Sexual conflict is widespread among sexually reproducing organisms. Phenotypic plasticity in female resistance traits has the potential to moderate the harm imposed by males during mating, yet female plasticity has rarely been explored. In this experiment, we investigated whether female seed beetles invest more in immunocompetence, measured as phenoloxidase (PO) capacity, when exposed to cues signalling a greater risk of sexual conflict. Risk perception was manipulated by housing focal individuals alone or with a companion as developing larvae, followed by exposure to a mating-free male- or female-biased social environment when adults. We predicted that females exposed to cues of increased sexual conflict would have increased PO capacity. However, PO capacity did not differ between either larval or adult social treatments. Our results suggest that females may not perceive a risk to their fitness on the basis of increased male presence or are unable to adjust this aspect of their phenotype in response to that risk.
Several animal species prefer consonant over dissonant sounds, a building block of musical scales and harmony. Could consonance and dissonance be linked, beyond music, to the emotional valence of vocalizations? We extracted the fundamental frequency from calls of young chickens with either positive or negative emotional valence, i.e. contact, brood and food calls. For each call, we calculated the frequency ratio between the maximum and the minimum values of the fundamental frequency, and we investigated which frequency ratios occurred with higher probability. We found that, for all call types, the most frequent ratios matched perfect consonance, like an arpeggio in pop music. These music-like intervals, based on the auditory frequency resolution of chicks, cannot be miscategorized into contiguous dissonant intervals. When we analysed frequency ratio distributions at a finer-grained level, we found some dissonant ratios in the contact calls produced during distress only, thus sounding a bit jazzy. Complementing the empirical data, our computational simulations suggest that physiological constraints can only partly explain both consonances and dissonances in chicks' phonation. Our data add to the mounting evidence that the building blocks of human musical traits can be found in several species, even phylogenetically distant from us.
Natural populations are subject to selection caused by a range of biotic and abiotic factors in their native habitats. Identifying these agents of selection and quantifying their effects is key to understanding how populations adapt to local conditions. We performed a factorial reciprocal-transplant experiment using locally adapted ecotypes of Arabidopsis thaliana at their native sites to distinguish the contributions of adaptation to soil type and climate. Overall adaptive differentiation was strong at both sites. However, we found only very small differences in the strength of selection on local and non-local soil, and adaptation to soil type at most constituted only a few per cent of overall adaptive differentiation. These results indicate that local climatic conditions rather than soil type are the primary driver of adaptive differentiation between these ecotypes.
As the avian embryo grows and develops within the egg, its metabolic rate gradually increases. Obligate avian brood-parasitic birds lay their eggs in the nests of other species to avoid the costs of parental care, and all but one of these brood-parasitic species are altricial at hatching. Yet the chicks of some altricial brood-parasitic species perform the physically demanding task of evicting, stabbing or otherwise killing host progeny within days of hatching. This implies a need for high metabolic rates in the embryo, just as precocial species require. Using flow-through respirometry in situ, we investigated embryonic metabolic rates in diverse avian brood parasite lineages which either kill host offspring (high virulence) or share the nest with host young (low virulence). High-virulence brood parasite embryos exhibited higher overall metabolic rates than both non-parasitic (parental) species and low-virulence parasites. This was driven by significantly elevated metabolic rates around the halfway point of incubation. Additionally, a fine-scale analysis of the embryos of a host-parasitic pair showed faster increases in metabolic rates in the parasite. Together these results suggest that the metabolic patterns of the embryos of high-virulence parasites facilitate their early-life demands.