Background: To investigate the survival outcome of "radical" GreenLight photoselective vaporization of bladder tumor (RPVBT) in conjunction with postoperative chemotherapy for patients with single, < 3 cm in diameter, T2 stage muscle invasive bladder cancer (MIBC).
Methods: Thirty-eight patients with single, < 3 cm, T2 stage bladder cancer were treated with RPVBT combined with chemotherapy and were included in the RPVBT group. To compare the differences in survival outcome, 80 patients with Ta/T1 bladder cancer and 30 patients with T2 bladder cancer were included as controls. The 80 patients with Ta/T1 bladder cancer underwent GreenLight photoselective vaporization of bladder tumors(PVBT), while 30 patients with T2 bladder cancer underwent radical cystectomy (RC) combined with pelvic lymph node dissection (PLND). Tumor recurrence and death were recorded, and recurrence-free survival (RFS) and overall survival (OS) curves were plotted to compare the survival difference between the RPVBT and control groups.
Results: No significant differences were observed in comorbidities or living habits between the RPVBT and control groups. Blood loss [RPVBT: 20 (IQR10, 20) vs. RC: 100 (IQR90, 150) mL] and postoperative hospital stay [RPVBT: 5.5 (IQR5, 6), vs. RC: 10 (IQR8, 12) days] in the RPVBT group were significantly lower than that in the RC group. Urinary tract infection [RPVBT: 6 (15.8%) vs. PVBT: 14 (17.5%)] and bladder irritation sign [RPVBT: 11 (28.9%) vs. PVBT: 23 (28.8%) ] were the most common short-term complications in the RPVBT group, with no statistical difference between the RPVBT and PVBT group. The median follow-up time for survival endpoints was 22 (16, 27) months for the included patients after surgery. The outcomes of tumor recurrence at 12, 24, and 36 months were 2 (5.3%), 3 (7.9%), and 5 (13.2%) patients in the RPVBT groups, 13 (16.3%) and 3 (10%) patients experienced recurrence in the PVBT and RC groups at 36 months. No significant differences were noted among the three groups (P = 0.778). Additionally, Kaplan-Meier survival analysis revealed no statistically significant differences in RFS (P = 0.791) and OS (P = 0.689) among the three groups.
Conclusions: Our findings indicate that RPVBT combined with chemotherapy is a simple and feasible treatment option with fewer complications and satisfactory survival outcomes in patients with single, < 3 cm, T2 stage bladder cancer.
Oral cancers, specifically oral squamous cell carcinoma (OSCC), pose a significant global health challenge, with high incidence and mortality rates. Conventional treatments such as surgery, radiotherapy, and chemotherapy have limited effectiveness and can result in adverse reactions. However, as an alternative, photodynamic therapy (PDT) has emerged as a promising option for treating oral cancers. PDT involves using photosensitizing agents in conjunction with specific light to target and destroy cancer cells selectively. The photosensitizers accumulate in the cancer cells and generate reactive oxygen species (ROS) upon exposure to the activating light, leading to cellular damage and ultimately cell death. PDT offers several advantages, including its non-invasive nature, absence of known long-term side effects when administered correctly, and cost-effectiveness. It can be employed as a primary treatment for early-stage oral cancers or in combination with other therapies for more advanced cases. Nonetheless, it is important to note that PDT is most effective for superficial or localized cancers and may not be suitable for larger or deeply infiltrating tumors. Light sensitivity and temporary side effects may occur but can be managed with appropriate care. Ongoing research endeavors aim to expand the applications of PDT and develop novel photosensitizers to further enhance its efficacy in oral cancer treatment. This review aims to evaluate the effectiveness of PDT in treating oral cancers by analyzing a combination of preclinical and clinical studies.
Breast cancer is the most common female malignancy worldwide. Ubiquitin-specific peptidase 53 (USP53) has been shown to exert cancer-suppressing functions in several solid tumors, but its role and the underlying mechanism in breast cancer has not been clearly elucidated. Therefore, we have carried out a series of detailed studies on this matter at the levels of bioinformatics, clinical tissue, cell function and animal model. We found that USP53 expression was downregulated in breast cancer specimens and was negatively correlated with the clinical stages. Gain- and loss-of-function experiments demonstrated USP53 inhibited proliferation, clonogenesis, cell cycle and xenograft growth, as well as induced apoptosis and mitochondrial damage of breast cancer cells. Co-immunoprecipitation data suggested that USP53 interacted with zinc finger MYND-type containing 11 (ZMYND11), and catalyzed its deubiquitination and stabilization. The 33-50 amino acid Cys-box domain was key for USP53 enzyme activity, but not essential for its binding with ZMYND11. The rescue experiments revealed that the anti-tumor role of USP53 in breast cancer cells was at least partially mediated by ZMYND11. Both USP53 and ZMYND11 were prognostic protective factors for breast cancer. USP53-ZMYND11 axis may be a good potential biomarker or therapeutic target for breast cancer, which can provide novel insights into the diagnosis, treatment and prognosis.
Peste des petits ruminants (PPRV), a highly contagious viral disease, causes significant economic losses concerning sheep and goats. Recently, PPR viruses (PPRVs), have adopted new hosts and lineage IV of PPRVs represents genetic diversity within the same lineage. 350 samples, including blood, swabs, and tissues from sheep/goats, were collected during the 2020-2021 disease outbreaks in Pakistan. These samples were analysed through RT-PCR and three isolates of PPRV with accession numbers, MW600920, MW600921, and MW600922, were submitted to GenBank, based on the partial N-gene sequencing. This analysis provides a better understanding of genetic characterizations and a targeted RT-PCR approach for rapid PPRV diagnosis. An IELISA test was developed using the semi-purified antigen MW600922 isolate grown in Vero cells. The PPRV isolates currently present high divergence with the Turkish strain; conversely, similarities equivalent to 99.73% were observed for isolates collected from Pakistan. The developed indirect ELISA (IELISA) test demonstrated antibody detection rates at dilutions of 1:200 for antibodies (serum) and 1:32 for antigens. In comparison to cELISA, high specificity (85.23%) and sensitivity (90.60%) rates were observed. In contrast to the virus neutralization test (VNT), IELISA was observed to be 100% specific and 82.14% sensitive in its results. Based on these results, serological surveys conducted for PPR antibodies using IELISA can be a more effective strategy on a larger scale. Furthermore, our results demonstrate a significant breakthrough in the research in terms of cost-effectiveness and storage efficiency, and the developed IELISA test is highly recommended for use in developing countries.
Background: The role of tumor inflammatory microenvironment in the advancement of cancer, particularly prostate cancer, is widely acknowledged. ELL-associated factor 2 (EAF2), a tumor suppressor that has been identified in the prostate, is often downregulated in prostate cancer. Earlier investigations have shown that mice with EAF2 gene knockout exhibited a substantial infiltration of inflammatory cells into the prostatic stroma.
Methods: A cohort comprising 38 patients who had been diagnosed with prostate cancer and subsequently undergone radical prostatectomy (RP) was selected. These patients were pathologically graded according to the Gleason scoring system and divided into two groups. The purpose of this selection was to investigate the potential correlation between EAF2 and CD163 using immunohistochemistry (IHC) staining. Additionally, in vitro experimentation was conducted to verify the relationship between EAF2 expression, macrophage migration and polarization.
Results: Our study demonstrated that in specimens of human prostate cancer, the expression of EAF2 was notably downregulated, and this decrease was inversely associated with the number of CD163-positive macrophages that infiltrated the cancerous tissue. Cell co-culture experiments revealed that the chemotactic effect of tumor cells towards macrophages was intensified and that macrophages differentiated into tumor-associated macrophages (TAMs) when EAF2 was knocked out. Additionally, the application of cytokine protein microarray showed that the expression of chemokine macrophage migration inhibitory factor (MIF) increased after EAF2 knockout.
Conclusions: Our findings suggested that EAF2 was involved in the infiltration of CD163-positive macrophages in prostate cancer via MIF.
Crimean-Congo hemorrhagic fever virus (CCHFV) is a tick-borne virus, and zoonosis, and affects large regions of Asia, Southwestern and Southeastern Europe, and Africa. CCHFV can produce symptoms, including no specific clinical symptoms, mild to severe clinical symptoms, or deadly infections. Virus isolation attempts, antigen-capture enzyme-linked immunosorbent assay (ELISA), and reverse transcription polymerase chain reaction (RT-PCR) are all possible diagnostic tests for CCHFV. Furthermore, an efficient, quick, and cheap technology, including biosensors, must be designed and developed to detect CCHFV. The goal of this article is to offer an overview of modern laboratory tests available as well as other innovative detection methods such as biosensors for CCHFV, as well as the benefits and limits of the assays. Furthermore, confirmed cases of CCHF are managed with symptomatic assistance and general supportive care. This study examined the various treatment modalities, as well as their respective limitations and developments, including immunotherapy and antivirals. Recent biotechnology advancements and the availability of suitable animal models have accelerated the development of CCHF vaccines by a substantial margin. We examined a range of potential vaccines for CCHF in this research, comprising nucleic acid, viral particles, inactivated, and multi-epitope vaccines, as well as the present obstacles and developments in this field. Thus, the purpose of this review is to present a comprehensive summary of the endeavors dedicated to advancing various diagnostic, therapeutic, and preventive strategies for CCHF infection in anticipation of forthcoming hazards.
Introduction: Age-related macular degeneration (AMD) is a leading cause of blindness, affecting millions worldwide. Its complex pathogenesis involves a variety of risk factors, including lipid metabolism and inflammation. This study aims to elucidate the causal relationships between biomarkers related to these processes and AMD, leveraging Mendelian randomization (MR) and cross-sectional analysis from the National Health and Nutrition Examination Survey (NHANES).
Method: We conducted a two-phase study, initially using MR to explore the causality between 35 biomarkers and various AMD subtypes, followed by observational analysis with NHANES data to validate these findings.
Results: MR analysis identified a protective role of TG and a risk factor role of HDL-C and CRP in AMD development. NHANES data corroborated these findings, highlighting a nuanced relationship between these biomarkers and AMD. Notably, lipid metabolism-related biomarkers showed stronger associations with early AMD, whereas CRP's significance was pronounced in late AMD.
Conclusion: This comprehensive analysis, combining MR with NHANES data, reinforces the importance of lipid metabolism and inflammation in AMD's etiology. Future research should further investigate these biomarkers' mechanisms and their potential as therapeutic targets for AMD prevention and treatment.

