Pub Date : 2020-10-09DOI: 10.1186/s12881-020-01139-2
Hui Yang, Xindie Zhou, Dongmei Xu, Gang Chen
Background: This case-control study aims to examine the association between the Interleukin-6 (IL-6) rs12700386 polymorphism and the increased risk of developing osteoarthritis (OA) in the knee in the Chinese Han population.
Methods: We extracted DNA from 763 subjects (352 OA patients and 411 healthy controls). The relative expression levels of IL-6 in blood samples of patients with knee OA was determined by quantitative reverse transcription PCR (qRT-PCR) and polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP) was used for genotyping the IL-6 gene polymorphism.
Results: We found that the IL-6 polymorphism rs12700386 enhanced patient susceptibility to developing knee OA. Based on a subgroup analysis, the risk of developing knee OA was elevated in smokers, drinkers, and subjects ≥55 years old or with BMI ≥ 25 kg/m2. The combination of smoking, drinking, and having the rs12700386 genotype led to an increase in the risk of developing knee OA, indicating that an underlying interaction between gene and environment exists. The rs12700386 genotype was found to be correlated with an increase in IL-6 expression. We also found that IL-6 levels were significantly higher in the CC genotype compared to the GG genotype carriers in OA patients.
Conclusion: These data suggest that the rs12700386 polymorphism in the IL-6 gene leads to an increase in the risk of knee OA in Chinese Han individuals.
{"title":"The IL-6 rs12700386 polymorphism is associated with an increased risk of developing osteoarthritis in the knee in the Chinese Han population: a case-control study.","authors":"Hui Yang, Xindie Zhou, Dongmei Xu, Gang Chen","doi":"10.1186/s12881-020-01139-2","DOIUrl":"https://doi.org/10.1186/s12881-020-01139-2","url":null,"abstract":"<p><strong>Background: </strong>This case-control study aims to examine the association between the Interleukin-6 (IL-6) rs12700386 polymorphism and the increased risk of developing osteoarthritis (OA) in the knee in the Chinese Han population.</p><p><strong>Methods: </strong>We extracted DNA from 763 subjects (352 OA patients and 411 healthy controls). The relative expression levels of IL-6 in blood samples of patients with knee OA was determined by quantitative reverse transcription PCR (qRT-PCR) and polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP) was used for genotyping the IL-6 gene polymorphism.</p><p><strong>Results: </strong>We found that the IL-6 polymorphism rs12700386 enhanced patient susceptibility to developing knee OA. Based on a subgroup analysis, the risk of developing knee OA was elevated in smokers, drinkers, and subjects ≥55 years old or with BMI ≥ 25 kg/m<sup>2</sup>. The combination of smoking, drinking, and having the rs12700386 genotype led to an increase in the risk of developing knee OA, indicating that an underlying interaction between gene and environment exists. The rs12700386 genotype was found to be correlated with an increase in IL-6 expression. We also found that IL-6 levels were significantly higher in the CC genotype compared to the GG genotype carriers in OA patients.</p><p><strong>Conclusion: </strong>These data suggest that the rs12700386 polymorphism in the IL-6 gene leads to an increase in the risk of knee OA in Chinese Han individuals.</p>","PeriodicalId":9015,"journal":{"name":"BMC Medical Genetics","volume":" ","pages":"199"},"PeriodicalIF":0.0,"publicationDate":"2020-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s12881-020-01139-2","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38567765","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-10-09DOI: 10.1186/s12881-020-01136-5
Natalia Wawrusiewicz-Kurylonek, Adam Jacek Krętowski, Renata Posmyk
Background: Thrombophilia is a hypercoagulable state that may have a genetic basis (inherited) or can be acquired. It is a multifactorial condition and only the mutual interactions between the environment and genes may lead to the development of clinical manifestation. This state is the main factor promoting venous (rarely arterial) thromboembolism (VTE). Inherited thrombophilia is mainly associated with two pathogenic variants in the V coagulation factor (FV) and the prothrombin (FII) genes. The aim of our study was to evaluate the frequency of two pathogenic variants in FII and FV genes as inherited thrombophilia factors in a group within the Polish population in comparison with other described populations.
Methods: All studied groups consisted of 633 unrelated patients aged between 18 and 70. Individuals in the research group come from the Podlasie region of Poland. Genotyping of FII and FV variants was performed using the 7900HT Fast Real-Time PCR System and were genotyped by TaqMan assay.
Results: The pathogenic allele frequency for A allele was 0.03 (3%) and 0.07 (7%) for FII and FV genes, respectively. The GA/AA genotypes (c.*97G > A variant) were observed in only 33 (5.03%) individuals in the studied group. Additionally, the frequency of GA/AA genotypes was over 17.4% in the coagulation factor V. Co-incidence of heterozygous genotype GA of variants FII and FV genes was observed in only 4 subjects.
Conclusion: The FII gene variant shown in our study is less frequent than in other European countries (about 6%). In contrast, the A allele of the FV gene occurs with a frequency similar to that of Northern, Central and South Central Europe (about 5%).
{"title":"Frequency of thrombophilia associated genes variants: population-based study.","authors":"Natalia Wawrusiewicz-Kurylonek, Adam Jacek Krętowski, Renata Posmyk","doi":"10.1186/s12881-020-01136-5","DOIUrl":"10.1186/s12881-020-01136-5","url":null,"abstract":"<p><strong>Background: </strong>Thrombophilia is a hypercoagulable state that may have a genetic basis (inherited) or can be acquired. It is a multifactorial condition and only the mutual interactions between the environment and genes may lead to the development of clinical manifestation. This state is the main factor promoting venous (rarely arterial) thromboembolism (VTE). Inherited thrombophilia is mainly associated with two pathogenic variants in the V coagulation factor (FV) and the prothrombin (FII) genes. The aim of our study was to evaluate the frequency of two pathogenic variants in FII and FV genes as inherited thrombophilia factors in a group within the Polish population in comparison with other described populations.</p><p><strong>Methods: </strong>All studied groups consisted of 633 unrelated patients aged between 18 and 70. Individuals in the research group come from the Podlasie region of Poland. Genotyping of FII and FV variants was performed using the 7900HT Fast Real-Time PCR System and were genotyped by TaqMan assay.</p><p><strong>Results: </strong>The pathogenic allele frequency for A allele was 0.03 (3%) and 0.07 (7%) for FII and FV genes, respectively. The GA/AA genotypes (c.*97G > A variant) were observed in only 33 (5.03%) individuals in the studied group. Additionally, the frequency of GA/AA genotypes was over 17.4% in the coagulation factor V. Co-incidence of heterozygous genotype GA of variants FII and FV genes was observed in only 4 subjects.</p><p><strong>Conclusion: </strong>The FII gene variant shown in our study is less frequent than in other European countries (about 6%). In contrast, the A allele of the FV gene occurs with a frequency similar to that of Northern, Central and South Central Europe (about 5%).</p>","PeriodicalId":9015,"journal":{"name":"BMC Medical Genetics","volume":" ","pages":"198"},"PeriodicalIF":0.0,"publicationDate":"2020-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s12881-020-01136-5","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38476394","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-10-08DOI: 10.1186/s12881-020-01135-6
Qing Liu, Mengling Liu, Tianshu Liu, Yiyi Yu
Background: Juvenile polyposis syndrome (JPS) is a rare autosomal dominant hereditary disorder characterized by the development of multiple distinct juvenile polyps in the gastrointestinal tract with an increased risk of colorectal cancer. Germline mutations in two genes, SMAD4 and BMPR1A, have been identified to cause JPS.
Case presentation: Here, we report a germline heterozygous missense variant (c.299G > A) in exon 3 BMPR1A gene in a family with juvenile polyposis. This variant was absent from the population database, and concluded as de novo compared with the parental sequencing. Further sequencing of the proband's children confirmed the segregation of this variant with the disease, while the variant was also predicted to have damaging effect based on online prediction tools. Therefore, this variant was classified as likely pathogenic according to the American College of Medical Genetics and Genomics (ACMG) guidelines.
Conclusions: Germline genetic testing revealed a de novo germline missense variant in BMPR1A gene in a family with juvenile polyposis. Identification of the pathogenic variant facilitates the cancer risk management of at-risk family members, and endoscopic surveillance is recommended for mutation carriers.
{"title":"Familial juvenile polyposis syndrome with a de novo germline missense variant in BMPR1A gene: a case report.","authors":"Qing Liu, Mengling Liu, Tianshu Liu, Yiyi Yu","doi":"10.1186/s12881-020-01135-6","DOIUrl":"https://doi.org/10.1186/s12881-020-01135-6","url":null,"abstract":"<p><strong>Background: </strong>Juvenile polyposis syndrome (JPS) is a rare autosomal dominant hereditary disorder characterized by the development of multiple distinct juvenile polyps in the gastrointestinal tract with an increased risk of colorectal cancer. Germline mutations in two genes, SMAD4 and BMPR1A, have been identified to cause JPS.</p><p><strong>Case presentation: </strong>Here, we report a germline heterozygous missense variant (c.299G > A) in exon 3 BMPR1A gene in a family with juvenile polyposis. This variant was absent from the population database, and concluded as de novo compared with the parental sequencing. Further sequencing of the proband's children confirmed the segregation of this variant with the disease, while the variant was also predicted to have damaging effect based on online prediction tools. Therefore, this variant was classified as likely pathogenic according to the American College of Medical Genetics and Genomics (ACMG) guidelines.</p><p><strong>Conclusions: </strong>Germline genetic testing revealed a de novo germline missense variant in BMPR1A gene in a family with juvenile polyposis. Identification of the pathogenic variant facilitates the cancer risk management of at-risk family members, and endoscopic surveillance is recommended for mutation carriers.</p>","PeriodicalId":9015,"journal":{"name":"BMC Medical Genetics","volume":" ","pages":"196"},"PeriodicalIF":0.0,"publicationDate":"2020-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s12881-020-01135-6","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38473020","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-10-02DOI: 10.1186/s12881-020-01117-8
Wei Guo, Yanguo Zhao, Shuwei Li, Jingqun Wang, Xiang Liu
Background: Kabuki syndrome (KS) is a rare congenital condition with cardinal manifestations of typical facial features, developmental delays, skeletal anomalies, abnormal dermatoglyphic presentations, and mild to moderate intellectual disability. Pathogenic variants in two epigenetic modifier genes, KMT2D and KDM6A, are responsible for KS1 and KS2, respectively.
Case presentation: A Chinese girl had persistent neonatal hypoglycemia and Dandy-Walker variant. Whole-exome sequencing identified a novel single nucleotide deletion in KMT2D (NM_003482.3 c.12165del p.(Glu4056Serfs*10)) that caused frameshift and premature termination. The mutation was de novo. According to the American College of Medical Genetics and Genomics (ACMG) guidelines, this variant is considered pathogenic. The patient was diagnosed with KS by molecular testing.
Conclusion: A single novel mutation in KMT2D was identified in a KS patients with hypoglycemia and Dandy-Walker variant in the neonatal stage. A molecular test was conducted to diagnose KS at an early stage.
{"title":"Hypoglycemia and Dandy-Walker variant in a Kabuki syndrome patient: a case report.","authors":"Wei Guo, Yanguo Zhao, Shuwei Li, Jingqun Wang, Xiang Liu","doi":"10.1186/s12881-020-01117-8","DOIUrl":"https://doi.org/10.1186/s12881-020-01117-8","url":null,"abstract":"<p><strong>Background: </strong>Kabuki syndrome (KS) is a rare congenital condition with cardinal manifestations of typical facial features, developmental delays, skeletal anomalies, abnormal dermatoglyphic presentations, and mild to moderate intellectual disability. Pathogenic variants in two epigenetic modifier genes, KMT2D and KDM6A, are responsible for KS1 and KS2, respectively.</p><p><strong>Case presentation: </strong>A Chinese girl had persistent neonatal hypoglycemia and Dandy-Walker variant. Whole-exome sequencing identified a novel single nucleotide deletion in KMT2D (NM_003482.3 c.12165del p.(Glu4056Serfs*10)) that caused frameshift and premature termination. The mutation was de novo. According to the American College of Medical Genetics and Genomics (ACMG) guidelines, this variant is considered pathogenic. The patient was diagnosed with KS by molecular testing.</p><p><strong>Conclusion: </strong>A single novel mutation in KMT2D was identified in a KS patients with hypoglycemia and Dandy-Walker variant in the neonatal stage. A molecular test was conducted to diagnose KS at an early stage.</p>","PeriodicalId":9015,"journal":{"name":"BMC Medical Genetics","volume":" ","pages":"193"},"PeriodicalIF":0.0,"publicationDate":"2020-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s12881-020-01117-8","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38543562","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: Alagille syndrome is an autosomal dominant disorder usually caused by pathogenic variants of the JAG1 gene. In the past, cholestasis was a condition sine qua non for diagnosis of the syndrome. However, recent advancements in genetic testing have revealed that clinical presentations vary from lack of symptoms, to multiorgan involvement. Tetralogy of Fallot, the most frequent complex congenital heart defect in Alagille Syndrome, very rarely leads to renal failure requiring dialysis - there are only single reports of such cases in the literature, with none of them in Alagille Syndrome.
Case presentation: A 41-year-old woman suffering from cyanosis, dyspnea and plethora was admitted to the hospital. The patient suffered from chronic kidney disease and tetralogy of Fallot and had been treated palliatively with Blalock-Taussig shunts in the past; at admission, only minimal flow through the left shunt was preserved. These symptoms, together with impaired mental status and dysmorphic facial features, led to extensive clinical and genetic testing including whole exome sequencing. A previously unknown missense variant c.587G > A within the JAG1 gene was identified. As there were no signs of cholestasis, and subclinical liver involvement was only suggested by elevated alkaline phosphatase levels, the patient was diagnosed with incomplete Alagille Syndrome. End-stage renal disease required introduction of renal replacement therapy. Continuous ambulatory peritoneal dialysis was chosen and the patient's quality of life significantly increased. However, after refusal of further treatment, the patient died at the age of 45.
Conclusions: Tetralogy of Fallot should always urge clinicians to evaluate for Alagille Syndrome and offer patients early nephrological care. Although tetralogy of Fallot rarely leads to end-stage renal disease requiring dialysis, if treated palliatively and combined with renal dysplasia (typical of Alagille Syndrome), it can result in severe renal failure as in the presented case. There is no standard treatment for such cases, but based on our experience, peritoneal dialysis is worth consideration. Finally, clinical criteria for the diagnosis of Alagille Syndrome require revision. Previously, diagnosis was based on cholestasis - however, cardiovascular anomalies are found to be more prevalent. Furthermore, the criteria do not include renal impairment, which is also common.
背景:Alagille综合征是一种常染色体显性遗传病,通常由JAG1基因的致病性变异引起。在过去,胆汁淤积是诊断该综合征的必要条件。然而,基因检测的最新进展表明,临床表现各不相同,从缺乏症状到多器官受累。法洛四联症(Fallot Tetralogy of Fallot)是Alagille综合征中最常见的复杂先天性心脏缺陷,很少导致需要透析的肾衰竭——文献中只有单一的此类病例报道,没有一例发生在Alagille综合征中。病例介绍:一名41岁女性因紫绀、呼吸困难和呼吸过多而入院。患者患有慢性肾脏疾病和法洛四联症,过去曾用Blalock-Taussig分流术姑息治疗;入院时,只有极少的血流通过左侧分流。这些症状,加上精神状态受损和面部畸形,导致广泛的临床和基因检测,包括全外显子组测序。在JAG1基因中发现了一种以前未知的错义变异c.587G > A。由于没有胆汁淤积的迹象,并且仅通过碱性磷酸酶水平升高提示亚临床肝脏受累,因此诊断为不完全Alagille综合征。终末期肾病需要引入肾脏替代治疗。选择持续腹膜透析,患者的生活质量明显提高。然而,在拒绝进一步治疗后,患者在45岁时死亡。结论:法洛四联症应始终督促临床医师对Alagille综合征进行评估,并给予患者早期肾病护理。虽然法洛四联症很少导致需要透析的终末期肾脏疾病,但如果姑息治疗并合并肾脏发育不良(典型的Alagille综合征),就会导致严重的肾功能衰竭,正如本病例所示。这种情况没有标准的治疗方法,但根据我们的经验,腹膜透析是值得考虑的。最后,诊断Alagille综合征的临床标准需要修订。以前,诊断是基于胆汁淤积-然而,发现心血管异常更为普遍。此外,标准不包括肾脏损害,这也是常见的。
{"title":"Peritoneal dialysis in an adult patient with tetralogy of Fallot diagnosed with incomplete Alagille syndrome.","authors":"Malgorzata Ponikowska, Agnieszka Pollak, Ewa Kotwica-Strzalek, Dorota Brodowska-Kania, Magdalena Mosakowska, Rafal Ploski, Stanislaw Niemczyk","doi":"10.1186/s12881-020-01134-7","DOIUrl":"https://doi.org/10.1186/s12881-020-01134-7","url":null,"abstract":"<p><strong>Background: </strong>Alagille syndrome is an autosomal dominant disorder usually caused by pathogenic variants of the JAG1 gene. In the past, cholestasis was a condition sine qua non for diagnosis of the syndrome. However, recent advancements in genetic testing have revealed that clinical presentations vary from lack of symptoms, to multiorgan involvement. Tetralogy of Fallot, the most frequent complex congenital heart defect in Alagille Syndrome, very rarely leads to renal failure requiring dialysis - there are only single reports of such cases in the literature, with none of them in Alagille Syndrome.</p><p><strong>Case presentation: </strong>A 41-year-old woman suffering from cyanosis, dyspnea and plethora was admitted to the hospital. The patient suffered from chronic kidney disease and tetralogy of Fallot and had been treated palliatively with Blalock-Taussig shunts in the past; at admission, only minimal flow through the left shunt was preserved. These symptoms, together with impaired mental status and dysmorphic facial features, led to extensive clinical and genetic testing including whole exome sequencing. A previously unknown missense variant c.587G > A within the JAG1 gene was identified. As there were no signs of cholestasis, and subclinical liver involvement was only suggested by elevated alkaline phosphatase levels, the patient was diagnosed with incomplete Alagille Syndrome. End-stage renal disease required introduction of renal replacement therapy. Continuous ambulatory peritoneal dialysis was chosen and the patient's quality of life significantly increased. However, after refusal of further treatment, the patient died at the age of 45.</p><p><strong>Conclusions: </strong>Tetralogy of Fallot should always urge clinicians to evaluate for Alagille Syndrome and offer patients early nephrological care. Although tetralogy of Fallot rarely leads to end-stage renal disease requiring dialysis, if treated palliatively and combined with renal dysplasia (typical of Alagille Syndrome), it can result in severe renal failure as in the presented case. There is no standard treatment for such cases, but based on our experience, peritoneal dialysis is worth consideration. Finally, clinical criteria for the diagnosis of Alagille Syndrome require revision. Previously, diagnosis was based on cholestasis - however, cardiovascular anomalies are found to be more prevalent. Furthermore, the criteria do not include renal impairment, which is also common.</p>","PeriodicalId":9015,"journal":{"name":"BMC Medical Genetics","volume":" ","pages":"195"},"PeriodicalIF":0.0,"publicationDate":"2020-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s12881-020-01134-7","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38446646","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: Schizophrenia is a severe, heritable, and refractory psychiatric disorder. Several studies have shown that the disrupted in schizophrenia 1 (DISC1) gene is closely associated with schizophrenia by its role in neuronal morphology, synaptic function, brain development, and dopamine homeostasis etc. This study intended to investigate the expression levels of DISC1 gene in schizophrenia patients compared with healthy controls, and the expression variation of DISC1 gene before and after antipsychotic treatment in schizophrenia patients.
Methods: In this study, we compared DISC1 expression levels in blood of 48 healthy controls, and 32 schizophrenia patients before and after 12 weeks of antipsychotic treatment using real-time quantitative PCR (RT-qPCR) analysis.
Results: The expression levels of DISC1 gene in peripheral blood mononuclear cells of schizophrenia patients before antipsychotic treatment were higher than those in healthy controls (P < 0.01); whereas after antipsychotic treatment, the expression levels of DISC1 gene in peripheral blood mononuclear cells of schizophrenia patients still remained increased (P < 0.01).
Conclusions: Our study provided further support for the involvement of DISC1 in the development of schizophrenia.
{"title":"Altered expression of the DISC1 gene in peripheral blood of patients with schizophrenia.","authors":"Xiaoqian Fu, Guofu Zhang, Yansong Liu, Ling Zhang, Fuquan Zhang, Conghua Zhou","doi":"10.1186/s12881-020-01132-9","DOIUrl":"https://doi.org/10.1186/s12881-020-01132-9","url":null,"abstract":"<p><strong>Background: </strong>Schizophrenia is a severe, heritable, and refractory psychiatric disorder. Several studies have shown that the disrupted in schizophrenia 1 (DISC1) gene is closely associated with schizophrenia by its role in neuronal morphology, synaptic function, brain development, and dopamine homeostasis etc. This study intended to investigate the expression levels of DISC1 gene in schizophrenia patients compared with healthy controls, and the expression variation of DISC1 gene before and after antipsychotic treatment in schizophrenia patients.</p><p><strong>Methods: </strong>In this study, we compared DISC1 expression levels in blood of 48 healthy controls, and 32 schizophrenia patients before and after 12 weeks of antipsychotic treatment using real-time quantitative PCR (RT-qPCR) analysis.</p><p><strong>Results: </strong>The expression levels of DISC1 gene in peripheral blood mononuclear cells of schizophrenia patients before antipsychotic treatment were higher than those in healthy controls (P < 0.01); whereas after antipsychotic treatment, the expression levels of DISC1 gene in peripheral blood mononuclear cells of schizophrenia patients still remained increased (P < 0.01).</p><p><strong>Conclusions: </strong>Our study provided further support for the involvement of DISC1 in the development of schizophrenia.</p>","PeriodicalId":9015,"journal":{"name":"BMC Medical Genetics","volume":" ","pages":"194"},"PeriodicalIF":0.0,"publicationDate":"2020-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s12881-020-01132-9","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38446518","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-10-01DOI: 10.1186/s12881-020-01126-7
Zhen Liu, Jingcheng Zhou, Liang Li, Zhiqiang Yi, Runchun Lu, Chunwei Li, Kan Gong
Background: Central nervous system (CNS) hemangioblastomas are the most frequent cause of mortality in patients with Von Hippel-Lindau (VHL) disease, an autosomal dominant genetic disease resulting from germline mutations in the VHL tumor suppressor gene, with most mutations occurring in the exons. To date, there have been no reports of CNS hemangioblastoma cases related to pathogenic variants in intron 2 of VHL, which encodes a tumor suppressor protein (i.e., pVHL) that regulates hypoxia-inducible factor proteins.
Case presentation: We report the presence of a base substitution of c.464-1G > C and c.464-2A > G in the intron 2 of VHL causing CNS hemangioblastomas in six patients with VHL from two Chinese families. The clinical information about the two pathogentic variants has been submitted to ClinVar database. The ClinVar accession for NM_000551.3(VHL):c.464-1G > C was SCV001371687. This finding may provide a new approach for diagnosing and researching VHL-associated hemangioblastomas.
Conclusions: This is the first report of a pathogenic variant at intron 2 in VHL-associated hemangioblastomas. Gene sequencing showed that not only exonic but also intronic mutations can lead to the development of CNS hemangioblastomas.
{"title":"Intronic mutation of the VHL gene associated with central nervous system hemangioblastomas in two Chinese families with Von Hippel-Lindau disease: case report.","authors":"Zhen Liu, Jingcheng Zhou, Liang Li, Zhiqiang Yi, Runchun Lu, Chunwei Li, Kan Gong","doi":"10.1186/s12881-020-01126-7","DOIUrl":"https://doi.org/10.1186/s12881-020-01126-7","url":null,"abstract":"<p><strong>Background: </strong>Central nervous system (CNS) hemangioblastomas are the most frequent cause of mortality in patients with Von Hippel-Lindau (VHL) disease, an autosomal dominant genetic disease resulting from germline mutations in the VHL tumor suppressor gene, with most mutations occurring in the exons. To date, there have been no reports of CNS hemangioblastoma cases related to pathogenic variants in intron 2 of VHL, which encodes a tumor suppressor protein (i.e., pVHL) that regulates hypoxia-inducible factor proteins.</p><p><strong>Case presentation: </strong>We report the presence of a base substitution of c.464-1G > C and c.464-2A > G in the intron 2 of VHL causing CNS hemangioblastomas in six patients with VHL from two Chinese families. The clinical information about the two pathogentic variants has been submitted to ClinVar database. The ClinVar accession for NM_000551.3(VHL):c.464-1G > C was SCV001371687. This finding may provide a new approach for diagnosing and researching VHL-associated hemangioblastomas.</p><p><strong>Conclusions: </strong>This is the first report of a pathogenic variant at intron 2 in VHL-associated hemangioblastomas. Gene sequencing showed that not only exonic but also intronic mutations can lead to the development of CNS hemangioblastomas.</p>","PeriodicalId":9015,"journal":{"name":"BMC Medical Genetics","volume":" ","pages":"191"},"PeriodicalIF":0.0,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s12881-020-01126-7","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38442914","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: Joubert syndrome (OMIM 213300) is an autosomal recessive disorder with gene heterogeneity. Causal genes and their variants have been identified by sequencing or other technologies for Joubert syndrome subtypes.
Case presentation: A two-year-old boy was diagnosed with Joubert syndrome by global development delay and molar tooth sign of mid-brain. Whole exome sequencing was performed to detect the causative gene variants in this individual, and the candidate pathogenic variants were verified by Sanger sequencing. We identified two pathogenic variants (NM_006346.2: c.1147delC and c.1054A > G) of PIBF1 in this Joubert syndrome individual, which is consistent with the mode of autosomal recessive inheritance.
Conclusion: In this study, we identified two novel pathogenic variants in PIBF1 in a Joubert syndrome individual using whole exome sequencing, thereby expanding the PIBF1 pathogenic variant spectrum of Joubert syndrome.
{"title":"Identification of two novel pathogenic variants of PIBF1 by whole exome sequencing in a 2-year-old boy with Joubert syndrome.","authors":"Yue Shen, Hao Wang, Zhimin Liu, Minna Luo, Siyu Ma, Chao Lu, Zongfu Cao, Yufei Yu, Ruikun Cai, Cuixia Chen, Qian Li, Huafang Gao, Yun Peng, Baoping Xu, Xu Ma","doi":"10.1186/s12881-020-01130-x","DOIUrl":"https://doi.org/10.1186/s12881-020-01130-x","url":null,"abstract":"<p><strong>Background: </strong>Joubert syndrome (OMIM 213300) is an autosomal recessive disorder with gene heterogeneity. Causal genes and their variants have been identified by sequencing or other technologies for Joubert syndrome subtypes.</p><p><strong>Case presentation: </strong>A two-year-old boy was diagnosed with Joubert syndrome by global development delay and molar tooth sign of mid-brain. Whole exome sequencing was performed to detect the causative gene variants in this individual, and the candidate pathogenic variants were verified by Sanger sequencing. We identified two pathogenic variants (NM_006346.2: c.1147delC and c.1054A > G) of PIBF1 in this Joubert syndrome individual, which is consistent with the mode of autosomal recessive inheritance.</p><p><strong>Conclusion: </strong>In this study, we identified two novel pathogenic variants in PIBF1 in a Joubert syndrome individual using whole exome sequencing, thereby expanding the PIBF1 pathogenic variant spectrum of Joubert syndrome.</p>","PeriodicalId":9015,"journal":{"name":"BMC Medical Genetics","volume":" ","pages":"192"},"PeriodicalIF":0.0,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s12881-020-01130-x","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38447470","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-09-29DOI: 10.1186/s12881-020-01131-w
Adrian Giucă, Cristina Mitu, Bogdan Ovidiu Popescu, Alexandra Eugenia Bastian, Răzvan Capşa, Adriana Mursă, Viorica Rădoi, Bogdan Alexandru Popescu, Ruxandra Jurcuţ
Background: Hypertrophic cardiomyopathy (HCM) is a genetic disorder mostly caused by sarcomeric gene mutations, but almost 10% of cases are attributed to inherited metabolic and neuromuscular disorders. First described in 2008 in an American-Italian family with scapuloperoneal myopathy, FHL1 gene encodes four-and-a-half LIM domains 1 proteins which are involved in sarcomere formation, assembly and biomechanical stress sensing both in cardiac and skeletal muscle, and its mutations are responsible for a large spectrum of neuromuscular disorders (mostly myopathies) and cardiac disease, represented by HCM, either isolated, or in conjunction with neurologic and skeletal muscle impairment. We thereby report a novel mutation variant in FHL1 structure, associated with HCM and type 6 Emery-Dreifuss muscular dystrophy (EDMD).
Case presentation: We describe the case of a 40 year old male patient, who was referred to our department for evaluation in the setting of NYHA II heart failure symptoms and was found to have HCM. The elevated muscular enzymes raised the suspicion of a neuromuscular disease. Rigid low spine and wasting of deltoidus, supraspinatus, infraspinatus and calf muscles were described by the neurological examination. Electromyography and muscle biopsy found evidence of chronic myopathy. Diagnosis work-up was completed by next-generation sequencing genetic testing which found a likely pathogenic mutation in the FHL1 gene (c.157-1G > A, hemizygous) involved in the development of X-linked EDMD type 6.
Conclusion: This case report highlights the importance of multimodality diagnostic approach in a patient with a neuromuscular disorder and associated hypertrophic cardiomyopathy by identifying a novel mutation variant in FHL1 gene. Raising awareness of non-sarcomeric gene mutations which can lead to HCM is fundamental, because of diagnostic and clinical risk stratification challenges.
{"title":"Novel FHL1 mutation variant identified in a patient with nonobstructive hypertrophic cardiomyopathy and myopathy - a case report.","authors":"Adrian Giucă, Cristina Mitu, Bogdan Ovidiu Popescu, Alexandra Eugenia Bastian, Răzvan Capşa, Adriana Mursă, Viorica Rădoi, Bogdan Alexandru Popescu, Ruxandra Jurcuţ","doi":"10.1186/s12881-020-01131-w","DOIUrl":"https://doi.org/10.1186/s12881-020-01131-w","url":null,"abstract":"<p><strong>Background: </strong>Hypertrophic cardiomyopathy (HCM) is a genetic disorder mostly caused by sarcomeric gene mutations, but almost 10% of cases are attributed to inherited metabolic and neuromuscular disorders. First described in 2008 in an American-Italian family with scapuloperoneal myopathy, FHL1 gene encodes four-and-a-half LIM domains 1 proteins which are involved in sarcomere formation, assembly and biomechanical stress sensing both in cardiac and skeletal muscle, and its mutations are responsible for a large spectrum of neuromuscular disorders (mostly myopathies) and cardiac disease, represented by HCM, either isolated, or in conjunction with neurologic and skeletal muscle impairment. We thereby report a novel mutation variant in FHL1 structure, associated with HCM and type 6 Emery-Dreifuss muscular dystrophy (EDMD).</p><p><strong>Case presentation: </strong>We describe the case of a 40 year old male patient, who was referred to our department for evaluation in the setting of NYHA II heart failure symptoms and was found to have HCM. The elevated muscular enzymes raised the suspicion of a neuromuscular disease. Rigid low spine and wasting of deltoidus, supraspinatus, infraspinatus and calf muscles were described by the neurological examination. Electromyography and muscle biopsy found evidence of chronic myopathy. Diagnosis work-up was completed by next-generation sequencing genetic testing which found a likely pathogenic mutation in the FHL1 gene (c.157-1G > A, hemizygous) involved in the development of X-linked EDMD type 6.</p><p><strong>Conclusion: </strong>This case report highlights the importance of multimodality diagnostic approach in a patient with a neuromuscular disorder and associated hypertrophic cardiomyopathy by identifying a novel mutation variant in FHL1 gene. Raising awareness of non-sarcomeric gene mutations which can lead to HCM is fundamental, because of diagnostic and clinical risk stratification challenges.</p>","PeriodicalId":9015,"journal":{"name":"BMC Medical Genetics","volume":" ","pages":"188"},"PeriodicalIF":0.0,"publicationDate":"2020-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s12881-020-01131-w","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38434510","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-09-29DOI: 10.1186/s12881-020-01127-6
Katina Kartalias, Austin P Gillies, Maria T Peña, Andrea Estrada, Dorothy I Bulas, Carlos R Ferreira, Laura L Tosi
Background: Acroscyphodysplasia has been described as a phenotypic variant of acrodysostosis type 2 and pseudohypoparathyroidism. In acrodysostosis, skeletal features can include brachydactyly, facial hypoplasia, cone-shaped epiphyses, short stature, and advanced bone age. To date, reports on this disorder have focused on phenotypic findings, endocrine changes, and genetic variation. We present a 14-year overview of a patient, from birth to skeletal maturity, with acroscyphodysplasia, noting the significant orthopaedic challenges and the need for a multidisciplinary team, including specialists in genetics, orthopaedics, endocrinology, and otolaryngology, to optimize long-term outcomes.
Case presentation: The patient presented as a newborn with dysmorphic facial features, including severe midface hypoplasia, malar flattening, nasal stenosis, and feeding difficulties. Radiologic findings were initially subtle, and a skeletal survey performed at age 7 months was initially considered normal. Genetic evaluation revealed a variant in PDE4D and subsequent pseudohypoparathyroidism. The patient presented to the department of orthopaedics, at age 2 years 9 months with a leg length discrepancy, right knee contracture, and severely crouched gait. Radiographs demonstrated cone-shaped epiphyses of the right distal femur and proximal tibia, but no evidence of growth plate changes in the left leg. The child developed early posterior epiphyseal arrest on the right side and required multiple surgical interventions to achieve neutral extension. Her left distal femur developed late posterior physeal arrest and secondary contracture without evidence of schypho deformity, which improved with anterior screw epiphysiodesis. The child required numerous orthopaedic surgical interventions to achieve full knee extension bilaterally. At age 13 years 11 months, she was an independent ambulator with erect posture. The child underwent numerous otolaryngology procedures and will require significant ongoing care. She has moderate intellectual disability.
Discussion and conclusions: Key challenges in the management of this case included the subtle changes on initial skeletal survey and the marked asymmetry of her deformity. While cone-shaped epiphyses are a hallmark of acrodysostosis, posterior tethering/growth arrest of the posterior distal femur has not been previously reported. Correction of the secondary knee contracture was essential to improve ambulation. Children with acroscyphodysplasia require a multidisciplinary approach, including radiology, genetics, orthopaedics, otolaryngology, and endocrinology specialties.
{"title":"Fourteen-year follow-up of a child with acroscyphodysplasia with emphasis on the need for multidisciplinary management: a case report.","authors":"Katina Kartalias, Austin P Gillies, Maria T Peña, Andrea Estrada, Dorothy I Bulas, Carlos R Ferreira, Laura L Tosi","doi":"10.1186/s12881-020-01127-6","DOIUrl":"https://doi.org/10.1186/s12881-020-01127-6","url":null,"abstract":"<p><strong>Background: </strong>Acroscyphodysplasia has been described as a phenotypic variant of acrodysostosis type 2 and pseudohypoparathyroidism. In acrodysostosis, skeletal features can include brachydactyly, facial hypoplasia, cone-shaped epiphyses, short stature, and advanced bone age. To date, reports on this disorder have focused on phenotypic findings, endocrine changes, and genetic variation. We present a 14-year overview of a patient, from birth to skeletal maturity, with acroscyphodysplasia, noting the significant orthopaedic challenges and the need for a multidisciplinary team, including specialists in genetics, orthopaedics, endocrinology, and otolaryngology, to optimize long-term outcomes.</p><p><strong>Case presentation: </strong>The patient presented as a newborn with dysmorphic facial features, including severe midface hypoplasia, malar flattening, nasal stenosis, and feeding difficulties. Radiologic findings were initially subtle, and a skeletal survey performed at age 7 months was initially considered normal. Genetic evaluation revealed a variant in PDE4D and subsequent pseudohypoparathyroidism. The patient presented to the department of orthopaedics, at age 2 years 9 months with a leg length discrepancy, right knee contracture, and severely crouched gait. Radiographs demonstrated cone-shaped epiphyses of the right distal femur and proximal tibia, but no evidence of growth plate changes in the left leg. The child developed early posterior epiphyseal arrest on the right side and required multiple surgical interventions to achieve neutral extension. Her left distal femur developed late posterior physeal arrest and secondary contracture without evidence of schypho deformity, which improved with anterior screw epiphysiodesis. The child required numerous orthopaedic surgical interventions to achieve full knee extension bilaterally. At age 13 years 11 months, she was an independent ambulator with erect posture. The child underwent numerous otolaryngology procedures and will require significant ongoing care. She has moderate intellectual disability.</p><p><strong>Discussion and conclusions: </strong>Key challenges in the management of this case included the subtle changes on initial skeletal survey and the marked asymmetry of her deformity. While cone-shaped epiphyses are a hallmark of acrodysostosis, posterior tethering/growth arrest of the posterior distal femur has not been previously reported. Correction of the secondary knee contracture was essential to improve ambulation. Children with acroscyphodysplasia require a multidisciplinary approach, including radiology, genetics, orthopaedics, otolaryngology, and endocrinology specialties.</p>","PeriodicalId":9015,"journal":{"name":"BMC Medical Genetics","volume":" ","pages":"189"},"PeriodicalIF":0.0,"publicationDate":"2020-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s12881-020-01127-6","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38434352","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}