Pub Date : 2024-08-09DOI: 10.1186/s40360-024-00776-0
Babafemi Siji Ajisebiola, Adesola Abigeal Toromade, Johnson Olaleye Oladele, Abdur-Rahman Kolawole Mustapha, Olukunle Silas Fagbenro, Akindele Oluwatosin Adeyi
Background: Echis ocellatus envenoming is potentially toxic initiating clinical damages on male reproductive system. Kaempferol is a therapeutic agent with neutralizing potentials on snake venom toxins. This study investigated the antagonistic effect of kaempferol on E. ocellatus venom (EoV)-induced reproductive toxicities.
Methods: Fifty adult male rats were sorted at random into five groups of ten rats for this study. The control rats were allotted to group 1, while rats in groups 2-5 were injected with 0.22 mg/kg bw (LD50) of EoV intraperitoneally. Rats in group 2 were not treated while groups 3-5 rats were treated with serum antivenom (0.2 ml), and 4 and 8 mg/kg bw of kaempferol post envenoming, respectively.
Results: EoV actuated reproductive toxicity, significantly decreased sperm parameters, and enhanced inflammatory, oxidative stress, and apoptotic biomarkers in reproductive organs of untreated envenomed rats. However, treatment with kaempferol alleviated the venom-induced reproductive disorders with a dose dependent effect. Kaempferol significantly increased the testicular weight, organo-somatic index, sperm parameters, and normalized the levels of serum luteinizing hormone, testosterone, and follicle stimulating hormone. Kaempferol ameliorated testicular and epididymal oxidative stress as evidenced by significant decrease in malondialdehyde (MDA) levels, enhancement of reduced glutathione (GSH) levels, superoxide dismutase (SOD) and glutathione peroxidase (GPX) activities. The inflammatory biomarkers; nitric oxide (NO) levels and myeloperoxidase activity (MPO), and apoptotic biomarkers; caspase 3 and caspase 9 activities were substantially suppressed in the testis and epididymis of envenomed rats treated with kaempferol.
Conclusion: Results revealed kaempferol as a potential remedial agent against reproductive toxicity that could manifest post-viper envenoming.
{"title":"Echis ocellatus venom-induced sperm functional deficits, pro-apoptotic and inflammatory activities in male reproductive organs in rats: antagonistic role of kaempferol.","authors":"Babafemi Siji Ajisebiola, Adesola Abigeal Toromade, Johnson Olaleye Oladele, Abdur-Rahman Kolawole Mustapha, Olukunle Silas Fagbenro, Akindele Oluwatosin Adeyi","doi":"10.1186/s40360-024-00776-0","DOIUrl":"10.1186/s40360-024-00776-0","url":null,"abstract":"<p><strong>Background: </strong>Echis ocellatus envenoming is potentially toxic initiating clinical damages on male reproductive system. Kaempferol is a therapeutic agent with neutralizing potentials on snake venom toxins. This study investigated the antagonistic effect of kaempferol on E. ocellatus venom (EoV)-induced reproductive toxicities.</p><p><strong>Methods: </strong>Fifty adult male rats were sorted at random into five groups of ten rats for this study. The control rats were allotted to group 1, while rats in groups 2-5 were injected with 0.22 mg/kg bw (LD<sub>50</sub>) of EoV intraperitoneally. Rats in group 2 were not treated while groups 3-5 rats were treated with serum antivenom (0.2 ml), and 4 and 8 mg/kg bw of kaempferol post envenoming, respectively.</p><p><strong>Results: </strong>EoV actuated reproductive toxicity, significantly decreased sperm parameters, and enhanced inflammatory, oxidative stress, and apoptotic biomarkers in reproductive organs of untreated envenomed rats. However, treatment with kaempferol alleviated the venom-induced reproductive disorders with a dose dependent effect. Kaempferol significantly increased the testicular weight, organo-somatic index, sperm parameters, and normalized the levels of serum luteinizing hormone, testosterone, and follicle stimulating hormone. Kaempferol ameliorated testicular and epididymal oxidative stress as evidenced by significant decrease in malondialdehyde (MDA) levels, enhancement of reduced glutathione (GSH) levels, superoxide dismutase (SOD) and glutathione peroxidase (GPX) activities. The inflammatory biomarkers; nitric oxide (NO) levels and myeloperoxidase activity (MPO), and apoptotic biomarkers; caspase 3 and caspase 9 activities were substantially suppressed in the testis and epididymis of envenomed rats treated with kaempferol.</p><p><strong>Conclusion: </strong>Results revealed kaempferol as a potential remedial agent against reproductive toxicity that could manifest post-viper envenoming.</p>","PeriodicalId":9023,"journal":{"name":"BMC Pharmacology & Toxicology","volume":"25 1","pages":"46"},"PeriodicalIF":2.8,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11311923/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141911658","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-08DOI: 10.1186/s40360-024-00773-3
Jalil Houshyar, Nastaran Hashemzadeh, Maryam Khoubnasabjafari, Amirreza Jabbaripour Sarmadian, Vahid Jouyban-Gharamaleki, Mohammad Reza Afshar Mogaddam, Elnaz Marzi Khosrowshahi, Abolghasem Jouyban
Background: Concentrations of metoprolol in exhaled breath condensate (EBC) have not been investigated. Herein, we aim to determine the metoprolol levels in EBC, plasma, and urine samples.
Methods: Biological samples were collected from 39 patients receiving metoprolol. Metoprolol was determined using liquid chromatography mass spectrometery. The obtained metoprolol levels in biological fluids were investigated for possible inter-correlations.
Results: Acceptable linearity was obtained with coefficient of determinations equal to 0.9998, 0.9941, and 0.9963 for EBC, plasma, and urine samples, respectively. The calibration curves were linear in the ranges of 0.6-500, 0.4-500, and 0.7-10,000 µg·L- 1 regarding EBC, plasma, and urine samples, respectively. The detection and quantification limits were (0.18, 0.12, and 0.21 µg·L- 1) and (0.60, 0.40, and 0.70 µg·L- 1) for EBC, plasma, and urine samples, respectively. The relative standard deviations for the intra- and inter-day replications were obtained between 5.2 and 6.1 and 3.3-4.6%, respectively. The obtained mean metoprolol levels in EBC, plasma, and urine samples of 39 patients were 5.35, 70.76, and 1943.1 µg·L- 1. There were correlations between daily dose and plasma and urinary concentrations of metoprolol in the investigated samples, whereas no significant correlation was observed for daily dose and EBC levels. The correlation among plasma-urine levels was significant, however, the non-significant correlation was obtained between plasma and EBC concentrations.
Conclusion: Metoprolol levels varied widely due to the metabolic pattern of the Azeri population, different dosages received by the patients, formulation effects, age, sex, and interactions with the co-administered drugs. A poor correlation of EBC-plasma concentrations and a significant correlation of plasma-urine concentrations were observed. Further investigations are required to provide the updated services to personalized medicine departments.
{"title":"A cross-sectional study on metoprolol concentrations in various biological samples and their inter-correlations.","authors":"Jalil Houshyar, Nastaran Hashemzadeh, Maryam Khoubnasabjafari, Amirreza Jabbaripour Sarmadian, Vahid Jouyban-Gharamaleki, Mohammad Reza Afshar Mogaddam, Elnaz Marzi Khosrowshahi, Abolghasem Jouyban","doi":"10.1186/s40360-024-00773-3","DOIUrl":"10.1186/s40360-024-00773-3","url":null,"abstract":"<p><strong>Background: </strong>Concentrations of metoprolol in exhaled breath condensate (EBC) have not been investigated. Herein, we aim to determine the metoprolol levels in EBC, plasma, and urine samples.</p><p><strong>Methods: </strong>Biological samples were collected from 39 patients receiving metoprolol. Metoprolol was determined using liquid chromatography mass spectrometery. The obtained metoprolol levels in biological fluids were investigated for possible inter-correlations.</p><p><strong>Results: </strong>Acceptable linearity was obtained with coefficient of determinations equal to 0.9998, 0.9941, and 0.9963 for EBC, plasma, and urine samples, respectively. The calibration curves were linear in the ranges of 0.6-500, 0.4-500, and 0.7-10,000 µg·L<sup>- 1</sup> regarding EBC, plasma, and urine samples, respectively. The detection and quantification limits were (0.18, 0.12, and 0.21 µg·L<sup>- 1</sup>) and (0.60, 0.40, and 0.70 µg·L<sup>- 1</sup>) for EBC, plasma, and urine samples, respectively. The relative standard deviations for the intra- and inter-day replications were obtained between 5.2 and 6.1 and 3.3-4.6%, respectively. The obtained mean metoprolol levels in EBC, plasma, and urine samples of 39 patients were 5.35, 70.76, and 1943.1 µg·L<sup>- 1</sup>. There were correlations between daily dose and plasma and urinary concentrations of metoprolol in the investigated samples, whereas no significant correlation was observed for daily dose and EBC levels. The correlation among plasma-urine levels was significant, however, the non-significant correlation was obtained between plasma and EBC concentrations.</p><p><strong>Conclusion: </strong>Metoprolol levels varied widely due to the metabolic pattern of the Azeri population, different dosages received by the patients, formulation effects, age, sex, and interactions with the co-administered drugs. A poor correlation of EBC-plasma concentrations and a significant correlation of plasma-urine concentrations were observed. Further investigations are required to provide the updated services to personalized medicine departments.</p>","PeriodicalId":9023,"journal":{"name":"BMC Pharmacology & Toxicology","volume":"25 1","pages":"45"},"PeriodicalIF":2.8,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11311911/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141905858","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-01DOI: 10.1186/s40360-024-00766-2
Tohid Piri-Gharaghie, Hedieh Ghourchian, Golnoosh Rezaeizadeh, Hamidreza Kabiri, Negin Rajaei, Aya Mohammed Dhiaa, Ghazal Ghajari, Roghayeh Bahari
Background: Colorectal cancer (CRC), now the second most prevalent malignant tumor worldwide, is more prevalent in young adults. In recent decades, there has been progress in creating anti-colorectal cancer medications, including cytotoxic compounds.
Objectives: Novel anticancer drugs are needed to surmount existing obstacles. A recent study investigated the effectiveness of novel formulations in preventing colorectal cancer.
Methods: During this study, we assessed a new kind of niosome called cyclo-Gly-L-DOPA (CG-Nio-CGLD) made from chitosan glutamate. We evaluated the anti-colorectal cancer properties of CG-Nio-CGLD utilizing CCK-8, invasion assay, MTT assay, flow cytometry, and cell cycle analysis. The transcription of genes associated with apoptosis was analyzed using quantitative real-time PCR. At the same time, the cytotoxicity of nanomaterials on both cancer and normal cell lines was assessed using MTT assays. Novel anticancer drugs are needed to surmount existing obstacles. A recent study investigated the effectiveness of newly developed formulations in preventing colorectal cancer.
Results: The Nio-CGLD and CG-Nio-CGLD were spherical mean diameters of 169.12 ± 1.87 and 179.26 ± 2.17 nm, respectively. Entrapment efficiency (EE%) measurements of the Nio-CGLD and CG-Nio-CGLD were 63.12 ± 0.51 and 76.43 ± 0.34%, respectively. In the CG-Nio-CGLD group, the percentages of early, late, necrotic, and viable CL40 cells were 341.93%, 23.27%, 9.32%, and 25.48%. The transcription of the genes PP53, cas3, and cas8 was noticeably higher in the treatment group compared to the control group (P > 0.001). Additionally, the treatment group had lower BCL2 and survivin gene expression levels than the control group (P < 0.01). Additionally, CG-Nio-CGLD formulations demonstrated a biocompatible nanoscale delivery mechanism and displayed little cytotoxicity toward the CCD 841 CoN reference cell line.
Conclusion: These findings indicate that chitosan-based noisome encapsulation may enhance the effectiveness of CG-Nio-CGLD formulations in fighting cancer.
{"title":"(S)-3-(3,4-Dihydroxybenzyl) piperazine-2,5-dione (cyclo-Gly-L-DOPA or CG-Nio-CGLD) peptide loaded in Chitosan Glutamate-Coated Niosomes as anti-Colorectal cancer activity.","authors":"Tohid Piri-Gharaghie, Hedieh Ghourchian, Golnoosh Rezaeizadeh, Hamidreza Kabiri, Negin Rajaei, Aya Mohammed Dhiaa, Ghazal Ghajari, Roghayeh Bahari","doi":"10.1186/s40360-024-00766-2","DOIUrl":"10.1186/s40360-024-00766-2","url":null,"abstract":"<p><strong>Background: </strong>Colorectal cancer (CRC), now the second most prevalent malignant tumor worldwide, is more prevalent in young adults. In recent decades, there has been progress in creating anti-colorectal cancer medications, including cytotoxic compounds.</p><p><strong>Objectives: </strong>Novel anticancer drugs are needed to surmount existing obstacles. A recent study investigated the effectiveness of novel formulations in preventing colorectal cancer.</p><p><strong>Methods: </strong>During this study, we assessed a new kind of niosome called cyclo-Gly-L-DOPA (CG-Nio-CGLD) made from chitosan glutamate. We evaluated the anti-colorectal cancer properties of CG-Nio-CGLD utilizing CCK-8, invasion assay, MTT assay, flow cytometry, and cell cycle analysis. The transcription of genes associated with apoptosis was analyzed using quantitative real-time PCR. At the same time, the cytotoxicity of nanomaterials on both cancer and normal cell lines was assessed using MTT assays. Novel anticancer drugs are needed to surmount existing obstacles. A recent study investigated the effectiveness of newly developed formulations in preventing colorectal cancer.</p><p><strong>Results: </strong>The Nio-CGLD and CG-Nio-CGLD were spherical mean diameters of 169.12 ± 1.87 and 179.26 ± 2.17 nm, respectively. Entrapment efficiency (EE%) measurements of the Nio-CGLD and CG-Nio-CGLD were 63.12 ± 0.51 and 76.43 ± 0.34%, respectively. In the CG-Nio-CGLD group, the percentages of early, late, necrotic, and viable CL40 cells were 341.93%, 23.27%, 9.32%, and 25.48%. The transcription of the genes PP53, cas3, and cas8 was noticeably higher in the treatment group compared to the control group (P > 0.001). Additionally, the treatment group had lower BCL2 and survivin gene expression levels than the control group (P < 0.01). Additionally, CG-Nio-CGLD formulations demonstrated a biocompatible nanoscale delivery mechanism and displayed little cytotoxicity toward the CCD 841 CoN reference cell line.</p><p><strong>Conclusion: </strong>These findings indicate that chitosan-based noisome encapsulation may enhance the effectiveness of CG-Nio-CGLD formulations in fighting cancer.</p>","PeriodicalId":9023,"journal":{"name":"BMC Pharmacology & Toxicology","volume":"25 1","pages":"44"},"PeriodicalIF":2.8,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11295349/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141874119","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-15DOI: 10.1186/s40360-024-00763-5
Sabrina Floccari, Reem Sabry, Laurie Choux, Michael S Neal, Jibran Y Khokhar, Laura A Favetta
Background: A global increase in cannabis use has led to questions about its effects on fertility. The rise in consumption amongst women of reproductive age is a growing concern, as this group is vulnerable in terms of reproductive health. Ample evidence suggests that the psychoactive component of cannabis, Δ9-Tetrahydrocannabinol (THC), interacts with the endocannabinoid system (ECS), that helps regulate mammalian reproduction. This study aimed to research the epigenetic effects of THC in bovine granulosa cells (GCs) by (1) investigating global DNA methylation via measuring 5-mC and 5-hmC levels; (2) measuring key methylation regulators, including the methylating enzymes DNMT1, DNMT3a, DNMT3b and the demethylases TDG and TET1/2/3; and (3) assessing fertility-associated miRNAs key in developmental competency, including miR-21, -155, -33b, -324 and -346.
Methods: Bovine GCs were used as a translational model for reproductive toxicity in humans. To determine THC effects, GCs were isolated from Cumulus-Oocyte-Complexes (COCs) from bovine ovaries, cultured in vitro for 7 days, or until confluent, and cryopreserved at passage 1 (P1). For experimentation, cells were thawed, cultured until passage 2 (P2), serum restricted for 24-h and treated for 24-h in one of five groups: control, vehicle (1:1:18 ethanol: tween: saline) and three clinically relevant THC doses (0.032, 0.32 and 3.2 μM). Global methylation was assessed by measuring 5-mC and 5-hmC levels with flow cytometry. To assess mRNA and protein expression of methylation regulators and miRNA profiles, qPCR and Western Blotting were utilized. Shapiro-Wilk test was used to determine normality within datasets. One-way ANOVA was applied to determine statistical significance using GraphPad Prism 6.0.0.
Results: Results indicate a significant decrease (p = 0.0435) in 5-mC levels following low THC exposure, while no changes were observed in 5-hmC levels. A significant increase in DNMT1 following high THC exposure at the RNA level (p < 0.05) and a significant increase following low THC exposure at the protein level (p = 0.0048) were also observed. No significant differences were observed in DNMT3a/3b, TDG, TET1/2/3 mRNAs or in any of the miRNAs analyzed.
Conclusions: This research suggests that THC mainly affects DNA methylation, but not miRNA profiles, ultimately altering gene expression and likely impairing oocyte competence, maturation, and fertilization potential.
{"title":"DNA methylation, but not microRNA expression, is affected by in vitro THC exposure in bovine granulosa cells.","authors":"Sabrina Floccari, Reem Sabry, Laurie Choux, Michael S Neal, Jibran Y Khokhar, Laura A Favetta","doi":"10.1186/s40360-024-00763-5","DOIUrl":"10.1186/s40360-024-00763-5","url":null,"abstract":"<p><strong>Background: </strong>A global increase in cannabis use has led to questions about its effects on fertility. The rise in consumption amongst women of reproductive age is a growing concern, as this group is vulnerable in terms of reproductive health. Ample evidence suggests that the psychoactive component of cannabis, Δ<sup>9</sup>-Tetrahydrocannabinol (THC), interacts with the endocannabinoid system (ECS), that helps regulate mammalian reproduction. This study aimed to research the epigenetic effects of THC in bovine granulosa cells (GCs) by (1) investigating global DNA methylation via measuring 5-mC and 5-hmC levels; (2) measuring key methylation regulators, including the methylating enzymes DNMT1, DNMT3a, DNMT3b and the demethylases TDG and TET1/2/3; and (3) assessing fertility-associated miRNAs key in developmental competency, including miR-21, -155, -33b, -324 and -346.</p><p><strong>Methods: </strong>Bovine GCs were used as a translational model for reproductive toxicity in humans. To determine THC effects, GCs were isolated from Cumulus-Oocyte-Complexes (COCs) from bovine ovaries, cultured in vitro for 7 days, or until confluent, and cryopreserved at passage 1 (P1). For experimentation, cells were thawed, cultured until passage 2 (P2), serum restricted for 24-h and treated for 24-h in one of five groups: control, vehicle (1:1:18 ethanol: tween: saline) and three clinically relevant THC doses (0.032, 0.32 and 3.2 μM). Global methylation was assessed by measuring 5-mC and 5-hmC levels with flow cytometry. To assess mRNA and protein expression of methylation regulators and miRNA profiles, qPCR and Western Blotting were utilized. Shapiro-Wilk test was used to determine normality within datasets. One-way ANOVA was applied to determine statistical significance using GraphPad Prism 6.0.0.</p><p><strong>Results: </strong>Results indicate a significant decrease (p = 0.0435) in 5-mC levels following low THC exposure, while no changes were observed in 5-hmC levels. A significant increase in DNMT1 following high THC exposure at the RNA level (p < 0.05) and a significant increase following low THC exposure at the protein level (p = 0.0048) were also observed. No significant differences were observed in DNMT3a/3b, TDG, TET1/2/3 mRNAs or in any of the miRNAs analyzed.</p><p><strong>Conclusions: </strong>This research suggests that THC mainly affects DNA methylation, but not miRNA profiles, ultimately altering gene expression and likely impairing oocyte competence, maturation, and fertilization potential.</p>","PeriodicalId":9023,"journal":{"name":"BMC Pharmacology & Toxicology","volume":"25 1","pages":"42"},"PeriodicalIF":2.8,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11247865/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141619270","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-12DOI: 10.1186/s40360-024-00761-7
An Fu, Feng Ge, Yanwei Wang, Haili Guo, Man Zhu, Shu Li, Ao Gao, Chao Li, Jingchuan Lu, Daihong Guo
Background and aim: The use of cefoperazone/sulbactam (CPZ/SAM) could commonly cause vitamin K-dependent coagulation disorders and even hemorrhage sometimes. However, there is a lack of prediction tools estimating the risk for this. This study aimed at developing and internally validating a model for predicting CPZ/SAM-associated coagulation disorders in Chinese inpatients.
Methods: A case-control study was conducted in 11,092 adult inpatients admitted to a Chinese general hospital between 2020 and 2021 and treated with CPZ/SAM. Patients with CPZ/SAM-associated coagulation disorders were identified through the Adverse Drug Events Active Surveillance and Assessment System-II and subsequent manual evaluation. Controls were selected from eligible patients who didn't develop coagulation disorders after CPZ/SAM therapy, with a 1:1 propensity score matching. The final predictors were obtained by univariable and multivariable logistic regression analyses. Internal validation and calibration for the model were performed using 1000 bootstrap resamplings.
Results: 258 patients were identified as CPZ/SAM-associated coagulation disorders in 2184 patients eligible for inclusions and exclusions and the incidence was 11.8%. A final population of 252 cases and 252 controls was included for model development and validation. Malnutrition (OR = 2.41 (1.56-3.77)), history of recent bleeding (OR = 1.95 (1.32-2.90)), treatment duration (OR = 1.10 (1.07-1.14)), combination with carbapenems (OR = 4.43 (1.85-11.88)), and serum creatinine (OR = 1.01 (1.00-1.01)) were identified as final predictors. The model showed good discrimination, calibration, and clinical practicality, with the validated area under the receiver operating characteristic curve being 0.723 (0.683-0.770).
Conclusions: The model with good performance quantifies the risk for CPZ/SAM-associated coagulation disorders, and may support individual assessment and interventions to mitigate the risk after external validation.
{"title":"Development and internal validation of a model for predicting cefoperazone/sulbactam-associated coagulation disorders in Chinese inpatients.","authors":"An Fu, Feng Ge, Yanwei Wang, Haili Guo, Man Zhu, Shu Li, Ao Gao, Chao Li, Jingchuan Lu, Daihong Guo","doi":"10.1186/s40360-024-00761-7","DOIUrl":"10.1186/s40360-024-00761-7","url":null,"abstract":"<p><strong>Background and aim: </strong>The use of cefoperazone/sulbactam (CPZ/SAM) could commonly cause vitamin K-dependent coagulation disorders and even hemorrhage sometimes. However, there is a lack of prediction tools estimating the risk for this. This study aimed at developing and internally validating a model for predicting CPZ/SAM-associated coagulation disorders in Chinese inpatients.</p><p><strong>Methods: </strong>A case-control study was conducted in 11,092 adult inpatients admitted to a Chinese general hospital between 2020 and 2021 and treated with CPZ/SAM. Patients with CPZ/SAM-associated coagulation disorders were identified through the Adverse Drug Events Active Surveillance and Assessment System-II and subsequent manual evaluation. Controls were selected from eligible patients who didn't develop coagulation disorders after CPZ/SAM therapy, with a 1:1 propensity score matching. The final predictors were obtained by univariable and multivariable logistic regression analyses. Internal validation and calibration for the model were performed using 1000 bootstrap resamplings.</p><p><strong>Results: </strong>258 patients were identified as CPZ/SAM-associated coagulation disorders in 2184 patients eligible for inclusions and exclusions and the incidence was 11.8%. A final population of 252 cases and 252 controls was included for model development and validation. Malnutrition (OR = 2.41 (1.56-3.77)), history of recent bleeding (OR = 1.95 (1.32-2.90)), treatment duration (OR = 1.10 (1.07-1.14)), combination with carbapenems (OR = 4.43 (1.85-11.88)), and serum creatinine (OR = 1.01 (1.00-1.01)) were identified as final predictors. The model showed good discrimination, calibration, and clinical practicality, with the validated area under the receiver operating characteristic curve being 0.723 (0.683-0.770).</p><p><strong>Conclusions: </strong>The model with good performance quantifies the risk for CPZ/SAM-associated coagulation disorders, and may support individual assessment and interventions to mitigate the risk after external validation.</p>","PeriodicalId":9023,"journal":{"name":"BMC Pharmacology & Toxicology","volume":"25 1","pages":"41"},"PeriodicalIF":2.8,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11241986/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141598346","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-12DOI: 10.1186/s40360-024-00764-4
Zhengjun Peng, Wenyu Zhang, Hong Hong, Lu Liu
Background: Periapical lesions are characterized by periapical inflammation and damage to periapical tissues and eventually lead to bone resorption and even tooth loss. H2O2 is widely used in root canal therapy for patients with periapical inflammation. Luteolin possesses high anti-inflammatory, antioxidant, and anticancer potential. However, the underlying mechanism of the efficacy of H2O2 and luteolin on oxidative stress and inflammatory tissue has not been previously addressed. We aimed to investigate the anti-inflammatory and antioxidative effects of luteolin on H2O2-induced cellular oxidative inflammation.
Methods: After human osteoblasts (hFOB1.19) were treated with lipopolysaccharide (LPS), luteolin, or H2O2, cell proliferation was analysed by using a cell counting kit-8 (CCK-8), cell apoptosis was measured by using flow cytometry, the production of reactive oxygen species (ROS) was evaluated by using an oxidation-sensitive probe DCFH-DA ROS assay kit, and the expression of genes and proteins was detected by using reverse transcription quantitative polymerase chain reaction (RT‒qPCR), Western blotting, and enzyme-linked immunosorbent assay (ELISA).
Results: We demonstrated that inflammation is closely related to oxidative stress and that the oxidative stress level in the inflammatory environment is increased. Luteolin inhibited the H2O2-induced increase in the expression of interleukin-6 (IL-6), interleukin-8 (IL-8) and tumour necrosis factor α (TNF-α) and significantly repressed the H2O2-induced increase in ROS, as well as markedly strengthened superoxide dismutase (SOD) activity in hFOB1.19 cells. Moreover, we detected that luteolin may inhibit H2O2-induced hFOB1.19 cell injury by suppressing the NF-κB pathway.
Conclusion: We elucidated that luteolin protected human osteoblasts (hFOB1.19) from H2O2-induced cell injury and inhibited the production of proinflammatory cytokines by suppressing the NF-κB signalling pathway. Our findings provide a potential drug for treating H2O2-induced periodontitis and cell injury.
{"title":"Effect of luteolin on oxidative stress and inflammation in the human osteoblast cell line hFOB1.19 in an inflammatory microenvironment.","authors":"Zhengjun Peng, Wenyu Zhang, Hong Hong, Lu Liu","doi":"10.1186/s40360-024-00764-4","DOIUrl":"10.1186/s40360-024-00764-4","url":null,"abstract":"<p><strong>Background: </strong>Periapical lesions are characterized by periapical inflammation and damage to periapical tissues and eventually lead to bone resorption and even tooth loss. H<sub>2</sub>O<sub>2</sub> is widely used in root canal therapy for patients with periapical inflammation. Luteolin possesses high anti-inflammatory, antioxidant, and anticancer potential. However, the underlying mechanism of the efficacy of H<sub>2</sub>O<sub>2</sub> and luteolin on oxidative stress and inflammatory tissue has not been previously addressed. We aimed to investigate the anti-inflammatory and antioxidative effects of luteolin on H<sub>2</sub>O<sub>2</sub>-induced cellular oxidative inflammation.</p><p><strong>Methods: </strong>After human osteoblasts (hFOB1.19) were treated with lipopolysaccharide (LPS), luteolin, or H<sub>2</sub>O<sub>2</sub>, cell proliferation was analysed by using a cell counting kit-8 (CCK-8), cell apoptosis was measured by using flow cytometry, the production of reactive oxygen species (ROS) was evaluated by using an oxidation-sensitive probe DCFH-DA ROS assay kit, and the expression of genes and proteins was detected by using reverse transcription quantitative polymerase chain reaction (RT‒qPCR), Western blotting, and enzyme-linked immunosorbent assay (ELISA).</p><p><strong>Results: </strong>We demonstrated that inflammation is closely related to oxidative stress and that the oxidative stress level in the inflammatory environment is increased. Luteolin inhibited the H<sub>2</sub>O<sub>2</sub>-induced increase in the expression of interleukin-6 (IL-6), interleukin-8 (IL-8) and tumour necrosis factor α (TNF-α) and significantly repressed the H<sub>2</sub>O<sub>2</sub>-induced increase in ROS, as well as markedly strengthened superoxide dismutase (SOD) activity in hFOB1.19 cells. Moreover, we detected that luteolin may inhibit H<sub>2</sub>O<sub>2</sub>-induced hFOB1.19 cell injury by suppressing the NF-κB pathway.</p><p><strong>Conclusion: </strong>We elucidated that luteolin protected human osteoblasts (hFOB1.19) from H<sub>2</sub>O<sub>2</sub>-induced cell injury and inhibited the production of proinflammatory cytokines by suppressing the NF-κB signalling pathway. Our findings provide a potential drug for treating H<sub>2</sub>O<sub>2</sub>-induced periodontitis and cell injury.</p>","PeriodicalId":9023,"journal":{"name":"BMC Pharmacology & Toxicology","volume":"25 1","pages":"40"},"PeriodicalIF":2.8,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11241847/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141598358","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-08DOI: 10.1186/s40360-024-00762-6
Eulambius M Mlugu, Omary M S Minzi, Mats Johansson, Appolinary A R Kamuhabwa, Eleni Aklillu
Background: Dihydroartemisinin-piperaquine (DHP) recently showed superior effectiveness over sulfadoxine-pyrimethamine for malaria intermittent preventive treatment in pregnancy (IPTp). We investigated day 7 piperaquine pharmacokinetics and its therapeutic efficacy in preventing malaria during pregnancy.
Methods: Malaria-free (mRDT) pregnant women (n = 400) who received monthly IPTp-DHP were enrolled and followed till delivery. Day 7 Plasma piperaquine concentrations were determined after each IPTp dose using UPLC/MS/MS. IPTp outcomes (symptomatic malaria and parasitemia during pregnancy, placental malaria, and maternal malaria at delivery) were monitored. Linear mixed model and Cox regression were used to assess predictors of day 7 piperaquine concentration and treatment outcome, respectively.
Results: The incidences of symptomatic malaria and parasitemia during pregnancy per 100 person-year at risk were 2 and 33, respectively. The prevalence of histopathologically confirmed placental malaria and maternal malaria at delivery were 3% and 9.8%, respectively. Repeated monthly IPTp-DHP resulted in significantly increased day 7 plasma piperaquine concentration (p < 0.001). Following the 1st, 2nd, and 3rd monthly IPTp-DHP doses, the proportions of women with day 7 piperaquine concentration below the therapeutic threshold (< 30 ng/mL) were 6.1%, 4.1% and 3.6%, respectively. Factors such as maternal age, body weight and trimester were not significant predictors of day 7 piperaquine concentration. However, having a low day 7 piperaquine plasma concentration (< 30 ng/mL) was significantly associated with a higher risk of parasitemia during pregnancy (p = 0.004).
Conclusion: Lower day 7 piperaquine plasma concentration is a risk factor for parasitemia during pregnancy. Single plasma sampling at day 7 can be used to monitor piperaquine effectiveness during IPTp-DHP.
{"title":"Pharmacokinetics of piperaquine and its association with intermittent malaria preventive therapy outcomes during pregnancy.","authors":"Eulambius M Mlugu, Omary M S Minzi, Mats Johansson, Appolinary A R Kamuhabwa, Eleni Aklillu","doi":"10.1186/s40360-024-00762-6","DOIUrl":"10.1186/s40360-024-00762-6","url":null,"abstract":"<p><strong>Background: </strong>Dihydroartemisinin-piperaquine (DHP) recently showed superior effectiveness over sulfadoxine-pyrimethamine for malaria intermittent preventive treatment in pregnancy (IPTp). We investigated day 7 piperaquine pharmacokinetics and its therapeutic efficacy in preventing malaria during pregnancy.</p><p><strong>Methods: </strong>Malaria-free (mRDT) pregnant women (n = 400) who received monthly IPTp-DHP were enrolled and followed till delivery. Day 7 Plasma piperaquine concentrations were determined after each IPTp dose using UPLC/MS/MS. IPTp outcomes (symptomatic malaria and parasitemia during pregnancy, placental malaria, and maternal malaria at delivery) were monitored. Linear mixed model and Cox regression were used to assess predictors of day 7 piperaquine concentration and treatment outcome, respectively.</p><p><strong>Results: </strong>The incidences of symptomatic malaria and parasitemia during pregnancy per 100 person-year at risk were 2 and 33, respectively. The prevalence of histopathologically confirmed placental malaria and maternal malaria at delivery were 3% and 9.8%, respectively. Repeated monthly IPTp-DHP resulted in significantly increased day 7 plasma piperaquine concentration (p < 0.001). Following the 1st, 2nd, and 3rd monthly IPTp-DHP doses, the proportions of women with day 7 piperaquine concentration below the therapeutic threshold (< 30 ng/mL) were 6.1%, 4.1% and 3.6%, respectively. Factors such as maternal age, body weight and trimester were not significant predictors of day 7 piperaquine concentration. However, having a low day 7 piperaquine plasma concentration (< 30 ng/mL) was significantly associated with a higher risk of parasitemia during pregnancy (p = 0.004).</p><p><strong>Conclusion: </strong>Lower day 7 piperaquine plasma concentration is a risk factor for parasitemia during pregnancy. Single plasma sampling at day 7 can be used to monitor piperaquine effectiveness during IPTp-DHP.</p><p><strong>Trial registration: </strong>Registered 09/12/2016, PACTR201612001901313.</p>","PeriodicalId":9023,"journal":{"name":"BMC Pharmacology & Toxicology","volume":"25 1","pages":"38"},"PeriodicalIF":2.8,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11229336/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141558018","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-01DOI: 10.1186/s40360-024-00759-1
Bita Mesgarpour, Shabnam Faridfar, Mahya Rezaei, Akbar Abdollahiasl, Shahin Shadnia, Arezou Mahdavinejad, Mohammad Abdollahi
Background: We investigated acute poisonings resulting from medications affecting the nervous system and illicit substances at Loghman Hakim Hospital in Tehran.
Methods: We retrospectively reviewed patient records at Iran's largest tertiary toxicology referral center between January 2010 and December 2015. We analyzed the prevalence, trend, age and gender distribution of acute poisoning caused by nervous system agents.
Results: The present study included 16,657 (57.27%) males and 12,426 (42.73%) females, resulting in 29,083 patients. The median age of men and women was 29 and 26 years, respectively (p < 0.0001). There were 12,071 (72.47%) men and 10,326 (83.10%) women under the age of 40 (p < 0.001). Most cases were intentional (69.38% in men and 79.00% in women, p < 0.001) and 44.10% had a history of poisoning. The proportions of men and women varied significantly between different age groups and nervous system agents. For women, the most common agent was alprazolam, whereas for men, methadone. The overall trend of acute poisoning with drug used in addictive disorders, opioids and alcohol was increasing but decreasing with benzodiazepines and antidepressants. Acute poisoning by nervous system agents led to more deaths in men (1.95% vs. 0.56%; p < 0.001).
Conclusions: Methadone intoxication was common especially among young men and most of these intoxications were intentional. Women and men aged 20-29 most frequently suffer poisoning from alprazolam and clonazepam, respectively. Women over 60 and men over 30 used opium. Illicit drugs caused more than half of the deaths, and opium dominated. This study may create awareness and develop educational and preventive gender and age-specific local programs.
{"title":"Age- and gender-specific acute poisoning with drugs and medications affecting nervous system.","authors":"Bita Mesgarpour, Shabnam Faridfar, Mahya Rezaei, Akbar Abdollahiasl, Shahin Shadnia, Arezou Mahdavinejad, Mohammad Abdollahi","doi":"10.1186/s40360-024-00759-1","DOIUrl":"10.1186/s40360-024-00759-1","url":null,"abstract":"<p><strong>Background: </strong>We investigated acute poisonings resulting from medications affecting the nervous system and illicit substances at Loghman Hakim Hospital in Tehran.</p><p><strong>Methods: </strong>We retrospectively reviewed patient records at Iran's largest tertiary toxicology referral center between January 2010 and December 2015. We analyzed the prevalence, trend, age and gender distribution of acute poisoning caused by nervous system agents.</p><p><strong>Results: </strong>The present study included 16,657 (57.27%) males and 12,426 (42.73%) females, resulting in 29,083 patients. The median age of men and women was 29 and 26 years, respectively (p < 0.0001). There were 12,071 (72.47%) men and 10,326 (83.10%) women under the age of 40 (p < 0.001). Most cases were intentional (69.38% in men and 79.00% in women, p < 0.001) and 44.10% had a history of poisoning. The proportions of men and women varied significantly between different age groups and nervous system agents. For women, the most common agent was alprazolam, whereas for men, methadone. The overall trend of acute poisoning with drug used in addictive disorders, opioids and alcohol was increasing but decreasing with benzodiazepines and antidepressants. Acute poisoning by nervous system agents led to more deaths in men (1.95% vs. 0.56%; p < 0.001).</p><p><strong>Conclusions: </strong>Methadone intoxication was common especially among young men and most of these intoxications were intentional. Women and men aged 20-29 most frequently suffer poisoning from alprazolam and clonazepam, respectively. Women over 60 and men over 30 used opium. Illicit drugs caused more than half of the deaths, and opium dominated. This study may create awareness and develop educational and preventive gender and age-specific local programs.</p>","PeriodicalId":9023,"journal":{"name":"BMC Pharmacology & Toxicology","volume":"25 1","pages":"37"},"PeriodicalIF":2.8,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11218142/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141475840","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-28DOI: 10.1186/s40360-024-00758-2
Peng Li, Xiangjuan Tian, Die Zhang, Huiping Ou, Qiufeng Huang, Wenbin Jin, Ran Liu
Chalcones and dihydrochalcones (DHCs) are important bioactive natural products (BNPs) isolated from traditional Chinese medicine. In this study, 13 chalcones were designed with the inspiration of Loureirin, a DHC extracted from Resina Draconis, and synthesized by classical Claisen-Schmidt reactions. Afterwards the reduction reactions were carried out to obtain the corresponding DHCs. Cytotoxicity assay indicated chalcones and DHCs possessed selective cytotoxicity against colorectal cancer (CRC) cells. The preliminary structure-activity relationships (SAR) of these compounds suggested the α, β-unsaturated ketone of the chalcones were crucial for the anticancer activity. Interestingly, compounds 3d and 4c exhibited selective anticancer activity against CRC cell line HCT116 with IC50s of 8.4 and 17.9 μM but not normal cell. Moreover, 4c could also inhibit the migration and invasion of CRC cells. Mechanism investigations showed 4c could induce cell cycle G2/M arrest by regulating cell cycle-associated proteins and could also up-regulate Fas cell surface death receptor. The virtual docking further pointed out that compounds 3d and 4c could nicely bind to the Fas/FADD death domain complex (ID: 3EZQ). Furthermore, silencing of Fas significantly enhanced the proliferation of CRC cells and attenuated the cytotoxicity induced by 4c. These results suggested 4c exerted its anticancer activity possibly regulating cell cycle and Fas death receptor. In summary, this study investigated the anticancer activity and mechanism of Loureirin analogues in CRC, suggesting these compounds may warrant further investigation as promising anticancer drug candidates for the treatment of CRC.
{"title":"Discovery of Loureirin analogues with colorectal cancer suppressive activity via regulating cell cycle and Fas death receptor.","authors":"Peng Li, Xiangjuan Tian, Die Zhang, Huiping Ou, Qiufeng Huang, Wenbin Jin, Ran Liu","doi":"10.1186/s40360-024-00758-2","DOIUrl":"10.1186/s40360-024-00758-2","url":null,"abstract":"<p><p>Chalcones and dihydrochalcones (DHCs) are important bioactive natural products (BNPs) isolated from traditional Chinese medicine. In this study, 13 chalcones were designed with the inspiration of Loureirin, a DHC extracted from Resina Draconis, and synthesized by classical Claisen-Schmidt reactions. Afterwards the reduction reactions were carried out to obtain the corresponding DHCs. Cytotoxicity assay indicated chalcones and DHCs possessed selective cytotoxicity against colorectal cancer (CRC) cells. The preliminary structure-activity relationships (SAR) of these compounds suggested the α, β-unsaturated ketone of the chalcones were crucial for the anticancer activity. Interestingly, compounds 3d and 4c exhibited selective anticancer activity against CRC cell line HCT116 with IC<sub>50s</sub> of 8.4 and 17.9 μM but not normal cell. Moreover, 4c could also inhibit the migration and invasion of CRC cells. Mechanism investigations showed 4c could induce cell cycle G2/M arrest by regulating cell cycle-associated proteins and could also up-regulate Fas cell surface death receptor. The virtual docking further pointed out that compounds 3d and 4c could nicely bind to the Fas/FADD death domain complex (ID: 3EZQ). Furthermore, silencing of Fas significantly enhanced the proliferation of CRC cells and attenuated the cytotoxicity induced by 4c. These results suggested 4c exerted its anticancer activity possibly regulating cell cycle and Fas death receptor. In summary, this study investigated the anticancer activity and mechanism of Loureirin analogues in CRC, suggesting these compounds may warrant further investigation as promising anticancer drug candidates for the treatment of CRC.</p>","PeriodicalId":9023,"journal":{"name":"BMC Pharmacology & Toxicology","volume":"25 1","pages":"36"},"PeriodicalIF":2.8,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11212204/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141466047","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-26DOI: 10.1186/s40360-024-00757-3
Tianyan Wang, Ting Tao, Yi Liu, Jie Dong, Shanhong Ni, Yun Liu, Yanli Li, Ning Xu, Zengxian Sun
Background and purposes: It is unclear whether the parent Saxagliptin (SAX) in vivo is the same as that in vitro, which is twice that of 5-hydroxy Saxagliptin (5-OH SAX). This study is to construct a Pharmacokinetic-Pharmacodynamic (PK-PD) link model to evaluate the genuine relationship between the concentration of parent SAX in vivo and the effect.
Methods: First, we established a reliable Ultra Performance Liquid Chromatography-Mass Spectrometry (UPLC-MS/MS) method and DPP-4 inhibition ratio determination method. Then, the T2DM rats were randomly divided into four groups, intravenous injection of 5-OH SAX (0.5 mg/kg) and saline group, intragastric administration of SAX (10 mg/kg) and Sodium carboxymethyl cellulose (CMC-Na) group. Plasma samples were collected at different time points for subsequent testing. Finally, we used the measured concentrations and inhibition ratios to construct a PK-PD link model for 5-OH SAX and parent SAX.
Results: A two-compartment with additive model showed the pharmacokinetic process of SAX and 5-OH SAX, the concentration-effect relationship was represented by a sigmoidal Emax model and sigmoidal Emax with E0 model for SAX and 5-OH SAX, respectively. Fitting parameters showed SAX was rapidly absorbed after administration (Tmax=0.11 h, t1/2, ka=0.07 h), widely distributed in the body (V ≈ 20 L/kg), plasma exposure reached 3282.06 ng*h/mL, and the elimination half-life was 6.13 h. The maximum plasma dipeptidyl peptidase IV (DPP-4) inhibition ratio of parent SAX was 71.47%. According to the final fitting parameter EC50, EC50, 5-OH SAX=0.46EC50, SAX(parent), it was believed that the inhibitory effect of 5-OH SAX was about half of the parent SAX, which is consistent with the literature.
Conclusions: The PK-PD link model of the parent SAX established in this study can predict its pharmacokinetic process in T2DM rats and the strength of the inhibitory effect of DPP-4 based on non-clinical data.
{"title":"Pharmacokinetic/Pharmacodynamic modelling of Saxagliptin and its active metabolite, 5-hydroxy Saxagliptin in rats with Type 2 Diabetes Mellitus.","authors":"Tianyan Wang, Ting Tao, Yi Liu, Jie Dong, Shanhong Ni, Yun Liu, Yanli Li, Ning Xu, Zengxian Sun","doi":"10.1186/s40360-024-00757-3","DOIUrl":"10.1186/s40360-024-00757-3","url":null,"abstract":"<p><strong>Background and purposes: </strong>It is unclear whether the parent Saxagliptin (SAX) in vivo is the same as that in vitro, which is twice that of 5-hydroxy Saxagliptin (5-OH SAX). This study is to construct a Pharmacokinetic-Pharmacodynamic (PK-PD) link model to evaluate the genuine relationship between the concentration of parent SAX in vivo and the effect.</p><p><strong>Methods: </strong>First, we established a reliable Ultra Performance Liquid Chromatography-Mass Spectrometry (UPLC-MS/MS) method and DPP-4 inhibition ratio determination method. Then, the T2DM rats were randomly divided into four groups, intravenous injection of 5-OH SAX (0.5 mg/kg) and saline group, intragastric administration of SAX (10 mg/kg) and Sodium carboxymethyl cellulose (CMC-Na) group. Plasma samples were collected at different time points for subsequent testing. Finally, we used the measured concentrations and inhibition ratios to construct a PK-PD link model for 5-OH SAX and parent SAX.</p><p><strong>Results: </strong>A two-compartment with additive model showed the pharmacokinetic process of SAX and 5-OH SAX, the concentration-effect relationship was represented by a sigmoidal E<sub>max</sub> model and sigmoidal E<sub>max</sub> with E<sub>0</sub> model for SAX and 5-OH SAX, respectively. Fitting parameters showed SAX was rapidly absorbed after administration (T<sub>max</sub>=0.11 h, t<sub>1/2, ka</sub>=0.07 h), widely distributed in the body (V ≈ 20 L/kg), plasma exposure reached 3282.06 ng*h/mL, and the elimination half-life was 6.13 h. The maximum plasma dipeptidyl peptidase IV (DPP-4) inhibition ratio of parent SAX was 71.47%. According to the final fitting parameter EC<sub>50</sub>, EC<sub>50, 5-OH SAX</sub>=0.46EC<sub>50, SAX(parent)</sub>, it was believed that the inhibitory effect of 5-OH SAX was about half of the parent SAX, which is consistent with the literature.</p><p><strong>Conclusions: </strong>The PK-PD link model of the parent SAX established in this study can predict its pharmacokinetic process in T2DM rats and the strength of the inhibitory effect of DPP-4 based on non-clinical data.</p>","PeriodicalId":9023,"journal":{"name":"BMC Pharmacology & Toxicology","volume":"25 1","pages":"35"},"PeriodicalIF":2.8,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11299271/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141892811","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}