Pub Date : 2024-11-11Epub Date: 2024-10-22DOI: 10.1021/acsbiomaterials.4c01431
Aakash Patel, Marnie Williams, Kenneth Hawkins, Leandro Gallo, Marcella Grillo, Nesar Akanda, Xiufang Guo, Stephen Lambert, James J Hickman
Myelination and the formation of nodes of Ranvier are essential for the rapid conduction of nerve impulses along axons in the peripheral nervous system (PNS). While many animal-based and serum-containing models of peripheral myelination have been developed, these have limited ability when it comes to studying genetic disorders affecting peripheral myelination. We report a fully induced pluripotent stem cell (iPSC)-derived human model of peripheral myelination using Schwann cells (SCs) and motoneurons, cultured in a serum-free medium on patterned and nonpatterned surfaces. Results demonstrated iPSC-derived SC-expressed early growth response protein 2 (Egr2), a key transcription factor for myelination, and after ∼30 days in coculture, hallmark features of myelination, including myelin segment and node of Ranvier formation, were observed. Myelin segments were stained for the myelin basic protein, which surrounded neurofilament-stained motoneuron axons. Clusters of voltage-gated sodium channels flanked by paranodal protein contactin-associated protein 1, indicating node of Ranvier formation, were also observed. High-resolution confocal microscopy allowed for 3D reconstruction and measurement of myelin g-ratios of myelin segments, with an average g-ratio of 0.67, consistent with reported values in the literature, indicating mature myelin segment formation. This iPSC-based model of peripheral myelination provides a platform to investigate numerous PNS diseases, including Charcot-Marie Tooth disorder, Guillian-Barre syndrome, chronic inflammatory demyelinating polyneuropathy, and antimyelin-associated glycoprotein peripheral neuropathy, with the potential for greater translatability to humans for improving the applicability for drug-screening programs.
{"title":"Establishment of a Serum-Free Human iPSC-Derived Model of Peripheral Myelination.","authors":"Aakash Patel, Marnie Williams, Kenneth Hawkins, Leandro Gallo, Marcella Grillo, Nesar Akanda, Xiufang Guo, Stephen Lambert, James J Hickman","doi":"10.1021/acsbiomaterials.4c01431","DOIUrl":"10.1021/acsbiomaterials.4c01431","url":null,"abstract":"<p><p>Myelination and the formation of nodes of Ranvier are essential for the rapid conduction of nerve impulses along axons in the peripheral nervous system (PNS). While many animal-based and serum-containing models of peripheral myelination have been developed, these have limited ability when it comes to studying genetic disorders affecting peripheral myelination. We report a fully induced pluripotent stem cell (iPSC)-derived human model of peripheral myelination using Schwann cells (SCs) and motoneurons, cultured in a serum-free medium on patterned and nonpatterned surfaces. Results demonstrated iPSC-derived SC-expressed early growth response protein 2 (Egr2), a key transcription factor for myelination, and after ∼30 days in coculture, hallmark features of myelination, including myelin segment and node of Ranvier formation, were observed. Myelin segments were stained for the myelin basic protein, which surrounded neurofilament-stained motoneuron axons. Clusters of voltage-gated sodium channels flanked by paranodal protein contactin-associated protein 1, indicating node of Ranvier formation, were also observed. High-resolution confocal microscopy allowed for 3D reconstruction and measurement of myelin g-ratios of myelin segments, with an average g-ratio of 0.67, consistent with reported values in the literature, indicating mature myelin segment formation. This iPSC-based model of peripheral myelination provides a platform to investigate numerous PNS diseases, including Charcot-Marie Tooth disorder, Guillian-Barre syndrome, chronic inflammatory demyelinating polyneuropathy, and antimyelin-associated glycoprotein peripheral neuropathy, with the potential for greater translatability to humans for improving the applicability for drug-screening programs.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":" ","pages":"7132-7143"},"PeriodicalIF":5.4,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11558563/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142490986","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-11Epub Date: 2024-09-23DOI: 10.1021/acsbiomaterials.4c00905
Masood Ali, Sarika Namjoshi, Khanh Phan, Xiaoxin Wu, Indira Prasadam, Heather A E Benson, Tushar Kumeria, Yousuf Mohammed
3D printing of microneedles (μNDs) for transdermal therapy has the potential to enable patient personalization based on the target disease, site of application, and dosage requirements. To convert this concept to reality, it is necessary that the 3D printing technology can deliver high resolution, an affordable cost, and large print volumes. With the introduction of benchtop 4K and 8K 3D printers, it is now possible to manufacture medical devices like μNDs at sufficient resolution and low cost. In this research, we systematically optimized the 3D printing design parameters such as resin viscosity, print angle, layer height, and curing time to generate customizable μNDs. We have also developed an innovative 3D coating microtank device to optimize the coating method. We have applied this to the development of novel μNDs to deliver an established NAD+ precursor molecule, nicotinamide mononucleotide (NMN). A methacrylate-based polymer photoresin (eSun resin) was diluted with methanol to adjust the resin viscosity. The 3D print layer height of 25 μm yielded a smooth surface, thus reducing edge-ridge mismatches. Printing μNDs at 90° to the print platform yielded 84.28 ± 2.158% (n = 5) of the input height thus increasing the tip sharpness (48.52 ± 10.43 μm, n = 5). The formulation containing fluorescein (model molecule), sucrose (viscosity modifier), and Tween-20 (surface tension modifier) was coated on the μNDs using the custom designed microtank setup, and the amount deposited was determined fluorescently. The dye-coated μND arrays inserted into human skin (in vitro) showed a fluorescence signal at a depth of 150 μm (n = 3) into the skin. After optimization of the 3D printing parameters and coating protocol using fluorescein, NMN was coated onto the μNDs, and its diffusion was assessed in full-thickness human skin in vitro using a Franz diffusion setup. Approximately 189 ± 34.5 μg (5× dipped coated μNDs) of NMN permeated through the skin and 41.2 ± 7.53 μg was left in the skin after 24 h. Multiphoton microscopy imaging of NMN-coated μND treated mouse ear skin ex vivo demonstrated significantly (p < 0.05) increased free-unbound NADPH and reduced fluorescence lifetime of NADPH, both of which are indicative of cellular metabolic rates. Our study demonstrates that low-cost benchtop 3D printers can be used to print high-fidelity μNDs with the ability to rapidly coat and release NMN which consequently caused changes in intracellular NAD+ levels.
{"title":"3D Printed Microneedles for the Transdermal Delivery of NAD<sup>+</sup> Precursor: Toward Personalization of Skin Delivery.","authors":"Masood Ali, Sarika Namjoshi, Khanh Phan, Xiaoxin Wu, Indira Prasadam, Heather A E Benson, Tushar Kumeria, Yousuf Mohammed","doi":"10.1021/acsbiomaterials.4c00905","DOIUrl":"10.1021/acsbiomaterials.4c00905","url":null,"abstract":"<p><p>3D printing of microneedles (μNDs) for transdermal therapy has the potential to enable patient personalization based on the target disease, site of application, and dosage requirements. To convert this concept to reality, it is necessary that the 3D printing technology can deliver high resolution, an affordable cost, and large print volumes. With the introduction of benchtop 4K and 8K 3D printers, it is now possible to manufacture medical devices like μNDs at sufficient resolution and low cost. In this research, we systematically optimized the 3D printing design parameters such as resin viscosity, print angle, layer height, and curing time to generate customizable μNDs. We have also developed an innovative 3D coating microtank device to optimize the coating method. We have applied this to the development of novel μNDs to deliver an established NAD<sup>+</sup> precursor molecule, nicotinamide mononucleotide (NMN). A methacrylate-based polymer photoresin (eSun resin) was diluted with methanol to adjust the resin viscosity. The 3D print layer height of 25 μm yielded a smooth surface, thus reducing edge-ridge mismatches. Printing μNDs at 90° to the print platform yielded 84.28 ± 2.158% (<i>n</i> = 5) of the input height thus increasing the tip sharpness (48.52 ± 10.43 μm, <i>n</i> = 5). The formulation containing fluorescein (model molecule), sucrose (viscosity modifier), and Tween-20 (surface tension modifier) was coated on the μNDs using the custom designed microtank setup, and the amount deposited was determined fluorescently. The dye-coated μND arrays inserted into human skin (<i>in vitro</i>) showed a fluorescence signal at a depth of 150 μm (<i>n</i> = 3) into the skin. After optimization of the 3D printing parameters and coating protocol using fluorescein, NMN was coated onto the μNDs, and its diffusion was assessed in full-thickness human skin <i>in vitro</i> using a Franz diffusion setup. Approximately 189 ± 34.5 μg (5× dipped coated μNDs) of NMN permeated through the skin and 41.2 ± 7.53 μg was left in the skin after 24 h. Multiphoton microscopy imaging of NMN-coated μND treated mouse ear skin <i>ex vivo</i> demonstrated significantly (<i>p</i> < 0.05) increased free-unbound NADPH and reduced fluorescence lifetime of NADPH, both of which are indicative of cellular metabolic rates. Our study demonstrates that low-cost benchtop 3D printers can be used to print high-fidelity μNDs with the ability to rapidly coat and release NMN which consequently caused changes in intracellular NAD<sup>+</sup> levels.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":" ","pages":"7235-7255"},"PeriodicalIF":5.4,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142306506","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-11Epub Date: 2024-10-10DOI: 10.1021/acsbiomaterials.4c00939
Ana Ximena Monroy-Romero, Brenda Nieto-Rivera, Wenjin Xiao, Mathieu Hautefeuille
Microvascular engineering seeks to exploit known cell-cell and cell-matrix interactions in the context of vasculogenesis to restore homeostasis or disease development of reliable capillary models in vitro. However, current systems generally focus on recapitulating microvessels embedded in thick gels of extracellular matrix, overlooking the significance of discontinuous capillaries, which play a vital role in tissue-blood exchanges particularly in organs like the liver. In this work, we introduce a novel method to stimulate the spontaneous organization of endothelial cells into nonembedded microvessels. By creating an anisotropic micropattern at the edge of a development-like matrix dome using Marangoni flow, we achieved a long, nonrandom orientation of endothelial cells, laying a premise for stable lumenized microvessels. Our findings revealed a distinctive morphogenetic process leading to mature lumenized capillaries, demonstrated with both murine and human immortalized liver sinusoidal endothelial cell lines (LSECs). The progression of cell migration, proliferation, and polarization was clearly guided by the pattern, initiating the formation of a multicellular cord that caused a deformation spanning extensive regions and generated a wave-like folding of the gel, hinged at a laminin-depleted zone, enveloping the cord with gel proteins. This event marked the onset of lumenogenesis, regulated by the gradual apico-basal polarization of the wrapped cells, leading to the maturation of vessel tight junctions, matrix remodeling, and ultimately the formation of a lumen─recapitulating the development of vessels in vivo. Furthermore, we demonstrate that the process strongly relies on the initial gel edge topography, while the geometry of the vessels can be tuned from a curved to a straight structure. We believe that our facile engineering method, guiding an autonomous self-organization of vessels without the need for supporting cells or complex prefabricated scaffolds, holds promise for future integration into microphysiological systems featuring discontinuous, fenestrated capillaries.
{"title":"Microvascular Engineering for the Development of a Nonembedded Liver Sinusoid with a Lumen: When Endothelial Cells Do Not Lose Their Edge.","authors":"Ana Ximena Monroy-Romero, Brenda Nieto-Rivera, Wenjin Xiao, Mathieu Hautefeuille","doi":"10.1021/acsbiomaterials.4c00939","DOIUrl":"10.1021/acsbiomaterials.4c00939","url":null,"abstract":"<p><p>Microvascular engineering seeks to exploit known cell-cell and cell-matrix interactions in the context of vasculogenesis to restore homeostasis or disease development of reliable capillary models in vitro. However, current systems generally focus on recapitulating microvessels embedded in thick gels of extracellular matrix, overlooking the significance of discontinuous capillaries, which play a vital role in tissue-blood exchanges particularly in organs like the liver. In this work, we introduce a novel method to stimulate the spontaneous organization of endothelial cells into nonembedded microvessels. By creating an anisotropic micropattern at the edge of a development-like matrix dome using Marangoni flow, we achieved a long, nonrandom orientation of endothelial cells, laying a premise for stable lumenized microvessels. Our findings revealed a distinctive morphogenetic process leading to mature lumenized capillaries, demonstrated with both murine and human immortalized liver sinusoidal endothelial cell lines (LSECs). The progression of cell migration, proliferation, and polarization was clearly guided by the pattern, initiating the formation of a multicellular cord that caused a deformation spanning extensive regions and generated a wave-like folding of the gel, hinged at a laminin-depleted zone, enveloping the cord with gel proteins. This event marked the onset of lumenogenesis, regulated by the gradual apico-basal polarization of the wrapped cells, leading to the maturation of vessel tight junctions, matrix remodeling, and ultimately the formation of a lumen─recapitulating the development of vessels <i>in vivo</i>. Furthermore, we demonstrate that the process strongly relies on the initial gel edge topography, while the geometry of the vessels can be tuned from a curved to a straight structure. We believe that our facile engineering method, guiding an autonomous self-organization of vessels without the need for supporting cells or complex prefabricated scaffolds, holds promise for future integration into microphysiological systems featuring discontinuous, fenestrated capillaries.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":" ","pages":"7054-7072"},"PeriodicalIF":5.4,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142398647","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-11Epub Date: 2024-10-09DOI: 10.1021/acsbiomaterials.4c01154
Qianyu Lin, Pei Lin Chee, Jaime J M Pang, Xian Jun Loh, Dan Kai, Jason Y C Lim
As materials engineered to interact with biological systems for medical purposes, polymeric biomedical materials have revolutionized and are indispensable in modern healthcare. However, aging populations and improving healthcare standards worldwide have resulted in ever-increasing demands for such biomaterials. Currently, many clinically used polymers are derived from nonrenewable petroleum resources, thus spurring the need for exploring alternatives for the next generation of sustainable biomaterials. Other than biomass, this Perspective also spotlights carbon dioxide and postuse plastics as viable resources potentially suitable for biomaterial production. For each alternative feedstock, key recent developments and practical considerations are discussed, including emerging biomaterial applications, possible feedstock sources, and hindrances toward translation and practical adoption. Other than replacements for petroleum-derived polymers, we explore how utilization of these alternatives capitalizes on their intrinsic physiochemical and material properties to achieve their desired therapeutic effects. We hope that this Perspective can stimulate further development in sustainable biomaterials to achieve practical therapeutic benefits as part of a circular materials economy with minimal environmental impact.
{"title":"Sustainable Polymeric Biomaterials from Alternative Feedstocks.","authors":"Qianyu Lin, Pei Lin Chee, Jaime J M Pang, Xian Jun Loh, Dan Kai, Jason Y C Lim","doi":"10.1021/acsbiomaterials.4c01154","DOIUrl":"10.1021/acsbiomaterials.4c01154","url":null,"abstract":"<p><p>As materials engineered to interact with biological systems for medical purposes, polymeric biomedical materials have revolutionized and are indispensable in modern healthcare. However, aging populations and improving healthcare standards worldwide have resulted in ever-increasing demands for such biomaterials. Currently, many clinically used polymers are derived from nonrenewable petroleum resources, thus spurring the need for exploring alternatives for the next generation of sustainable biomaterials. Other than biomass, this Perspective also spotlights carbon dioxide and postuse plastics as viable resources potentially suitable for biomaterial production. For each alternative feedstock, key recent developments and practical considerations are discussed, including emerging biomaterial applications, possible feedstock sources, and hindrances toward translation and practical adoption. Other than replacements for petroleum-derived polymers, we explore how utilization of these alternatives capitalizes on their intrinsic physiochemical and material properties to achieve their desired therapeutic effects. We hope that this Perspective can stimulate further development in sustainable biomaterials to achieve practical therapeutic benefits as part of a circular materials economy with minimal environmental impact.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":" ","pages":"6751-6765"},"PeriodicalIF":5.4,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142386347","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
"Soft" hydrogel-based macroporous scaffolds have been widely used in tissue engineering and drug delivery applications due to their hydrated interfaces and macroporous structures, but have drawbacks related to their weak mechanics and often weak adhesion to cells. In contrast, "hard" poly(caprolactone) (PCL) electrospun fibrous networks have desirable mechanical strength and ductility but offer minimal interfacial hydration and thus limited capacity for cell proliferation. Herein, we demonstrate the fabrication of interpenetrating nanofibrous networks based on coelectrospun PCL and poly(oligoethylene glycol methacrylate) (POEGMA) nanofibers that exhibit the mechanical benefits of PCL but the interfacial hydration benefits of hydrogels. The electrospinning process results in partially aligned but interpenetrating fiber network with minimal internal phase separation, leading to anisotropic but strong mechanical properties even in the hydrated state; apparent ultimate tensile strengths of the swollen scaffolds ranged from 429 ± 39 kPa in the direction of fiber alignment (longitudinal) to 86 ± 25 kPa perpendicular to fiber alignment (cross-longitudinal), typical of PCL-based scaffolds and enabling efficient suture retention in different directions. However, contact angle measurements indicate hydrogel-like interfacial properties due to the presence of the interpenetrating POEGMA network. C2C12 myoblast proliferation in the PCL-POEGMA scaffolds was 50% higher than that observed on PCL-only scaffolds, a result attributed to the presence of the more hydrophilic POEGMA interpenetrating nanofiber network. Overall, this method is demonstrated to represent a facile single-step strategy to fabricate strong macroporous but still interfacially hydrophilic scaffolds for tissue engineering applications.
{"title":"Electrospun \"Hard-Soft\" Interpenetrating Nanofibrous Tissue Scaffolds Facilitating Enhanced Mechanical Strength and Cell Proliferation.","authors":"Samaneh Toufanian, Mya Sharma, Fei Xu, Seyed Saeid Tayebi, Christina McCabe, Elaina Piliouras, Todd Hoare","doi":"10.1021/acsbiomaterials.4c00650","DOIUrl":"10.1021/acsbiomaterials.4c00650","url":null,"abstract":"<p><p>\"Soft\" hydrogel-based macroporous scaffolds have been widely used in tissue engineering and drug delivery applications due to their hydrated interfaces and macroporous structures, but have drawbacks related to their weak mechanics and often weak adhesion to cells. In contrast, \"hard\" poly(caprolactone) (PCL) electrospun fibrous networks have desirable mechanical strength and ductility but offer minimal interfacial hydration and thus limited capacity for cell proliferation. Herein, we demonstrate the fabrication of interpenetrating nanofibrous networks based on coelectrospun PCL and poly(oligoethylene glycol methacrylate) (POEGMA) nanofibers that exhibit the mechanical benefits of PCL but the interfacial hydration benefits of hydrogels. The electrospinning process results in partially aligned but interpenetrating fiber network with minimal internal phase separation, leading to anisotropic but strong mechanical properties even in the hydrated state; apparent ultimate tensile strengths of the swollen scaffolds ranged from 429 ± 39 kPa in the direction of fiber alignment (longitudinal) to 86 ± 25 kPa perpendicular to fiber alignment (cross-longitudinal), typical of PCL-based scaffolds and enabling efficient suture retention in different directions. However, contact angle measurements indicate hydrogel-like interfacial properties due to the presence of the interpenetrating POEGMA network. C2C12 myoblast proliferation in the PCL-POEGMA scaffolds was 50% higher than that observed on PCL-only scaffolds, a result attributed to the presence of the more hydrophilic POEGMA interpenetrating nanofiber network. Overall, this method is demonstrated to represent a facile single-step strategy to fabricate strong macroporous but still interfacially hydrophilic scaffolds for tissue engineering applications.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":" ","pages":"6887-6902"},"PeriodicalIF":5.4,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142378831","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-11Epub Date: 2024-10-19DOI: 10.1021/acsbiomaterials.4c01611
Huiquan Wu, Feng Xu, Hang Jin, Mingcheng Xue, Wangzihan Zhang, Jianhui Yang, Junyi Huang, Yuqing Jiang, Bin Qiu, Bin Lin, Qiang Gao, Songyue Chen, Daoheng Sun
Three-dimensional (3D) bioprinting technology stands out as a promising tissue manufacturing process to control the geometry precisely with cell-loaded bioinks. However, the isotropic culture environment within the bioink and the lack of topographical cues impede the formation of oriented cardiac tissue. To overcome this limitation, we present a novel method named 3D nanofiber-assisted embedded bioprinting (3D-NFEP) to fabricate cardiac tissue with an oriented morphology. Aligned 3D nanofiber scaffolds were fabricated by divergence electrospinning, which provided structural support for printing of the low-viscosity bioink and structural induction to cardiomyocytes. Cells adhered to the aligned fibers after hydrogel degradation, and a high degree of cell alignment was observed. This technology was also demonstrated as a feasible solution for multilayer cell printing. Therefore, 3D-NFEP was demonstrated as a promising method for bioprinting oriented cardiac tissue with low-viscosity bioink and is expected to be applied for structured and cardiac tissue engineering.
{"title":"3D Nanofiber-Assisted Embedded Extrusion Bioprinting for Oriented Cardiac Tissue Fabrication.","authors":"Huiquan Wu, Feng Xu, Hang Jin, Mingcheng Xue, Wangzihan Zhang, Jianhui Yang, Junyi Huang, Yuqing Jiang, Bin Qiu, Bin Lin, Qiang Gao, Songyue Chen, Daoheng Sun","doi":"10.1021/acsbiomaterials.4c01611","DOIUrl":"10.1021/acsbiomaterials.4c01611","url":null,"abstract":"<p><p>Three-dimensional (3D) bioprinting technology stands out as a promising tissue manufacturing process to control the geometry precisely with cell-loaded bioinks. However, the isotropic culture environment within the bioink and the lack of topographical cues impede the formation of oriented cardiac tissue. To overcome this limitation, we present a novel method named 3D nanofiber-assisted embedded bioprinting (3D-NFEP) to fabricate cardiac tissue with an oriented morphology. Aligned 3D nanofiber scaffolds were fabricated by divergence electrospinning, which provided structural support for printing of the low-viscosity bioink and structural induction to cardiomyocytes. Cells adhered to the aligned fibers after hydrogel degradation, and a high degree of cell alignment was observed. This technology was also demonstrated as a feasible solution for multilayer cell printing. Therefore, 3D-NFEP was demonstrated as a promising method for bioprinting oriented cardiac tissue with low-viscosity bioink and is expected to be applied for structured and cardiac tissue engineering.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":" ","pages":"7256-7265"},"PeriodicalIF":5.4,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142453185","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-11Epub Date: 2024-10-17DOI: 10.1021/acsbiomaterials.4c01643
Xin Duan, Bingjian Xue, Zimeng Xu, Zixu Niu
Photodynamic therapy (PDT) has been widely used in the clinical therapy of various tumors, especially superficial tumors. However, the tumor microenvironment presents hypoxia, as well as the inherent antioxidant system (e.g., Nrf2) of tumor cells limits the therapeutic outcomes. Herein, a cascade-responsive "oxidative stress amplifier" (named EZ@TD) is designed by encapsulating manganese-doped carbon dots acting as a photosensitizer and catalase (CAT)-like nanozyme within pH-sensitive ZIF-8 and Zn2+-activated DNAzyme for relieving hypoxia and efficient Nrf2 gene disruption to enhance PDT. It is demonstrated that EZ@TD synergistically inhibited tumor growth and activated the antitumor immune response by inhibiting the Nrf2/ARE signaling pathway in tumors. We provide a new paradigm for amplifying intracellular oxidative stress by interfering with various signaling pathways.
{"title":"Multimodal Photodynamic Therapy by Inhibiting the Nrf2/ARE Signaling Pathway in Tumors.","authors":"Xin Duan, Bingjian Xue, Zimeng Xu, Zixu Niu","doi":"10.1021/acsbiomaterials.4c01643","DOIUrl":"10.1021/acsbiomaterials.4c01643","url":null,"abstract":"<p><p>Photodynamic therapy (PDT) has been widely used in the clinical therapy of various tumors, especially superficial tumors. However, the tumor microenvironment presents hypoxia, as well as the inherent antioxidant system (e.g., Nrf2) of tumor cells limits the therapeutic outcomes. Herein, a cascade-responsive \"oxidative stress amplifier\" (named EZ@TD) is designed by encapsulating manganese-doped carbon dots acting as a photosensitizer and catalase (CAT)-like nanozyme within pH-sensitive ZIF-8 and Zn<sup>2+</sup>-activated DNAzyme for relieving hypoxia and efficient Nrf2 gene disruption to enhance PDT. It is demonstrated that EZ@TD synergistically inhibited tumor growth and activated the antitumor immune response by inhibiting the Nrf2/ARE signaling pathway in tumors. We provide a new paradigm for amplifying intracellular oxidative stress by interfering with various signaling pathways.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":" ","pages":"7018-7029"},"PeriodicalIF":5.4,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142453193","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-11Epub Date: 2024-10-30DOI: 10.1021/acsbiomaterials.4c00268
Ye Zhu, Yong Jiang, Qian Cao, Hongchi Liu, Lei Lei, Tianmin Guan
Porous implant prostheses can effectively reduce the stress shielding effect. Still, the single elastic modulus prosthesis cannot adapt to the individual skeletal variability, so it is necessary to optimize the structural parameters of the prosthesis to overcome the individual variability. In this regard, this study analyzes the law of structural parameters and mechanical properties after selecting the type of porous structure (diamond structure). It proposes the optimization method of the structural parameters on this basis. First, the functional relationship equations between the unit mass of the porous implant prosthesis, the elastic modulus of the porous implant prosthesis, and the structural parameters were established respectively. Second, the support rod length and radius of the porous implant prosthesis are optimized by a genetic algorithm to form the optimization design method of the porous implant prosthesis. Finally, the feasibility and effectiveness of the optimized design of the porosity implanted prosthesis were verified by animal experiments, and the optimized implanted prosthesis with optimized structural parameters increased bone growth by 20-30% compared to the control group in the animal body. The proposed method provides a theoretical basis and technical support for the rehabilitation of patients and the production of prostheses by physicians.
{"title":"Study on Optimization of the Structural Mechanical Properties of Personalized Porous Implant Prosthesis.","authors":"Ye Zhu, Yong Jiang, Qian Cao, Hongchi Liu, Lei Lei, Tianmin Guan","doi":"10.1021/acsbiomaterials.4c00268","DOIUrl":"10.1021/acsbiomaterials.4c00268","url":null,"abstract":"<p><p>Porous implant prostheses can effectively reduce the stress shielding effect. Still, the single elastic modulus prosthesis cannot adapt to the individual skeletal variability, so it is necessary to optimize the structural parameters of the prosthesis to overcome the individual variability. In this regard, this study analyzes the law of structural parameters and mechanical properties after selecting the type of porous structure (diamond structure). It proposes the optimization method of the structural parameters on this basis. First, the functional relationship equations between the unit mass of the porous implant prosthesis, the elastic modulus of the porous implant prosthesis, and the structural parameters were established respectively. Second, the support rod length and radius of the porous implant prosthesis are optimized by a genetic algorithm to form the optimization design method of the porous implant prosthesis. Finally, the feasibility and effectiveness of the optimized design of the porosity implanted prosthesis were verified by animal experiments, and the optimized implanted prosthesis with optimized structural parameters increased bone growth by 20-30% compared to the control group in the animal body. The proposed method provides a theoretical basis and technical support for the rehabilitation of patients and the production of prostheses by physicians.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":" ","pages":"6954-6963"},"PeriodicalIF":5.4,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142542764","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The P53 gene is commonly mutated in breast cancer, protein based the gene as anticancer drugs could provide efficient and stable advantages by restoring the function of the wild-type P53 protein. In this study, we describe the creation and utilization of a micelle composed by natural phycocyanin and paclitaxel and grafting anti-HER2 (PPH), which effectively packages and transports recombinant P53 protein with anti-ER (PE), resulting in a new entity designated as PE@PPH, to address localization obstacles and modify cellular tropism to the cell membrane or nucleus. The results indicate that PE@PPH has strong antitumor properties, even at low doses of PTX both in vitro and in vivo. These findings suggest that PE@PPH could be an enhancing micelle for delivering therapeutic proteins and promoting protein functional recovery, particularly in addressing the challenges posed by tumor heterogeneity in breast cancer.
{"title":"Natural Phycocyanin/Paclitaxel Micelle Delivery of Therapeutic P53 to Activate Apoptosis for HER2 or ER Positive Breast Cancer Therapy.","authors":"Ling-Kun Zhang, Yuan Li, Limin Zhai, Yunzhi Tang, Yuxuan Jiao, Yitong Mei, Runcai Yang, Rong You, Liang Yin, He Ni, Jian Ge, Yan-Qing Guan","doi":"10.1021/acsbiomaterials.4c00756","DOIUrl":"10.1021/acsbiomaterials.4c00756","url":null,"abstract":"<p><p>The <i>P53</i> gene is commonly mutated in breast cancer, protein based the gene as anticancer drugs could provide efficient and stable advantages by restoring the function of the wild-type P53 protein. In this study, we describe the creation and utilization of a micelle composed by natural phycocyanin and paclitaxel and grafting anti-HER2 (PPH), which effectively packages and transports recombinant P53 protein with anti-ER (PE), resulting in a new entity designated as PE@PPH, to address localization obstacles and modify cellular tropism to the cell membrane or nucleus. The results indicate that PE@PPH has strong antitumor properties, even at low doses of PTX both <i>in vitro</i> and <i>in vivo</i>. These findings suggest that PE@PPH could be an enhancing micelle for delivering therapeutic proteins and promoting protein functional recovery, particularly in addressing the challenges posed by tumor heterogeneity in breast cancer.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":" ","pages":"6995-7004"},"PeriodicalIF":5.4,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142398648","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In response to the challenges faced by clinicians treating bone defects caused by various factors, various bone repair materials have been investigated, but the efficiency of bone healing still needs to be improved due to the acting of scaffolds only in a single stage of bone tissue regeneration. We investigated the potential of a novel 3D scaffold to support different stages of bone tissue regeneration, including initial inflammation, proliferation, and remodeling. Eu (0, 0.5, 2, 3.5, 5, and 6.5%) was added to calcium polyphosphate to obtain 3D porous network-doped Eu calcium polyphosphate (EuCPP) scaffolds with ideal mechanical strength and pore size. Both in vitro and in vivo experiments proved that Eu3+ released from 5% EuCPP scaffolds could significantly promote the migration and proliferation of bone marrow stromal cells which effectively promote angiogenesis; 5% EuCPP could significantly upregulate the ratio of OPG/RANKL in MC3T3-E1 and promote the secretion of osteogenic-related growth factors (ALP and OPN) from MC3T3-E1, indicating the potential of the scaffold to inhibit bone resorption and promote bone formation. In conclusion, 5% EuCPP possesses the biological properties of pro-angiogenesis, anti-inflammation, pro-osteogenesis, and inhibiting bone resorption, which may provide a sustained positive effect throughout the process of bone tissue repair.
为了应对临床医生治疗各种因素造成的骨缺损所面临的挑战,人们研究了各种骨修复材料,但由于支架仅作用于骨组织再生的单一阶段,骨愈合的效率仍有待提高。我们研究了一种新型三维支架支持骨组织再生不同阶段(包括初始炎症、增殖和重塑)的潜力。将 Eu(0、0.5、2、3.5、5 和 6.5%)添加到聚磷酸钙中,获得了具有理想机械强度和孔径的多孔网络掺杂 Eu 聚磷酸钙(EuCPP)三维支架。体外和体内实验均证明,5% EuCPP支架释放的Eu3+能显著促进骨髓基质细胞的迁移和增殖,有效促进血管生成;5% EuCPP能显著上调MC3T3-E1中OPG/RANKL的比例,促进MC3T3-E1分泌成骨相关生长因子(ALP和OPN),表明该支架具有抑制骨吸收和促进骨形成的潜力。总之,5% EuCPP 具有促进血管生成、抗炎、促进骨生成和抑制骨吸收的生物学特性,可在整个骨组织修复过程中发挥持续的积极作用。
{"title":"Europium-Doped 3D Dimensional Porous Calcium Phosphate Scaffolds as a Strategy for Facilitating the Comprehensive Regeneration of Bone Tissue: In Vitro and In Vivo.","authors":"Shaoxiong Feng, Xu Peng, Yuchong Wu, Ningning Lei, Can Cheng, Yiqing Deng, Xixun Yu","doi":"10.1021/acsbiomaterials.4c01067","DOIUrl":"10.1021/acsbiomaterials.4c01067","url":null,"abstract":"<p><p>In response to the challenges faced by clinicians treating bone defects caused by various factors, various bone repair materials have been investigated, but the efficiency of bone healing still needs to be improved due to the acting of scaffolds only in a single stage of bone tissue regeneration. We investigated the potential of a novel 3D scaffold to support different stages of bone tissue regeneration, including initial inflammation, proliferation, and remodeling. Eu (0, 0.5, 2, 3.5, 5, and 6.5%) was added to calcium polyphosphate to obtain 3D porous network-doped Eu calcium polyphosphate (EuCPP) scaffolds with ideal mechanical strength and pore size. Both in vitro and in vivo experiments proved that Eu<sup>3+</sup> released from 5% EuCPP scaffolds could significantly promote the migration and proliferation of bone marrow stromal cells which effectively promote angiogenesis; 5% EuCPP could significantly upregulate the ratio of OPG/RANKL in MC3T3-E1 and promote the secretion of osteogenic-related growth factors (ALP and OPN) from MC3T3-E1, indicating the potential of the scaffold to inhibit bone resorption and promote bone formation. In conclusion, 5% EuCPP possesses the biological properties of pro-angiogenesis, anti-inflammation, pro-osteogenesis, and inhibiting bone resorption, which may provide a sustained positive effect throughout the process of bone tissue repair.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":" ","pages":"7086-7099"},"PeriodicalIF":5.4,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142370163","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}