructured text such as PubMed. It mainly handles with information related to chemical compound/drugs, gene/proteins, diseases, and their interactions (chemical compounds/drugs-proteins/gene including drugs-targets, drug-drug, and drug-disease). To provide comprehensive knowledge, the system offers four search options: basic search, entity and interaction search, and natural language search. We employ T5slim_dec, which adapts the autoregressive generation task of the T5 (text-to-text transfer transformer) to the interaction extraction task by removing the self-attention layer in the decoder block. It also assists in interpreting research findings by summarizing the retrieved search results for a given natural language query with Retrieval Augmented Generation (RAG). The search engine is built with a hybrid method that combines neural search with the probabilistic search, BM25.

Conclusion: As a result, our system can better understand the context, semantics and relationships between terms within the document, enhancing search accuracy. This research contributes to the rapidly evolving biomedical field by introducing a new service to access and discover relevant knowledge.

背景:LLM 和机器学习等人工智能技术在支持生物医学知识发现方面取得了长足的进步:我们提出了一种名为 "VAIV 生物发现 "的新型生物医学神经搜索服务,它支持在 PubMed 等非结构化文本中增强知识发现和文档搜索。它主要处理与化合物/药物、基因/蛋白质、疾病及其相互作用(化合物/药物-蛋白质/基因,包括药物-靶点、药物-药物和药物-疾病)相关的信息。为了提供全面的知识,该系统提供了四种搜索选项:基本搜索、实体和交互搜索以及自然语言搜索。我们采用了 T5slim_dec,它通过去除解码器块中的自注意层,将 T5(文本到文本转换器)的自回归生成任务调整为交互作用提取任务。它还通过检索增强生成(RAG)对给定自然语言查询的检索结果进行总结,从而协助解释研究成果。该搜索引擎采用了神经搜索与概率搜索相结合的混合方法 BM25:因此,我们的系统可以更好地理解文档中术语的上下文、语义和关系,从而提高搜索的准确性。这项研究为快速发展的生物医学领域做出了贡献,为获取和发现相关知识提供了一种新的服务。
{"title":"VAIV bio-discovery service using transformer model and retrieval augmented generation.","authors":"Seonho Kim, Juntae Yoon","doi":"10.1186/s12859-024-05903-6","DOIUrl":"10.1186/s12859-024-05903-6","url":null,"abstract":"<p><strong>Background: </strong>There has been a considerable advancement in AI technologies like LLM and machine learning to support biomedical knowledge discovery.</p><p><strong>Main body: </strong>We propose a novel biomedical neural search service called 'VAIV Bio-Discovery', which supports enhanced knowledge discovery and document search on unstructured text such as PubMed. It mainly handles with information related to chemical compound/drugs, gene/proteins, diseases, and their interactions (chemical compounds/drugs-proteins/gene including drugs-targets, drug-drug, and drug-disease). To provide comprehensive knowledge, the system offers four search options: basic search, entity and interaction search, and natural language search. We employ T5slim_dec, which adapts the autoregressive generation task of the T5 (text-to-text transfer transformer) to the interaction extraction task by removing the self-attention layer in the decoder block. It also assists in interpreting research findings by summarizing the retrieved search results for a given natural language query with Retrieval Augmented Generation (RAG). The search engine is built with a hybrid method that combines neural search with the probabilistic search, BM25.</p><p><strong>Conclusion: </strong>As a result, our system can better understand the context, semantics and relationships between terms within the document, enhancing search accuracy. This research contributes to the rapidly evolving biomedical field by introducing a new service to access and discover relevant knowledge.</p>","PeriodicalId":8958,"journal":{"name":"BMC Bioinformatics","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11340140/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142016293","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
BMC Bioinformatics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1