首页 > 最新文献

ACS Biomaterials Science & Engineering最新文献

英文 中文
Polyurethanes and Their Biomedical Applications. 聚氨酯及其生物医学应用。
IF 5.4 2区 医学 Q2 MATERIALS SCIENCE, BIOMATERIALS Pub Date : 2024-11-11 Epub Date: 2024-10-22 DOI: 10.1021/acsbiomaterials.4c01352
Sepideh Azarmgin, Bahman Torabinejad, Rooja Kalantarzadeh, Heriberto Garcia, Carlo Alberto Velazquez, Gino Lopez, Marisol Vazquez, Gabriel Rosales, Behzad Shiroud Heidari, Seyed Mohammad Davachi

The tunable mechanical properties of polyurethanes (PUs), due to their extensive structural diversity and biocompatibility, have made them promising materials for biomedical applications. Scientists can address PUs' issues with platelet absorption and thrombus formation owing to their modifiable surface. In recent years, PUs have been extensively utilized in biomedical applications because of their chemical stability, biocompatibility, and minimal cytotoxicity. Moreover, addressing challenges related to degradation and recycling has led to a growing focus on the development of biobased polyurethanes as a current focal point. PUs are widely implemented in cardiovascular fields and as implantable materials for internal organs due to their favorable biocompatibility and physicochemical properties. Additionally, they show great potential in bone tissue engineering as injectable grafts or implantable scaffolds. This paper reviews the synthesis methods, physicochemical properties, and degradation pathways of PUs and summarizes recent progress in applying different types of polyurethanes in various biomedical applications, from wound repair to hip replacement. Finally, we discuss the challenges and future directions for the translation of novel polyurethane materials into biomedical applications.

聚氨酯(PUs)具有广泛的结构多样性和生物兼容性,其可调整的机械特性使其成为生物医学应用中大有可为的材料。由于聚氨酯的表面可进行改性,科学家们可以解决聚氨酯吸收血小板和形成血栓的问题。近年来,PU 因其化学稳定性、生物相容性和最小细胞毒性而被广泛应用于生物医学领域。此外,由于要应对降解和回收方面的挑战,开发生物基聚氨酯成为当前的焦点。聚氨酯具有良好的生物相容性和理化特性,因此被广泛应用于心血管领域和内脏器官的植入材料。此外,作为可注射移植物或植入式支架,聚氨酯在骨组织工程方面也显示出巨大的潜力。本文回顾了聚氨酯的合成方法、理化性质和降解途径,并总结了将不同类型的聚氨酯应用于从伤口修复到髋关节置换等各种生物医学领域的最新进展。最后,我们讨论了将新型聚氨酯材料转化为生物医学应用所面临的挑战和未来发展方向。
{"title":"Polyurethanes and Their Biomedical Applications.","authors":"Sepideh Azarmgin, Bahman Torabinejad, Rooja Kalantarzadeh, Heriberto Garcia, Carlo Alberto Velazquez, Gino Lopez, Marisol Vazquez, Gabriel Rosales, Behzad Shiroud Heidari, Seyed Mohammad Davachi","doi":"10.1021/acsbiomaterials.4c01352","DOIUrl":"10.1021/acsbiomaterials.4c01352","url":null,"abstract":"<p><p>The tunable mechanical properties of polyurethanes (PUs), due to their extensive structural diversity and biocompatibility, have made them promising materials for biomedical applications. Scientists can address PUs' issues with platelet absorption and thrombus formation owing to their modifiable surface. In recent years, PUs have been extensively utilized in biomedical applications because of their chemical stability, biocompatibility, and minimal cytotoxicity. Moreover, addressing challenges related to degradation and recycling has led to a growing focus on the development of biobased polyurethanes as a current focal point. PUs are widely implemented in cardiovascular fields and as implantable materials for internal organs due to their favorable biocompatibility and physicochemical properties. Additionally, they show great potential in bone tissue engineering as injectable grafts or implantable scaffolds. This paper reviews the synthesis methods, physicochemical properties, and degradation pathways of PUs and summarizes recent progress in applying different types of polyurethanes in various biomedical applications, from wound repair to hip replacement. Finally, we discuss the challenges and future directions for the translation of novel polyurethane materials into biomedical applications.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":" ","pages":"6828-6859"},"PeriodicalIF":5.4,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142453195","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced Mandibular Bone Repair Using Poly Lactic-co-glycolic Acid Combined with Nanohydroxyapatite Scaffold Loaded by Mesenchymal Stromal/Stem Cells and Curcumin in Male Rats. 在雄性大鼠体内使用含有间充质基质/干细胞和姜黄素的聚乳酸-共聚乙醇酸与纳米羟基磷灰石支架增强下颌骨修复能力
IF 5.4 2区 医学 Q2 MATERIALS SCIENCE, BIOMATERIALS Pub Date : 2024-11-11 Epub Date: 2024-10-28 DOI: 10.1021/acsbiomaterials.4c00608
Mohamad Mokhtarzadegan, Saba Amini, Aida Iraji, Mehdi Kian, Cambyz Irajie, Seyyed Sajad Daneshi, Shekofeh Abbaspour, Shahrokh Zare, Akram Jamshidzadeh, Ali Feiz, Nadiar M Mussin, Nader Tanideh, Amin Tamadon

This study aimed to investigate the healing effect of a polylactic-co-glycolic acid (PLGA) scaffold containing nanohydroxyapatite (NHA) along with curcumin (CCM), loaded with adipose-derived mesenchymal stem cells (AD-MSCs), on mandibular bone defects. The designed PLGA scaffolds containing NHA were evaluated for their mechanical and structural properties. Forty rats were divided into five groups (n = 8) based on the treatment: Sham, PLGA scaffolds containing NHA, PLGA scaffolds containing NHA + CCM, PLGA scaffolds containing NHA + AD-MSCs, and PLGA scaffolds containing NHA + CCM + AD-MSCs. After 8 weeks' follow-up, mandible bones were isolated for histomorphometry evaluation. Data were analyzed using SPSS version 21, with p-values <0.05 considered statistically significant. SEM evaluation showed that the designed nanocomposite scaffold had 80% porosity. Histomorphometry results indicated a significant difference in osteocyte, osteoblast, bone area, and vascular area parameters in the group treated with scaffolds loaded with AD-MSCs + CCM compared to the other groups (p < 0.05). The PLGA-containing NHA-CCM nanocomposite scaffold demonstrated good porosity and dispersion, suitable for treating bone defects. Rats treated with scaffolds containing AD-MSCs and CCM showed better therapeutic results than the other groups. Further research is needed to evaluate its anti-inflammatory, antioxidant properties, osteogenesis, and therapeutic effects in larger animal models.

本研究旨在探讨一种含有纳米羟基磷灰石(NHA)和姜黄素(CCM)的聚乳酸-聚羟基乙酸(PLGA)支架负载脂肪间充质干细胞(AD-MSCs)对下颌骨缺损的愈合效果。对所设计的含有 NHA 的 PLGA 支架的机械和结构特性进行了评估。40 只大鼠按处理方法分为 5 组(n = 8):假体组、含 NHA 的 PLGA 支架组、含 NHA + CCM 的 PLGA 支架组、含 NHA + AD-MSCs 的 PLGA 支架组和含 NHA + CCM + AD-MSCs 的 PLGA 支架组。随访 8 周后,分离下颌骨进行组织形态学评估。数据使用 SPSS 21 版进行分析,P 值小于 0.05)。含 PLGA 的 NHA-CCM 纳米复合材料支架具有良好的孔隙度和分散性,适合用于治疗骨缺损。用含有 AD-间充质干细胞和 CCM 的支架治疗大鼠的治疗效果优于其他组别。还需要进一步研究,以评估其在更大动物模型中的抗炎、抗氧化特性、成骨和治疗效果。
{"title":"Enhanced Mandibular Bone Repair Using Poly Lactic-<i>co</i>-glycolic Acid Combined with Nanohydroxyapatite Scaffold Loaded by Mesenchymal Stromal/Stem Cells and Curcumin in Male Rats.","authors":"Mohamad Mokhtarzadegan, Saba Amini, Aida Iraji, Mehdi Kian, Cambyz Irajie, Seyyed Sajad Daneshi, Shekofeh Abbaspour, Shahrokh Zare, Akram Jamshidzadeh, Ali Feiz, Nadiar M Mussin, Nader Tanideh, Amin Tamadon","doi":"10.1021/acsbiomaterials.4c00608","DOIUrl":"10.1021/acsbiomaterials.4c00608","url":null,"abstract":"<p><p>This study aimed to investigate the healing effect of a polylactic-<i>co</i>-glycolic acid (PLGA) scaffold containing nanohydroxyapatite (NHA) along with curcumin (CCM), loaded with adipose-derived mesenchymal stem cells (AD-MSCs), on mandibular bone defects. The designed PLGA scaffolds containing NHA were evaluated for their mechanical and structural properties. Forty rats were divided into five groups (<i>n</i> = 8) based on the treatment: Sham, PLGA scaffolds containing NHA, PLGA scaffolds containing NHA + CCM, PLGA scaffolds containing NHA + AD-MSCs, and PLGA scaffolds containing NHA + CCM + AD-MSCs. After 8 weeks' follow-up, mandible bones were isolated for histomorphometry evaluation. Data were analyzed using SPSS version 21, with <i>p</i>-values <0.05 considered statistically significant. SEM evaluation showed that the designed nanocomposite scaffold had 80% porosity. Histomorphometry results indicated a significant difference in osteocyte, osteoblast, bone area, and vascular area parameters in the group treated with scaffolds loaded with AD-MSCs + CCM compared to the other groups (<i>p</i> < 0.05). The PLGA-containing NHA-CCM nanocomposite scaffold demonstrated good porosity and dispersion, suitable for treating bone defects. Rats treated with scaffolds containing AD-MSCs and CCM showed better therapeutic results than the other groups. Further research is needed to evaluate its anti-inflammatory, antioxidant properties, osteogenesis, and therapeutic effects in larger animal models.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":" ","pages":"7043-7053"},"PeriodicalIF":5.4,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142520293","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantum Insights into Partially Molecular Imprinted Microspheres for Anticancer Therapeutics: Experimental and Theoretical Studies. 用于抗癌治疗的部分分子印迹微球的量子洞察:实验和理论研究。
IF 5.4 2区 医学 Q2 MATERIALS SCIENCE, BIOMATERIALS Pub Date : 2024-11-11 Epub Date: 2024-10-04 DOI: 10.1021/acsbiomaterials.4c01249
Sreejith Thrivikraman Nair, Vishnu Vr, Kaladhar Kamalasanan, Aneesh Thankappan Presanna

Drug solubility is a determining factor for controlled release, and solubility-dependent release kinetics can be modified by changing the drug's state in the polymer matrix through partial molecular imprinting (PMI), although research in this area remains limited. This novel PMI approach creates nanocavities within the polymer by partially retaining the imprinting molecule and trapping the drug. Such a method holds promise for developing advanced biomaterial-based drug delivery systems for anticancer therapies. In this study, we developed microspheres designed for anticancer drug delivery utilizing PMI to enhance controlled release properties. Poly(vinyl alcohol) (PVA) microspheres were partially imprinted with aspirin (ASP) to create nanocavities for gemcitabine (GEM) molecules, inducing a polymorphic shift of GEM within the polymer matrix. This novel PMI approach enhanced drug release properties by enabling control over the drug crystallinity and release rate. The PVA-ASP-GEM complex showed zero-order release kinetics, releasing 21.6% of GEM over 48 h, maintaining steady state release profile. In contrast, nonimprinted PVA-GEM microspheres exhibited first-order kinetics with a faster release of 46.85% in the same period. Quantum insights from density functional theory (DFT) calculations revealed the superior stability of the PVA-ASP-GEM complex, with a binding free energy of -56.03 kcal/mol, compared to -29.07 kcal/mol for PVA-GEM. Molecular dynamics (MD) simulations demonstrated that ASP's presence created nanocavities that restricted GEM's movement, further contributing to the controlled release. Experimental validation through differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), X-ray diffraction (XRD), and Raman spectroscopy confirmed the polymorphic transitions within the PVA-ASP-GEM complex. This PMI-based approach offers a promising method for modulating drug release kinetics and improving the stability of anticancer therapeutics, paving the way for innovative biomaterial-based drug delivery systems.

药物溶解度是控制释放的决定性因素,通过部分分子印迹(PMI)改变药物在聚合物基质中的状态,可以改变溶解度依赖性释放动力学,但这一领域的研究仍然有限。这种新颖的部分分子印迹方法通过部分保留印迹分子并截留药物,在聚合物中形成纳米空腔。这种方法有望开发出基于生物材料的先进给药系统,用于抗癌治疗。在本研究中,我们开发了利用 PMI 增强控释特性的抗癌药物递送微球。聚乙烯醇(PVA)微球与阿司匹林(ASP)部分压印,为吉西他滨(GEM)分子创建纳米空腔,诱导 GEM 在聚合物基质中发生多态转变。这种新型 PMI 方法通过控制药物结晶度和释放速率,增强了药物释放特性。PVA-ASP-GEM 复合物显示出零阶释放动力学,在 48 小时内释放出 21.6% 的 GEM,并保持稳定的释放曲线。相比之下,非压印 PVA-GEM 微球表现出一阶动力学,在同一时期内释放速度更快,达到 46.85%。密度泛函理论(DFT)计算的量子洞察力揭示了 PVA-ASP-GEM 复合物的卓越稳定性,其结合自由能为 -56.03 kcal/mol,而 PVA-GEM 的结合自由能为 -29.07 kcal/mol。分子动力学(MD)模拟表明,ASP 的存在产生了纳米空腔,限制了 GEM 的运动,进一步促进了控释。通过差示扫描量热法 (DSC)、热重分析 (TGA)、X 射线衍射 (XRD) 和拉曼光谱进行的实验验证证实了 PVA-ASP-GEM 复合物中的多晶型转变。这种基于 PMI 的方法为调节药物释放动力学和提高抗癌治疗药物的稳定性提供了一种前景广阔的方法,为基于生物材料的创新型给药系统铺平了道路。
{"title":"Quantum Insights into Partially Molecular Imprinted Microspheres for Anticancer Therapeutics: Experimental and Theoretical Studies.","authors":"Sreejith Thrivikraman Nair, Vishnu Vr, Kaladhar Kamalasanan, Aneesh Thankappan Presanna","doi":"10.1021/acsbiomaterials.4c01249","DOIUrl":"10.1021/acsbiomaterials.4c01249","url":null,"abstract":"<p><p>Drug solubility is a determining factor for controlled release, and solubility-dependent release kinetics can be modified by changing the drug's state in the polymer matrix through partial molecular imprinting (PMI), although research in this area remains limited. This novel PMI approach creates nanocavities within the polymer by partially retaining the imprinting molecule and trapping the drug. Such a method holds promise for developing advanced biomaterial-based drug delivery systems for anticancer therapies. In this study, we developed microspheres designed for anticancer drug delivery utilizing PMI to enhance controlled release properties. Poly(vinyl alcohol) (PVA) microspheres were partially imprinted with aspirin (ASP) to create nanocavities for gemcitabine (GEM) molecules, inducing a polymorphic shift of GEM within the polymer matrix. This novel PMI approach enhanced drug release properties by enabling control over the drug crystallinity and release rate. The PVA-ASP-GEM complex showed zero-order release kinetics, releasing 21.6% of GEM over 48 h, maintaining steady state release profile. In contrast, nonimprinted PVA-GEM microspheres exhibited first-order kinetics with a faster release of 46.85% in the same period. Quantum insights from density functional theory (DFT) calculations revealed the superior stability of the PVA-ASP-GEM complex, with a binding free energy of -56.03 kcal/mol, compared to -29.07 kcal/mol for PVA-GEM. Molecular dynamics (MD) simulations demonstrated that ASP's presence created nanocavities that restricted GEM's movement, further contributing to the controlled release. Experimental validation through differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), X-ray diffraction (XRD), and Raman spectroscopy confirmed the polymorphic transitions within the PVA-ASP-GEM complex. This PMI-based approach offers a promising method for modulating drug release kinetics and improving the stability of anticancer therapeutics, paving the way for innovative biomaterial-based drug delivery systems.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":" ","pages":"7005-7017"},"PeriodicalIF":5.4,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142370164","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In Situ Synthesis and Characterizations of a Strontium-Substituted Dicalcium Phosphate Anhydrous/Hydroxyapatite Biphasic Whisker and Its Properties Evaluation. 锶取代的无水磷酸二钙/羟基磷灰石双相晶须的原位合成、表征及其性能评估
IF 5.4 2区 医学 Q2 MATERIALS SCIENCE, BIOMATERIALS Pub Date : 2024-11-11 Epub Date: 2024-10-07 DOI: 10.1021/acsbiomaterials.4c00306
Weiye Du, Yunping Yang, Jinkun Liu, Yan Zhu, Tao Shen, Qinghua Chen, Toshiki Miyazaki

Dicalcium phosphate anhydrous (DCPA) presents good biomineralization ability, the strontium element is known for superior bone affinity, and a whisker possesses good mechanical strength; all these are beneficial for improving the drawbacks of hydroxyapatite (HAP) like weaker mechanical properties, poor biomineralization, and slower degradation/absorption. Therefore, a homogeneous precipitation was adopted to synthesize Sr-substituted and DCPA and HAP coexisting whiskers. The composition, structure, and morphology based on urea dosage and substitution content were characterized, and the roles of DCPA, Sr, and whisker shape were investigated. It turned out that Sr-DCPA/HAP biphasic products contained about 19% DCPA and 81% HAP, and both phases occupied the outer and inner parts of the whisker, respectively. Increasing the urea dosage made the morphology transform from a sea urchin shape to fiber clusters and then whiskers, while Sr substitution brought the whisker back to the porous microsphere shape. Only 5% of Sr content and 15 g of urea could maintain the whisker shape. Sr could promote the proliferation of MC3T3-E1 cells even at a higher extract concentration of 10 mg/mL. The cells stayed in a healthy state whether cocultured with the whisker or the microsphere. The unstable DCPA combined with the decreased crystallinity brought by Sr doping contributed to shortening the apatite deposition period to within 7 days. The whisker morphology enhanced the compressive strength of acrylic resin, and the apatite layer helped to reduce the strength loss during soaking. The Sr-DCPA/HAP biphasic whisker with enhanced overall properties possessed more promising potential for biomedical application.

无水磷酸二钙(DCPA)具有良好的生物矿化能力,锶元素以其卓越的骨亲和性而著称,晶须具有良好的机械强度;所有这些都有利于改善羟基磷灰石(HAP)机械性能较弱、生物矿化能力较差、降解/吸收较慢等缺点。因此,我们采用均相沉淀法合成了锶取代和 DCPA 与 HAP 共存晶须。根据尿素用量和取代含量对晶须的组成、结构和形态进行了表征,并研究了 DCPA、Sr 和晶须形状的作用。结果表明,Sr-DCPA/HAP 双相产物中含有约 19% 的 DCPA 和 81% 的 HAP,两相分别占据晶须的外部和内部。增加尿素用量可使晶须的形态从海胆状转变为纤维簇状,然后再转变为晶须状,而 Sr 替代则可使晶须恢复为多孔微球状。只有 5%的硒含量和 15 克尿素才能保持晶须的形状。即使在 10 毫克/毫升的较高提取物浓度下,硒也能促进 MC3T3-E1 细胞的增殖。无论是与晶须还是微球共培养,细胞都能保持健康状态。不稳定的DCPA加上掺杂锶带来的结晶度降低,有助于将磷灰石沉积期缩短至7天内。晶须形态增强了丙烯酸树脂的抗压强度,而磷灰石层则有助于减少浸泡过程中的强度损失。整体性能增强的 Sr-DCPA/HAP 双相晶须在生物医学应用方面具有更大的潜力。
{"title":"In Situ Synthesis and Characterizations of a Strontium-Substituted Dicalcium Phosphate Anhydrous/Hydroxyapatite Biphasic Whisker and Its Properties Evaluation.","authors":"Weiye Du, Yunping Yang, Jinkun Liu, Yan Zhu, Tao Shen, Qinghua Chen, Toshiki Miyazaki","doi":"10.1021/acsbiomaterials.4c00306","DOIUrl":"10.1021/acsbiomaterials.4c00306","url":null,"abstract":"<p><p>Dicalcium phosphate anhydrous (DCPA) presents good biomineralization ability, the strontium element is known for superior bone affinity, and a whisker possesses good mechanical strength; all these are beneficial for improving the drawbacks of hydroxyapatite (HAP) like weaker mechanical properties, poor biomineralization, and slower degradation/absorption. Therefore, a homogeneous precipitation was adopted to synthesize Sr-substituted and DCPA and HAP coexisting whiskers. The composition, structure, and morphology based on urea dosage and substitution content were characterized, and the roles of DCPA, Sr, and whisker shape were investigated. It turned out that Sr-DCPA/HAP biphasic products contained about 19% DCPA and 81% HAP, and both phases occupied the outer and inner parts of the whisker, respectively. Increasing the urea dosage made the morphology transform from a sea urchin shape to fiber clusters and then whiskers, while Sr substitution brought the whisker back to the porous microsphere shape. Only 5% of Sr content and 15 g of urea could maintain the whisker shape. Sr could promote the proliferation of MC3T3-E1 cells even at a higher extract concentration of 10 mg/mL. The cells stayed in a healthy state whether cocultured with the whisker or the microsphere. The unstable DCPA combined with the decreased crystallinity brought by Sr doping contributed to shortening the apatite deposition period to within 7 days. The whisker morphology enhanced the compressive strength of acrylic resin, and the apatite layer helped to reduce the strength loss during soaking. The Sr-DCPA/HAP biphasic whisker with enhanced overall properties possessed more promising potential for biomedical application.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":" ","pages":"6874-6886"},"PeriodicalIF":5.4,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142379389","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of Hydroxyapatite Nanoparticle Crystallinity and Colloidal Stability on Cytotoxicity. 羟基磷灰石纳米粒子的结晶度和胶体稳定性对细胞毒性的影响
IF 5.4 2区 医学 Q2 MATERIALS SCIENCE, BIOMATERIALS Pub Date : 2024-11-11 Epub Date: 2024-10-07 DOI: 10.1021/acsbiomaterials.4c01283
Lea Andrée, Lucas S Joziasse, Merel J W Adjobo-Hermans, Fang Yang, Rong Wang, Sander C G Leeuwenburgh

Hydroxyapatite nanoparticles (nHA) have gained attention as potential intracellular drug delivery vehicles due to their high binding affinity for various biomolecules and pH-dependent solubility. Yet, the dependence of nHA cytocompatibility on their physicochemical properties remains unclear since numerous studies have revealed starkly contrasting results. These discrepancies may be attributed to differences in size, shape, crystallinity, and aggregation state of nHA, which complicates fundamental understanding of the factors driving nHA cytotoxicity. Here, we hypothesize that nHA cytotoxicity is primarily driven by intracellular calcium levels following the internalization of nHA nanoparticles. By investigating the cytotoxicity of spherical nHA with different crystallinity and dispersity, we find that both lower crystallinity and increased agglomeration of nHA raise cytotoxicity, with nanoparticle agglomeration being the more dominant factor. We show that the internalization of nHA enhances intracellular calcium levels and increases the production of reactive oxygen species (ROS). However, only subtle changes in intracellular calcium are observed, and their physiological relevance remains to be confirmed. In conclusion, we show that nHA agglomeration enhances ROS production and the associated cytotoxicity. These findings provide important guidelines for the future design of nHA-containing formulations for biomedical applications, implying that nHA crystallinity and especially agglomeration should be carefully controlled to optimize biocompatibility and therapeutic efficacy.

羟基磷灰石纳米颗粒(nHA)因其与各种生物大分子的高结合亲和力和随 pH 值变化的溶解性而成为潜在的细胞内药物递送载体,并因此而备受关注。然而,nHA 的细胞相容性对其理化性质的依赖性仍不清楚,因为许多研究都揭示了截然不同的结果。这些差异可能是由于 nHA 的大小、形状、结晶度和聚集状态不同造成的,这使得从根本上理解驱动 nHA 细胞毒性的因素变得更加复杂。在此,我们假设 nHA 细胞毒性主要是由 nHA 纳米颗粒内化后的细胞内钙水平驱动的。通过研究不同结晶度和分散度的球形 nHA 的细胞毒性,我们发现 nHA 结晶度降低和团聚增加都会提高细胞毒性,而纳米粒子团聚是更主要的因素。我们发现,nHA 的内化会提高细胞内的钙水平,并增加活性氧(ROS)的产生。然而,只观察到细胞内钙的微妙变化,其生理相关性仍有待证实。总之,我们的研究表明,nHA 的聚集会增强 ROS 的产生和相关的细胞毒性。这些发现为今后设计生物医学应用中的含 nHA 配方提供了重要指导,意味着应仔细控制 nHA 的结晶度,尤其是聚结,以优化生物相容性和治疗效果。
{"title":"Effect of Hydroxyapatite Nanoparticle Crystallinity and Colloidal Stability on Cytotoxicity.","authors":"Lea Andrée, Lucas S Joziasse, Merel J W Adjobo-Hermans, Fang Yang, Rong Wang, Sander C G Leeuwenburgh","doi":"10.1021/acsbiomaterials.4c01283","DOIUrl":"10.1021/acsbiomaterials.4c01283","url":null,"abstract":"<p><p>Hydroxyapatite nanoparticles (nHA) have gained attention as potential intracellular drug delivery vehicles due to their high binding affinity for various biomolecules and pH-dependent solubility. Yet, the dependence of nHA cytocompatibility on their physicochemical properties remains unclear since numerous studies have revealed starkly contrasting results. These discrepancies may be attributed to differences in size, shape, crystallinity, and aggregation state of nHA, which complicates fundamental understanding of the factors driving nHA cytotoxicity. Here, we hypothesize that nHA cytotoxicity is primarily driven by intracellular calcium levels following the internalization of nHA nanoparticles. By investigating the cytotoxicity of spherical nHA with different crystallinity and dispersity, we find that both lower crystallinity and increased agglomeration of nHA raise cytotoxicity, with nanoparticle agglomeration being the more dominant factor. We show that the internalization of nHA enhances intracellular calcium levels and increases the production of reactive oxygen species (ROS). However, only subtle changes in intracellular calcium are observed, and their physiological relevance remains to be confirmed. In conclusion, we show that nHA agglomeration enhances ROS production and the associated cytotoxicity. These findings provide important guidelines for the future design of nHA-containing formulations for biomedical applications, implying that nHA crystallinity and especially agglomeration should be carefully controlled to optimize biocompatibility and therapeutic efficacy.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":" ","pages":"6964-6973"},"PeriodicalIF":5.4,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11558557/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142379388","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electrohydrodynamic Printing of Microscale Fibrous Scaffolds with a Sinusoidal Structure for Enhancing the Contractility of Cardiomyocytes. 电流体动力打印具有正弦曲线结构的微尺度纤维支架以增强心肌细胞的收缩能力
IF 5.4 2区 医学 Q2 MATERIALS SCIENCE, BIOMATERIALS Pub Date : 2024-11-11 Epub Date: 2024-10-10 DOI: 10.1021/acsbiomaterials.4c00527
Qi Lei, Jinqiao Jia, Xiaomin Guan, Kang Han, Junzheng Liu, Ruxin Duan, Xiaojie Lian, Di Huang

Mimicking the curved collagenous fibers in the cardiac extracellular matrix to fabricate elastic scaffolds in vitro is important for cardiac tissue engineering. Here, we developed sinusoidal polycaprolactone (PCL) fibrous scaffolds with commendable flexibility and elasticity to enhance the contractility of primary cardiomyocytes by employing melt-based electrohydrodynamic (EHD) printing. Microscale sinusoidal PCL fibers with an average diameter of ∼10 μm were printed to mimic the collagenous fibers in the cardiac ECM. The sinusoidal PCL fibrous scaffolds were EHD-printed in a layer-by-layer manner and exhibited outstanding flexibility and elasticity compared with the straight ones. The sinusoidal PCL scaffolds provided an elastic microenvironment for the attaching and spreading of primary cardiomyocytes, which facilitated their synchronous contractive activities. Primary cardiomyocytes also showed improved gene expression and maturation on the sinusoidal PCL scaffolds under electrical stimulation for 5 days. It is envisioned that the proposed flexible fibrous scaffold with biomimetic architecture may serve as a suitable patch for tissue regeneration and repair of damaged hearts after myocardial infarction.

模仿心脏细胞外基质中弯曲的胶原纤维在体外制造弹性支架对心脏组织工程非常重要。在这里,我们利用基于熔体的电流体动力(EHD)打印技术开发出了具有良好柔韧性和弹性的正弦波状聚己内酯(PCL)纤维支架,以增强原代心肌细胞的收缩能力。打印出平均直径为 10 μm 的微尺度正弦波状 PCL 纤维,以模拟心脏 ECM 中的胶原纤维。正弦波状 PCL 纤维支架是以逐层方式进行 EHD 印刷的,与直线型支架相比,它具有出色的柔韧性和弹性。窦状 PCL 支架为原代心肌细胞的附着和扩散提供了弹性微环境,从而促进了它们的同步收缩活动。原代心肌细胞还显示,在持续 5 天的电刺激下,正弦波状 PCL 支架上的基因表达和成熟度均有所提高。设想所提出的具有生物仿生结构的柔性纤维支架可作为心肌梗塞后受损心脏的组织再生和修复的合适补片。
{"title":"Electrohydrodynamic Printing of Microscale Fibrous Scaffolds with a Sinusoidal Structure for Enhancing the Contractility of Cardiomyocytes.","authors":"Qi Lei, Jinqiao Jia, Xiaomin Guan, Kang Han, Junzheng Liu, Ruxin Duan, Xiaojie Lian, Di Huang","doi":"10.1021/acsbiomaterials.4c00527","DOIUrl":"10.1021/acsbiomaterials.4c00527","url":null,"abstract":"<p><p>Mimicking the curved collagenous fibers in the cardiac extracellular matrix to fabricate elastic scaffolds <i>in vitro</i> is important for cardiac tissue engineering. Here, we developed sinusoidal polycaprolactone (PCL) fibrous scaffolds with commendable flexibility and elasticity to enhance the contractility of primary cardiomyocytes by employing melt-based electrohydrodynamic (EHD) printing. Microscale sinusoidal PCL fibers with an average diameter of ∼10 μm were printed to mimic the collagenous fibers in the cardiac ECM. The sinusoidal PCL fibrous scaffolds were EHD-printed in a layer-by-layer manner and exhibited outstanding flexibility and elasticity compared with the straight ones. The sinusoidal PCL scaffolds provided an elastic microenvironment for the attaching and spreading of primary cardiomyocytes, which facilitated their synchronous contractive activities. Primary cardiomyocytes also showed improved gene expression and maturation on the sinusoidal PCL scaffolds under electrical stimulation for 5 days. It is envisioned that the proposed flexible fibrous scaffold with biomimetic architecture may serve as a suitable patch for tissue regeneration and repair of damaged hearts after myocardial infarction.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":" ","pages":"7227-7234"},"PeriodicalIF":5.4,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142398646","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microencapsulation of Bifidobacterium lactis and Lactobacillus plantarum within a Novel Polysaccharide-Based Core-Shell Formulation: Improving Probiotic Viability and Mucoadhesion. 乳双歧杆菌和植物乳杆菌在新型多糖核壳制剂中的微胶囊化:提高益生菌活力和黏附性。
IF 5.4 2区 医学 Q2 MATERIALS SCIENCE, BIOMATERIALS Pub Date : 2024-11-11 Epub Date: 2024-10-07 DOI: 10.1021/acsbiomaterials.4c00852
Timothy Schofield, John Kavanagh, Zhongyan Li, Alexandra O'Donohue, Aaron Schindeler, Fariba Dehghani, Sepehr Talebian, Peter Valtchev

Probiotics health benefits are hampered by long-term storage, gastrointestinal transit, and lack of adequate colonization within the colon. To this end, we have designed a core-shell structure that features an acid resistant core formulation with low water activity composed of alginate, hydroxypropyl methyl cellulose, and gellan gum (AHG) and a mucoadhesive shell made from chemically modified carboxymethyl chitosan with polyethylenimine (PEI-CMC). The structure of the core-shell microparticles was examined using scanning electron microscopy, and rheological measurements confirmed the improved ionic interactions between the core and the shell using the PEI-modified CMC. Simulated release from core-shell microparticles using polystyrene beads showed preferential release under intestinal conditions. PEI-CMC coating yielded improvements in mucoadhesion that was consistent with a positive shift in surface charge of the particles. Ex vivo studies using Bifidobacterium lactis probiotic bacteria demonstrated a 1.1 × 105-fold improvement in bacterial viability with encapsulation under storage conditions of high humidity and temperature (30 °C). When exposed to simulated gastric fluid, encapsulation increased the probiotic viability by 3.0 × 102-fold. In vivo studies utilizing bioluminescent Lactobacillus plantarum in mice revealed that encapsulation extended the duration of the signal within the gut and resulted in higher plate counts in suspensions isolated from the cecum. Conversely, we observed an abrupt loss of signal in the gut of the free probiotic. In conclusion, this core-shell system is suitable for improving probiotic shelf life and maximizing delivery to and retention by the colon.

益生菌的健康益处因长期储存、胃肠道转运和结肠内缺乏足够的定植而受到影响。为此,我们设计了一种核壳结构,其特点是由海藻酸盐、羟丙基甲基纤维素和结冷胶(AHG)组成的具有低水活性的耐酸核心配方,以及由化学改性羧甲基壳聚糖和聚乙烯亚胺(PEI-CMC)制成的粘液粘附性外壳。使用扫描电子显微镜检查了核壳微颗粒的结构,流变测量证实了使用 PEI 改性 CMC 改善了核与壳之间的离子相互作用。使用聚苯乙烯珠模拟核壳微颗粒的释放,结果表明在肠道条件下,核壳微颗粒会优先释放。PEI-CMC 涂层改善了粘液粘附性,这与颗粒表面电荷的正向移动是一致的。使用乳双歧杆菌益生菌进行的体内外研究表明,在高湿度和温度(30 °C)的储存条件下,封装后的细菌存活率提高了 1.1 × 105 倍。当暴露在模拟胃液中时,封装后的益生菌活力提高了 3.0 × 102 倍。利用生物发光植物乳杆菌对小鼠进行的体内研究表明,封装可延长肠道内的信号持续时间,并使从盲肠分离出来的悬浮液中的平板计数更高。相反,我们观察到游离益生菌在肠道内的信号突然消失。总之,这种核壳系统适用于提高益生菌的保质期,最大限度地向结肠输送益生菌并使其保留在结肠中。
{"title":"Microencapsulation of <i>Bifidobacterium lactis</i> and <i>Lactobacillus plantarum</i> within a Novel Polysaccharide-Based Core-Shell Formulation: Improving Probiotic Viability and Mucoadhesion.","authors":"Timothy Schofield, John Kavanagh, Zhongyan Li, Alexandra O'Donohue, Aaron Schindeler, Fariba Dehghani, Sepehr Talebian, Peter Valtchev","doi":"10.1021/acsbiomaterials.4c00852","DOIUrl":"10.1021/acsbiomaterials.4c00852","url":null,"abstract":"<p><p>Probiotics health benefits are hampered by long-term storage, gastrointestinal transit, and lack of adequate colonization within the colon. To this end, we have designed a core-shell structure that features an acid resistant core formulation with low water activity composed of alginate, hydroxypropyl methyl cellulose, and gellan gum (AHG) and a mucoadhesive shell made from chemically modified carboxymethyl chitosan with polyethylenimine (PEI-CMC). The structure of the core-shell microparticles was examined using scanning electron microscopy, and rheological measurements confirmed the improved ionic interactions between the core and the shell using the PEI-modified CMC. Simulated release from core-shell microparticles using polystyrene beads showed preferential release under intestinal conditions. PEI-CMC coating yielded improvements in mucoadhesion that was consistent with a positive shift in surface charge of the particles. Ex vivo studies using <i>Bifidobacterium lactis</i> probiotic bacteria demonstrated a 1.1 × 10<sup>5</sup>-fold improvement in bacterial viability with encapsulation under storage conditions of high humidity and temperature (30 °C). When exposed to simulated gastric fluid, encapsulation increased the probiotic viability by 3.0 × 10<sup>2</sup>-fold. In vivo studies utilizing bioluminescent <i>Lactobacillus plantarum</i> in mice revealed that encapsulation extended the duration of the signal within the gut and resulted in higher plate counts in suspensions isolated from the cecum. Conversely, we observed an abrupt loss of signal in the gut of the free probiotic. In conclusion, this core-shell system is suitable for improving probiotic shelf life and maximizing delivery to and retention by the colon.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":" ","pages":"6903-6914"},"PeriodicalIF":5.4,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142379390","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Purified Astragalus Polysaccharide Combined with Inactivated Vaccine Markedly Prevents Infectious Haematopoietic Necrosis Virus Infection in Rainbow Trout (Oncorhynchus mykiss). 纯化的黄芪多糖与灭活疫苗联合使用可显著预防虹鳟鱼(Oncorhynchus mykiss)感染传染性造血坏死病毒。
IF 5.4 2区 医学 Q2 MATERIALS SCIENCE, BIOMATERIALS Pub Date : 2024-11-11 Epub Date: 2024-10-07 DOI: 10.1021/acsbiomaterials.4c01478
Yucai Pan, Zhe Liu, Jinqiang Quan, Wei Gu, Junwei Wang, Guiyan Zhao, Junhao Lu, Jianfu Wang

Rainbow trout (Oncorhynchus mykiss) is experiencing a catastrophic pandemic. In recent years, infectious hematopoietic necrosis virus (IHNV) has spread nationwide, resulting in significant mortality. Currently, there are no available treatments or vaccines for IHNV in China. Here, the Astragalus extract was purified and characterized. Then, we developed an inactivated IHNV vaccine with purified Astragalus polysaccharide (P-APS) as an adjuvant. Safety assays showed that IHNV was successfully inactivated. After a serious IHNV challenge, the cumulative mortality rates were 76.0, 38.0, and 22.1% in control, vaccine, and P-APS + vaccine groups, respectively. P-APS + vaccine was effective at reducing head kidney damage and apoptosis after IHNV challenge by histopathological and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) analyses. The P-APS + vaccine group showed better results in enhancing specific antibodies (IgM) and immune enzyme activities (C3, LZM, GOT, and GPT). RNA-seq revealed that many immune-related pathways were significantly enriched. TLR2, TLR7, C3, IFN-γ, IgM, MHC1, MHC2, MX1, and VIG1 were identified as core genes based on RNA-seq and PPI networks. Mechanistic investigations showed that P-APS + vaccine activates the immune pathway by upregulating the expression of these genes. P-ASP+vaccine induced effective innate and adaptive immune responses that were stronger than single vaccines after vaccination and IHNV challenged. Our findings will provide a promising vaccine candidate against IHNV.

虹鳟鱼(Oncorhynchus mykiss)正在经历一场灾难性的大流行。近年来,传染性造血坏死病毒(IHNV)在全国范围内蔓延,造成大量死亡。目前,中国还没有针对 IHNV 的治疗方法或疫苗。在此,我们对黄芪提取物进行了纯化和表征。然后,我们以纯化的黄芪多糖(P-APS)为佐剂,开发了一种 IHNV 灭活疫苗。安全性试验表明,IHNV 被成功灭活。经过严重的 IHNV 病毒挑战后,对照组、疫苗组和 P-APS + 疫苗组的累积死亡率分别为 76.0%、38.0% 和 22.1%。通过组织病理学和末端脱氧核苷酸转移酶 dUTP 缺口标记(TUNEL)分析,P-APS + 疫苗能有效减少 IHNV 病毒挑战后的头部肾脏损伤和细胞凋亡。P-APS+疫苗组在增强特异性抗体(IgM)和免疫酶活性(C3、LZM、GOT和GPT)方面表现更佳。RNA-seq显示,许多免疫相关通路被显著富集。根据 RNA-seq 和 PPI 网络,TLR2、TLR7、C3、IFN-γ、IgM、MHC1、MHC2、MX1 和 VIG1 被确定为核心基因。机理研究表明,P-ASP+疫苗通过上调这些基因的表达激活了免疫途径。接种P-ASP+疫苗并受到IHNV挑战后,P-ASP+疫苗能诱导有效的先天性和适应性免疫应答,其效果强于单一疫苗。我们的研究结果将为抗击 IHNV 提供一种前景广阔的候选疫苗。
{"title":"Purified <i>Astragalus</i> Polysaccharide Combined with Inactivated Vaccine Markedly Prevents Infectious Haematopoietic Necrosis Virus Infection in Rainbow Trout (<i>Oncorhynchus mykiss</i>).","authors":"Yucai Pan, Zhe Liu, Jinqiang Quan, Wei Gu, Junwei Wang, Guiyan Zhao, Junhao Lu, Jianfu Wang","doi":"10.1021/acsbiomaterials.4c01478","DOIUrl":"10.1021/acsbiomaterials.4c01478","url":null,"abstract":"<p><p>Rainbow trout (<i>Oncorhynchus mykiss</i>) is experiencing a catastrophic pandemic. In recent years, infectious hematopoietic necrosis virus (IHNV) has spread nationwide, resulting in significant mortality. Currently, there are no available treatments or vaccines for IHNV in China. Here, the <i>Astragalus</i> extract was purified and characterized. Then, we developed an inactivated IHNV vaccine with purified <i>Astragalus</i> polysaccharide (P-APS) as an adjuvant. Safety assays showed that IHNV was successfully inactivated. After a serious IHNV challenge, the cumulative mortality rates were 76.0, 38.0, and 22.1% in control, vaccine, and P-APS + vaccine groups, respectively. P-APS + vaccine was effective at reducing head kidney damage and apoptosis after IHNV challenge by histopathological and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) analyses. The P-APS + vaccine group showed better results in enhancing specific antibodies (IgM) and immune enzyme activities (C3, LZM, GOT, and GPT). RNA-seq revealed that many immune-related pathways were significantly enriched. <i>TLR2</i>, <i>TLR7</i>, <i>C3</i>, <i>IFN-γ</i>, <i>IgM</i>, <i>MHC1</i>, <i>MHC2</i>, <i>MX1</i>, and <i>VIG1</i> were identified as core genes based on RNA-seq and PPI networks. Mechanistic investigations showed that P-APS + vaccine activates the immune pathway by upregulating the expression of these genes. P-ASP+vaccine induced effective innate and adaptive immune responses that were stronger than single vaccines after vaccination and IHNV challenged. Our findings will provide a promising vaccine candidate against IHNV.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":" ","pages":"6938-6953"},"PeriodicalIF":5.4,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142386346","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Iron Single-Atom Nanozyme with Inflammation-Suppressing for Inhibiting Multidrug-Resistant Bacterial Infection and Facilitating Wound Healing. 具有抑制炎症作用的铁单原子纳米酶,可抑制耐多药细菌感染并促进伤口愈合。
IF 5.4 2区 医学 Q2 MATERIALS SCIENCE, BIOMATERIALS Pub Date : 2024-11-11 Epub Date: 2024-10-19 DOI: 10.1021/acsbiomaterials.4c01262
Shiwen Chen, Kaiyan Zhang, Chaoxi Chen, Fan Liu, Lin Zeng, Xiaolong Yang, Xiaofang An, Lu Wang, Tao Dai

Infection with drug-resistant bacteria and the formation of biofilms are the main factors contributing to wound healing insufficiency. Antibacterial agents with enzyme-like properties have exhibited considerable potential for efficient eradication of drug-resistant microorganisms due to their superior sensitivities and minimal side effects. In this work, we prepared a kind of Fe-centered single-atom nanozyme (Fe-SAzyme) with high biocompatibility and stability via a facile one-pot hydrothermal method, which was suitable for the treatment of wounds infected with drug-resistant bacteria. The Fe-SAzyme exhibited remarkable peroxidase-like catalytic activities, catalyzing the conversion of hydrogen peroxide (H2O2) to highly toxic hydroxyl radicals (OH), which could not only damage bacterial cells but also inhibit, disrupt, and eradicate the formation of bacterial biofilms. Thus, Fe-SAzyme demonstrated a broad-spectrum antibacterial performance capable of effectively eliminating multidrug-resistant bacteria. The coexistence of ferrous (Fe2+) and ferric (Fe3+) ions in Fe-SAzyme conferred the nanozyme with anti-inflammatory activity, effectively suppressing excessive inflammation. Meanwhile, Fe-SAzyme could significantly downregulate inflammatory cytokines tumor necrosis factor-α and interleukin-1β and upregulate growth factors VEGF and epidermal growth factor, which can prevent bacterial infection, mitigate inflammation, promote fibroblast proliferation, and improve wound closure. Thus, Fe-SAzyme had shown favorable therapeutic efficiency in promoting bacteria-infected wound healing. This study provides Fe-SAzyme as a promising candidate for the development of new strategies to treat multidrug-resistant bacterial infections.

耐药菌感染和生物膜的形成是导致伤口愈合不良的主要因素。具有类似酶特性的抗菌剂因其卓越的敏感性和最小的副作用,在有效根除耐药微生物方面具有相当大的潜力。在这项工作中,我们通过简便的一锅水热法制备了一种具有高生物相容性和稳定性的铁心单原子纳米酶(Fe-SAzyme),适用于治疗感染耐药菌的伤口。Fe-SAzyme表现出显著的过氧化物酶样催化活性,能催化过氧化氢(H2O2)转化为剧毒的羟自由基(-OH),不仅能破坏细菌细胞,还能抑制、破坏和根除细菌生物膜的形成。因此,Fe-SAzyme 具有广谱抗菌性能,能够有效消灭耐多药细菌。Fe-SAzyme中亚铁离子(Fe2+)和铁离子(Fe3+)的共存赋予了纳米酶抗炎活性,能有效抑制过度炎症。同时,Fe-SAzyme 能显著下调炎症细胞因子肿瘤坏死因子-α 和白细胞介素-1β,上调生长因子血管内皮生长因子和表皮生长因子,从而防止细菌感染,缓解炎症,促进成纤维细胞增殖,改善伤口闭合。因此,Fe-SAzyme 在促进细菌感染伤口愈合方面显示出良好的治疗效果。这项研究为开发治疗耐多药细菌感染的新策略提供了Fe-SAzyme。
{"title":"Iron Single-Atom Nanozyme with Inflammation-Suppressing for Inhibiting Multidrug-Resistant Bacterial Infection and Facilitating Wound Healing.","authors":"Shiwen Chen, Kaiyan Zhang, Chaoxi Chen, Fan Liu, Lin Zeng, Xiaolong Yang, Xiaofang An, Lu Wang, Tao Dai","doi":"10.1021/acsbiomaterials.4c01262","DOIUrl":"10.1021/acsbiomaterials.4c01262","url":null,"abstract":"<p><p>Infection with drug-resistant bacteria and the formation of biofilms are the main factors contributing to wound healing insufficiency. Antibacterial agents with enzyme-like properties have exhibited considerable potential for efficient eradication of drug-resistant microorganisms due to their superior sensitivities and minimal side effects. In this work, we prepared a kind of Fe-centered single-atom nanozyme (Fe-SAzyme) with high biocompatibility and stability via a facile one-pot hydrothermal method, which was suitable for the treatment of wounds infected with drug-resistant bacteria. The Fe-SAzyme exhibited remarkable peroxidase-like catalytic activities, catalyzing the conversion of hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) to highly toxic hydroxyl radicals (<sup>•</sup>OH), which could not only damage bacterial cells but also inhibit, disrupt, and eradicate the formation of bacterial biofilms. Thus, Fe-SAzyme demonstrated a broad-spectrum antibacterial performance capable of effectively eliminating multidrug-resistant bacteria. The coexistence of ferrous (Fe<sup>2+</sup>) and ferric (Fe<sup>3+</sup>) ions in Fe-SAzyme conferred the nanozyme with anti-inflammatory activity, effectively suppressing excessive inflammation. Meanwhile, Fe-SAzyme could significantly downregulate inflammatory cytokines tumor necrosis factor-α and interleukin-1β and upregulate growth factors VEGF and epidermal growth factor, which can prevent bacterial infection, mitigate inflammation, promote fibroblast proliferation, and improve wound closure. Thus, Fe-SAzyme had shown favorable therapeutic efficiency in promoting bacteria-infected wound healing. This study provides Fe-SAzyme as a promising candidate for the development of new strategies to treat multidrug-resistant bacterial infections.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":" ","pages":"7206-7216"},"PeriodicalIF":5.4,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142453192","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Targeting Synovial Macrophages with Astaxanthin-Loaded Liposomes for Antioxidant Treatment of Osteoarthritis. 用虾青素脂质体靶向滑膜巨噬细胞抗氧化治疗骨关节炎
IF 5.4 2区 医学 Q2 MATERIALS SCIENCE, BIOMATERIALS Pub Date : 2024-11-11 Epub Date: 2024-10-16 DOI: 10.1021/acsbiomaterials.4c00998
Linlin Zhao, Liangxiao Li, Yingyu Zhang, Ziye He, Xin Chen, Yingying Liu, Bin Shi, Yajun Liu

Osteoarthritis (OA) is a chronic joint disease highly associated with an imbalance in the network of inflammatory factors and typically characterized by oxidative stress and cartilage damage. Moreover, the specificity of the joint structure makes it difficult for drugs to achieve good penetration and effective enrichment in the joint cavity. Therefore, therapeutic strategies that increase the specific targeting of drugs to inflammatory joint and incorporate antioxidative stress effects are important to improve the efficacy of OA. Here, we developed a folic acid-modified liposomal nanoparticle (AST@Lip-FA) loaded with the antioxidant astaxanthin (AST) to enhance the water solubility and stability of AST and to target the delivery of AST to the site of OA, leading to a significant improvement in therapeutic efficacy. In vitro experiments demonstrated that, due to the recognition by FA of the receptor folate receptor β on the surface of activated macrophages, the cellular uptake efficiency of AST@Lip-FA was increased. Meanwhile, intracellularly overexpressed inflammatory mediators such as reactive oxygen species and nitric oxide were efficiently removed by AST@Lip-FA. In addition, in the ACLT-induced OA mouse model, AST@Lip-FA was precisely enriched in the inflamed joints and achieved long-term retention, fully utilizing the anti-inflammatory, antioxidant, and cartilage-protecting effects of AST to effectively alleviate the progression of OA. In summary, AST@Lip-FA has an important prospect as a potential and effective therapeutic strategy for OA.

骨关节炎(OA)是一种慢性关节疾病,与炎症因子网络失衡密切相关,其典型特征是氧化应激和软骨损伤。此外,由于关节结构的特殊性,药物很难在关节腔内实现良好的渗透和有效的富集。因此,增加药物对炎症关节的特异性靶向作用并结合抗氧化应激效应的治疗策略对提高 OA 的疗效非常重要。在此,我们开发了一种叶酸修饰的脂质体纳米颗粒(AST@Lip-FA),其中装载了抗氧化剂虾青素(AST),以提高AST的水溶性和稳定性,并将AST靶向递送至OA部位,从而显著提高疗效。体外实验表明,由于FA能识别活化巨噬细胞表面的叶酸受体β,AST@Lip-FA的细胞摄取效率得以提高。同时,AST@Lip-FA 能有效清除细胞内过度表达的炎症介质,如活性氧和一氧化氮。此外,在 ACLT 诱导的 OA 小鼠模型中,AST@Lip-FA 被精确地富集在炎症关节中并实现了长期保留,充分利用了 AST 的抗炎、抗氧化和软骨保护作用,有效地缓解了 OA 的进展。总之,AST@Lip-FA 作为一种潜在而有效的 OA 治疗策略具有重要的前景。
{"title":"Targeting Synovial Macrophages with Astaxanthin-Loaded Liposomes for Antioxidant Treatment of Osteoarthritis.","authors":"Linlin Zhao, Liangxiao Li, Yingyu Zhang, Ziye He, Xin Chen, Yingying Liu, Bin Shi, Yajun Liu","doi":"10.1021/acsbiomaterials.4c00998","DOIUrl":"10.1021/acsbiomaterials.4c00998","url":null,"abstract":"<p><p>Osteoarthritis (OA) is a chronic joint disease highly associated with an imbalance in the network of inflammatory factors and typically characterized by oxidative stress and cartilage damage. Moreover, the specificity of the joint structure makes it difficult for drugs to achieve good penetration and effective enrichment in the joint cavity. Therefore, therapeutic strategies that increase the specific targeting of drugs to inflammatory joint and incorporate antioxidative stress effects are important to improve the efficacy of OA. Here, we developed a folic acid-modified liposomal nanoparticle (AST@Lip-FA) loaded with the antioxidant astaxanthin (AST) to enhance the water solubility and stability of AST and to target the delivery of AST to the site of OA, leading to a significant improvement in therapeutic efficacy. In vitro experiments demonstrated that, due to the recognition by FA of the receptor folate receptor β on the surface of activated macrophages, the cellular uptake efficiency of AST@Lip-FA was increased. Meanwhile, intracellularly overexpressed inflammatory mediators such as reactive oxygen species and nitric oxide were efficiently removed by AST@Lip-FA. In addition, in the ACLT-induced OA mouse model, AST@Lip-FA was precisely enriched in the inflamed joints and achieved long-term retention, fully utilizing the anti-inflammatory, antioxidant, and cartilage-protecting effects of AST to effectively alleviate the progression of OA. In summary, AST@Lip-FA has an important prospect as a potential and effective therapeutic strategy for OA.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":" ","pages":"7191-7205"},"PeriodicalIF":5.4,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142453197","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
ACS Biomaterials Science & Engineering
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1