Background: Chickens play a crucial role as the primary global source of eggs and poultry, and the quality of rooster semen significantly impacts poultry reproductive efficiency. Therefore, it is imperative to comprehend the regulatory mechanisms underlying sperm development.
Results: In this study, we established transcriptome profiles of lncRNAs, miRNAs, and mRNAs in 3 testis tissues and 3 epididymis tissues from "Jing Hong No.1" roosters at 24, 35, and 64 weeks of age. Using the data, we conducted whole transcriptome analysis and constructed a ceRNA network. We detected 10 differentially expressed mRNAs (DEmRNAs), 33 differentially expressed lncRNAs (DElncRNAs), and 10 differentially expressed miRNAs (DEmiRNAs) in the testis, as well as 149 DEmRNAs, 12 DElncRNAs, and 10 DEmiRNAs in the epididymis. These genes were found to be involved in cell differentiation and development, as well as various signaling pathways such as GnRH, MAPK, TGF-β, mTOR, VEGF, and calcium ion pathways. Subsequently, we constructed two competing endogenous RNA (ceRNA) networks comprising DEmRNAs, DElncRNAs, and DEmiRNAs. Furthermore, we identified four crucial lncRNA-mRNA-miRNA interactions that govern specific biological processes in the chicken reproductive system: MSTRG.2423.1-gga-miR-1563-PPP3CA and MSTRG.10064.2-gga-miR-32-5p-GPR12 regulating sperm motility in the testis; MSTRG.152556.1-gga-miR-9-3p-GREM1/THYN1 governing immunomodulation in the epididymis; and MSTRG.124708.1-gga-miR-375-NDUFB9/YBX1 controlling epididymal sperm maturation and motility.
Conclusions: Whole transcriptome sequencing of chicken testis and epididymis screened several key genes and ceRNA regulatory networks, which may be involved in the regulation of epididymal immunity, spermatogenesis and sperm viability through the pathways of MAPK, TGF-β, mTOR, and calcium ion. These findings contribute to our comprehensive understanding of the intricate molecular processes underlying rooster spermatogenesis, maturation and motility.
{"title":"Whole transcriptome sequencing of testis and epididymis reveals genes associated with sperm development in roosters.","authors":"Shihao Guo, Bailin Cong, Liyang Zhu, Yao Zhang, Ying Yang, Xiaolong Qi, Xiangguo Wang, Longfei Xiao, Cheng Long, Yaxi Xu, Xihui Sheng","doi":"10.1186/s12864-024-10836-8","DOIUrl":"10.1186/s12864-024-10836-8","url":null,"abstract":"<p><strong>Background: </strong>Chickens play a crucial role as the primary global source of eggs and poultry, and the quality of rooster semen significantly impacts poultry reproductive efficiency. Therefore, it is imperative to comprehend the regulatory mechanisms underlying sperm development.</p><p><strong>Results: </strong>In this study, we established transcriptome profiles of lncRNAs, miRNAs, and mRNAs in 3 testis tissues and 3 epididymis tissues from \"Jing Hong No.1\" roosters at 24, 35, and 64 weeks of age. Using the data, we conducted whole transcriptome analysis and constructed a ceRNA network. We detected 10 differentially expressed mRNAs (DEmRNAs), 33 differentially expressed lncRNAs (DElncRNAs), and 10 differentially expressed miRNAs (DEmiRNAs) in the testis, as well as 149 DEmRNAs, 12 DElncRNAs, and 10 DEmiRNAs in the epididymis. These genes were found to be involved in cell differentiation and development, as well as various signaling pathways such as GnRH, MAPK, TGF-β, mTOR, VEGF, and calcium ion pathways. Subsequently, we constructed two competing endogenous RNA (ceRNA) networks comprising DEmRNAs, DElncRNAs, and DEmiRNAs. Furthermore, we identified four crucial lncRNA-mRNA-miRNA interactions that govern specific biological processes in the chicken reproductive system: MSTRG.2423.1-gga-miR-1563-PPP3CA and MSTRG.10064.2-gga-miR-32-5p-GPR12 regulating sperm motility in the testis; MSTRG.152556.1-gga-miR-9-3p-GREM1/THYN1 governing immunomodulation in the epididymis; and MSTRG.124708.1-gga-miR-375-NDUFB9/YBX1 controlling epididymal sperm maturation and motility.</p><p><strong>Conclusions: </strong>Whole transcriptome sequencing of chicken testis and epididymis screened several key genes and ceRNA regulatory networks, which may be involved in the regulation of epididymal immunity, spermatogenesis and sperm viability through the pathways of MAPK, TGF-β, mTOR, and calcium ion. These findings contribute to our comprehensive understanding of the intricate molecular processes underlying rooster spermatogenesis, maturation and motility.</p>","PeriodicalId":9030,"journal":{"name":"BMC Genomics","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11533344/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142575475","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
With increasing age, the reproductive performance of women and female animals declines. However, the molecular mechanisms underlying ovarian aging and age-related fertility decline remain unclear. Granulosa cells (GCs) are suspected to play an important role in reproductive aging, and their proliferation, apoptosis, and steroid hormone secretion are used to determine the fate of follicles and ovarian function. First, we found that the proliferative ability of GCs from the old mouse group (10-month-old) decreased compared with that from the young mouse group (6-week-old), and cell cycle arrest occurred in old mice. To investigate changes in protein modification, we compared the levels of protein acetylation in GCs from young and old mice. We found that the K1118, K1120, K1122, and K1124 sites of DNA methyltransferase 1 (DNMT1) were increasingly acetylated with age, resulting in a decrease in DNMT1 protein expression. Therefore, we performed whole-genome methylation sequencing of GCs in the two groups and found that the CG methylation levels in the old group were lower than those in the young group. Furthermore, the inhibition of DNMT1 expression in GCs resulted in cell cycle arrest. This study revealed the dynamics and importance of protein acetylation and DNA methylation in GCs during reproductive aging. The findings provide a theoretical basis for studying the mechanism of reproductive aging in mammals.
{"title":"Increased DNMT1 acetylation leads to global DNA methylation suppression in follicular granulosa cells during reproductive aging in mammals.","authors":"Shunran Zhao, Haoliang Cui, Xiaohuan Fang, Wei Xia, Chenyu Tao, Junjie Li","doi":"10.1186/s12864-024-10957-0","DOIUrl":"10.1186/s12864-024-10957-0","url":null,"abstract":"<p><p>With increasing age, the reproductive performance of women and female animals declines. However, the molecular mechanisms underlying ovarian aging and age-related fertility decline remain unclear. Granulosa cells (GCs) are suspected to play an important role in reproductive aging, and their proliferation, apoptosis, and steroid hormone secretion are used to determine the fate of follicles and ovarian function. First, we found that the proliferative ability of GCs from the old mouse group (10-month-old) decreased compared with that from the young mouse group (6-week-old), and cell cycle arrest occurred in old mice. To investigate changes in protein modification, we compared the levels of protein acetylation in GCs from young and old mice. We found that the K1118, K1120, K1122, and K1124 sites of DNA methyltransferase 1 (DNMT1) were increasingly acetylated with age, resulting in a decrease in DNMT1 protein expression. Therefore, we performed whole-genome methylation sequencing of GCs in the two groups and found that the CG methylation levels in the old group were lower than those in the young group. Furthermore, the inhibition of DNMT1 expression in GCs resulted in cell cycle arrest. This study revealed the dynamics and importance of protein acetylation and DNA methylation in GCs during reproductive aging. The findings provide a theoretical basis for studying the mechanism of reproductive aging in mammals.</p>","PeriodicalId":9030,"journal":{"name":"BMC Genomics","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11536882/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142575459","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-04DOI: 10.1186/s12864-024-10943-6
Yilan Guo, Cun Wei, Hui Ding, Peiyu Li, Yurui Gao, Kangning Zhong, Zhenmin Bao, Zhe Qu, Bo Wang, Jingjie Hu
Background: The leopard coral grouper (Plectropomus leopardus) is a commercially valuable tropical marine fish species known to be sensitive to low temperatures. A comprehensive understanding of the molecular mechanisms governing its response to acute cold stress is of great importance. However, there is a relative scarcity of fundamental research on low-temperature tolerance in the leopard coral grouper.
Methods: In this study, a cooling and rewarming experiment was conducted on 6-month-old leopard coral groupers. Within 24 h, we decreased the ambient temperature from 25 °C to 13 °C and subsequently allowed it to naturally return to 25 °C. During this process, a comprehensive investigation of serum hormone levels, enzyme activity, and brain transcriptome analysis was performed.
Results: P. leopardus displayed a noticeable adaptive response to the initial temperature decrease by temporarily reducing its life activities. Our transcriptome analysis revealed that the differentially expressed genes (DEGs) were primarily concentrated in crucial pathways including the blood-brain barrier (BBB), inflammatory response, and coagulation cascade. In situ hybridization of claudin 15a (cldn15a), a key gene for BBB maintaining, further confirmed that exposure to low temperatures led to the disruption of the blood-brain barrier and stimulated a pronounced inflammatory reaction within the brain. Upon rewarming, there was a recovery of BBB integrity accompanied by the persistence of inflammation within the brain tissue.
Conclusions: Our study reveals the complex interactions between blood-brain barrier function, inflammation, and recovery in P. leopardus during short-term temperature drops and rewarming. These findings provide valuable insights into the physiological responses of this species under cold stress conditions.
{"title":"Effects of cold stress on the blood-brain barrier in Plectropomus leopardus.","authors":"Yilan Guo, Cun Wei, Hui Ding, Peiyu Li, Yurui Gao, Kangning Zhong, Zhenmin Bao, Zhe Qu, Bo Wang, Jingjie Hu","doi":"10.1186/s12864-024-10943-6","DOIUrl":"10.1186/s12864-024-10943-6","url":null,"abstract":"<p><strong>Background: </strong>The leopard coral grouper (Plectropomus leopardus) is a commercially valuable tropical marine fish species known to be sensitive to low temperatures. A comprehensive understanding of the molecular mechanisms governing its response to acute cold stress is of great importance. However, there is a relative scarcity of fundamental research on low-temperature tolerance in the leopard coral grouper.</p><p><strong>Methods: </strong>In this study, a cooling and rewarming experiment was conducted on 6-month-old leopard coral groupers. Within 24 h, we decreased the ambient temperature from 25 °C to 13 °C and subsequently allowed it to naturally return to 25 °C. During this process, a comprehensive investigation of serum hormone levels, enzyme activity, and brain transcriptome analysis was performed.</p><p><strong>Results: </strong>P. leopardus displayed a noticeable adaptive response to the initial temperature decrease by temporarily reducing its life activities. Our transcriptome analysis revealed that the differentially expressed genes (DEGs) were primarily concentrated in crucial pathways including the blood-brain barrier (BBB), inflammatory response, and coagulation cascade. In situ hybridization of claudin 15a (cldn15a), a key gene for BBB maintaining, further confirmed that exposure to low temperatures led to the disruption of the blood-brain barrier and stimulated a pronounced inflammatory reaction within the brain. Upon rewarming, there was a recovery of BBB integrity accompanied by the persistence of inflammation within the brain tissue.</p><p><strong>Conclusions: </strong>Our study reveals the complex interactions between blood-brain barrier function, inflammation, and recovery in P. leopardus during short-term temperature drops and rewarming. These findings provide valuable insights into the physiological responses of this species under cold stress conditions.</p>","PeriodicalId":9030,"journal":{"name":"BMC Genomics","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11536950/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142575452","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-04DOI: 10.1186/s12864-024-10974-z
Haruno Yoshida, Mieko Goto, Yuzo Tsuyuki, Jae-Seok Kim, Takashi Takahashi
Background: Streptococcus canis is a commensal bacterium in companion animals. This microorganism can infect humans who have been in deep contact with or bitten by pet dogs, suggesting that the skin/soft tissue is one of infection entry sites. To understand pathological process in human cells, we aimed to determine S. canis transcriptomic changes in invasive environments of human keratinocytes.
Methods: We selected one isolate from candidates with whole-genome sequences, based on re-obtained cell invasion ability (CIA) data into human keratinocytes along with bacterial cytotoxicity. RNA-sequencing was conducted for the samples at baselines and 2 h/5 hr post-inoculation using NovaSeq 6000. Global/differential gene expression analyses [principal component analysis (PCA)/k-means clustering analysis/differentially expressed gene (DEG) analyses] were performed. We classified DEGs into their functional categories. To validate transcriptomic results, we did quantitative reverse transcription-polymerase chain reaction (qRT-PCR) assays.
Results: FU1 isolate was selected from seven candidates, based on re-obtained CIA data with less cytotoxicity. Total read bases of 6.17-9.02 Gbp were obtained by RNA-sequencing. PCA and k-means clustering analysis indicated clustering according to their inoculation times. Volcano plots and Venn diagrams revealed that S. canis invasion into keratinocytes produced altered distributions of many genes. Gene ontology enrichment analysis showed most of the gene expressions were downregulated. DEG functional analysis showed the downregulated DEGs belonging to energy production and conversion/carbohydrate transport and metabolism/amino acid transport and metabolism/nucleotide transport and metabolism, with the upregulated DEGs belonging to transcription. qRT-PCR assays for downregulated/upregulated expressions of four genes (pgk-slo/opuAA-kdpB) validated transcriptomic results.
Conclusion: Our observations suggest that S. canis can downregulate its metabolism-associated gene expressions in human keratinocyte environments. The observed gene expression changes can imply the latent infection in human cells. Further investigation is needed to elucidate the underlying mechanisms for the latent infection.
{"title":"Streptococcus canis transcriptomic modifications in host cell entry environments of human keratinocytes.","authors":"Haruno Yoshida, Mieko Goto, Yuzo Tsuyuki, Jae-Seok Kim, Takashi Takahashi","doi":"10.1186/s12864-024-10974-z","DOIUrl":"10.1186/s12864-024-10974-z","url":null,"abstract":"<p><strong>Background: </strong>Streptococcus canis is a commensal bacterium in companion animals. This microorganism can infect humans who have been in deep contact with or bitten by pet dogs, suggesting that the skin/soft tissue is one of infection entry sites. To understand pathological process in human cells, we aimed to determine S. canis transcriptomic changes in invasive environments of human keratinocytes.</p><p><strong>Methods: </strong>We selected one isolate from candidates with whole-genome sequences, based on re-obtained cell invasion ability (CIA) data into human keratinocytes along with bacterial cytotoxicity. RNA-sequencing was conducted for the samples at baselines and 2 h/5 hr post-inoculation using NovaSeq 6000. Global/differential gene expression analyses [principal component analysis (PCA)/k-means clustering analysis/differentially expressed gene (DEG) analyses] were performed. We classified DEGs into their functional categories. To validate transcriptomic results, we did quantitative reverse transcription-polymerase chain reaction (qRT-PCR) assays.</p><p><strong>Results: </strong>FU1 isolate was selected from seven candidates, based on re-obtained CIA data with less cytotoxicity. Total read bases of 6.17-9.02 Gbp were obtained by RNA-sequencing. PCA and k-means clustering analysis indicated clustering according to their inoculation times. Volcano plots and Venn diagrams revealed that S. canis invasion into keratinocytes produced altered distributions of many genes. Gene ontology enrichment analysis showed most of the gene expressions were downregulated. DEG functional analysis showed the downregulated DEGs belonging to energy production and conversion/carbohydrate transport and metabolism/amino acid transport and metabolism/nucleotide transport and metabolism, with the upregulated DEGs belonging to transcription. qRT-PCR assays for downregulated/upregulated expressions of four genes (pgk-slo/opuAA-kdpB) validated transcriptomic results.</p><p><strong>Conclusion: </strong>Our observations suggest that S. canis can downregulate its metabolism-associated gene expressions in human keratinocyte environments. The observed gene expression changes can imply the latent infection in human cells. Further investigation is needed to elucidate the underlying mechanisms for the latent infection.</p>","PeriodicalId":9030,"journal":{"name":"BMC Genomics","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11533360/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142575469","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: Cotton serves as a primary source of natural fibers crucial for the textile industry. However, environmental elements such as drought have posed challenges to cotton cultivation, resulting in adverse impacts on both production and fiber quality. Improving cotton's resilience to drought could mitigate yield losses and foster the expansion of cotton farming. Rab7 protein, widely present in organisms, controls the degradation and recycling of cargo, and has a potential role in biotic and abiotic tolerance. However, comprehensive exploration of the Rab7 gene family in Gossypium remains scarce.
Results: Herein, we identified a total of 10, 10, 20, and 20 Rab7 genes through genome-wide analysis in Gossypium arboreum, Gossypium raimondii, Gossypium hirsutum, and Gossypium barbadense, respectively. Collinearity analysis unveiled the pivotal role of whole genome or segmental duplication events in the expansion of GhRab7s. Study of gene architecture, conserved protein motifs, and domains suggested the conservation of structure and function throughout evolution. Exploration of cis-regulatory elements revealed the responsiveness of GhRab7 genes to abiotic stress, corroborated by transcriptome analysis under diverse environmental stresses. Notably, the greatly induced expression of GhRab7B3-A under drought treatment prompted us to investigate its function through virus-induced gene silencing (VIGS) assays. Silencing GhRab7B3-A led to exacerbated dehydration and wilting compared with the control. Additionally, inhibition of stomatal closure, antioxidant enzyme activities and expression patterns of genes responsive to abiotic stress were observed in GhRab7B3-A silenced plants.
Conclusions: This study sheds light on Rab7 members in cotton, identifies a gene linked to drought stress, and paves the way for additional investigation of Rab7 genes associated with drought stress tolerance.
{"title":"Systematical characterization of Rab7 gene family in Gossypium and potential functions of GhRab7B3-A gene in drought tolerance.","authors":"Mengyuan Yan, Zhiwei Dong, Tian Pan, Libei Li, Ziyue Zhou, Wen Li, Zhanbo Ke, Zhen Feng, Shuxun Yu","doi":"10.1186/s12864-024-10930-x","DOIUrl":"10.1186/s12864-024-10930-x","url":null,"abstract":"<p><strong>Background: </strong>Cotton serves as a primary source of natural fibers crucial for the textile industry. However, environmental elements such as drought have posed challenges to cotton cultivation, resulting in adverse impacts on both production and fiber quality. Improving cotton's resilience to drought could mitigate yield losses and foster the expansion of cotton farming. Rab7 protein, widely present in organisms, controls the degradation and recycling of cargo, and has a potential role in biotic and abiotic tolerance. However, comprehensive exploration of the Rab7 gene family in Gossypium remains scarce.</p><p><strong>Results: </strong>Herein, we identified a total of 10, 10, 20, and 20 Rab7 genes through genome-wide analysis in Gossypium arboreum, Gossypium raimondii, Gossypium hirsutum, and Gossypium barbadense, respectively. Collinearity analysis unveiled the pivotal role of whole genome or segmental duplication events in the expansion of GhRab7s. Study of gene architecture, conserved protein motifs, and domains suggested the conservation of structure and function throughout evolution. Exploration of cis-regulatory elements revealed the responsiveness of GhRab7 genes to abiotic stress, corroborated by transcriptome analysis under diverse environmental stresses. Notably, the greatly induced expression of GhRab7B3-A under drought treatment prompted us to investigate its function through virus-induced gene silencing (VIGS) assays. Silencing GhRab7B3-A led to exacerbated dehydration and wilting compared with the control. Additionally, inhibition of stomatal closure, antioxidant enzyme activities and expression patterns of genes responsive to abiotic stress were observed in GhRab7B3-A silenced plants.</p><p><strong>Conclusions: </strong>This study sheds light on Rab7 members in cotton, identifies a gene linked to drought stress, and paves the way for additional investigation of Rab7 genes associated with drought stress tolerance.</p>","PeriodicalId":9030,"journal":{"name":"BMC Genomics","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11529164/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142557144","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01DOI: 10.1186/s12864-024-10899-7
Tiffany A Kosch, María Torres-Sánchez, H Christoph Liedtke, Kyle Summers, Maximina H Yun, Andrew J Crawford, Simon T Maddock, Md Sabbir Ahammed, Victor L N Araújo, Lorenzo V Bertola, Gary M Bucciarelli, Albert Carné, Céline M Carneiro, Kin O Chan, Ying Chen, Angelica Crottini, Jessica M da Silva, Robert D Denton, Carolin Dittrich, Gonçalo Espregueira Themudo, Katherine A Farquharson, Natalie J Forsdick, Edward Gilbert, Jing Che, Barbara A Katzenback, Ramachandran Kotharambath, Nicholas A Levis, Roberto Márquez, Glib Mazepa, Kevin P Mulder, Hendrik Müller, Mary J O'Connell, Pablo Orozco-terWengel, Gemma Palomar, Alice Petzold, David W Pfennig, Karin S Pfennig, Michael S Reichert, Jacques Robert, Mark D Scherz, Karen Siu-Ting, Anthony A Snead, Matthias Stöck, Adam M M Stuckert, Jennifer L Stynoski, Rebecca D Tarvin, Katharina C Wollenberg Valero
Amphibians represent a diverse group of tetrapods, marked by deep divergence times between their three systematic orders and families. Studying amphibian biology through the genomics lens increases our understanding of the features of this animal class and that of other terrestrial vertebrates. The need for amphibian genomic resources is more urgent than ever due to the increasing threats to this group. Amphibians are one of the most imperiled taxonomic groups, with approximately 41% of species threatened with extinction due to habitat loss, changes in land use patterns, disease, climate change, and their synergistic effects. Amphibian genomic resources have provided a better understanding of ontogenetic diversity, tissue regeneration, diverse life history and reproductive modes, anti-predator strategies, and resilience and adaptive responses. They also serve as essential models for studying broad genomic traits, such as evolutionary genome expansions and contractions, as they exhibit the widest range of genome sizes among all animal taxa and possess multiple mechanisms of genetic sex determination. Despite these features, genome sequencing of amphibians has significantly lagged behind that of other vertebrates, primarily due to the challenges of assembling their large, repeat-rich genomes and the relative lack of societal support. The emergence of long-read sequencing technologies, combined with advanced molecular and computational techniques that improve scaffolding and reduce computational workloads, is now making it possible to address some of these challenges. To promote and accelerate the production and use of amphibian genomics research through international coordination and collaboration, we launched the Amphibian Genomics Consortium (AGC, https://mvs.unimelb.edu.au/amphibian-genomics-consortium ) in early 2023. This burgeoning community already has more than 282 members from 41 countries. The AGC aims to leverage the diverse capabilities of its members to advance genomic resources for amphibians and bridge the implementation gap between biologists, bioinformaticians, and conservation practitioners. Here we evaluate the state of the field of amphibian genomics, highlight previous studies, present challenges to overcome, and call on the research and conservation communities to unite as part of the AGC to enable amphibian genomics research to "leap" to the next level.
{"title":"The Amphibian Genomics Consortium: advancing genomic and genetic resources for amphibian research and conservation.","authors":"Tiffany A Kosch, María Torres-Sánchez, H Christoph Liedtke, Kyle Summers, Maximina H Yun, Andrew J Crawford, Simon T Maddock, Md Sabbir Ahammed, Victor L N Araújo, Lorenzo V Bertola, Gary M Bucciarelli, Albert Carné, Céline M Carneiro, Kin O Chan, Ying Chen, Angelica Crottini, Jessica M da Silva, Robert D Denton, Carolin Dittrich, Gonçalo Espregueira Themudo, Katherine A Farquharson, Natalie J Forsdick, Edward Gilbert, Jing Che, Barbara A Katzenback, Ramachandran Kotharambath, Nicholas A Levis, Roberto Márquez, Glib Mazepa, Kevin P Mulder, Hendrik Müller, Mary J O'Connell, Pablo Orozco-terWengel, Gemma Palomar, Alice Petzold, David W Pfennig, Karin S Pfennig, Michael S Reichert, Jacques Robert, Mark D Scherz, Karen Siu-Ting, Anthony A Snead, Matthias Stöck, Adam M M Stuckert, Jennifer L Stynoski, Rebecca D Tarvin, Katharina C Wollenberg Valero","doi":"10.1186/s12864-024-10899-7","DOIUrl":"10.1186/s12864-024-10899-7","url":null,"abstract":"<p><p>Amphibians represent a diverse group of tetrapods, marked by deep divergence times between their three systematic orders and families. Studying amphibian biology through the genomics lens increases our understanding of the features of this animal class and that of other terrestrial vertebrates. The need for amphibian genomic resources is more urgent than ever due to the increasing threats to this group. Amphibians are one of the most imperiled taxonomic groups, with approximately 41% of species threatened with extinction due to habitat loss, changes in land use patterns, disease, climate change, and their synergistic effects. Amphibian genomic resources have provided a better understanding of ontogenetic diversity, tissue regeneration, diverse life history and reproductive modes, anti-predator strategies, and resilience and adaptive responses. They also serve as essential models for studying broad genomic traits, such as evolutionary genome expansions and contractions, as they exhibit the widest range of genome sizes among all animal taxa and possess multiple mechanisms of genetic sex determination. Despite these features, genome sequencing of amphibians has significantly lagged behind that of other vertebrates, primarily due to the challenges of assembling their large, repeat-rich genomes and the relative lack of societal support. The emergence of long-read sequencing technologies, combined with advanced molecular and computational techniques that improve scaffolding and reduce computational workloads, is now making it possible to address some of these challenges. To promote and accelerate the production and use of amphibian genomics research through international coordination and collaboration, we launched the Amphibian Genomics Consortium (AGC, https://mvs.unimelb.edu.au/amphibian-genomics-consortium ) in early 2023. This burgeoning community already has more than 282 members from 41 countries. The AGC aims to leverage the diverse capabilities of its members to advance genomic resources for amphibians and bridge the implementation gap between biologists, bioinformaticians, and conservation practitioners. Here we evaluate the state of the field of amphibian genomics, highlight previous studies, present challenges to overcome, and call on the research and conservation communities to unite as part of the AGC to enable amphibian genomics research to \"leap\" to the next level.</p>","PeriodicalId":9030,"journal":{"name":"BMC Genomics","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11529218/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142563866","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01DOI: 10.1186/s12864-024-10909-8
Noha Salah Soliman, May Sherif Soliman, Sahar Mohammed Khairat, Maha Ali Gad, Sherine Shawky, Amani Ali Elkholy
Background: Zoonotic human tuberculosis (TB) caused by Mycobacterium bovis (M. bovis) is as vital as Mycobacterium tuberculosis, however with scarce available information. We aimed to use whole-genome sequencing (WGS) technology to take a deep insight into the circulating genotypes of human M. bovis and the genomic characteristics underlying virulence and drug resistance.
Methods: The study included smear positive Ziehl-Neelsen samples from patients with suspected tuberculosis. Samples were cultured on Lowenstein-Jensen media and suspected colonies of M. bovis were selected to undergo DNA extraction and WGS. Data was analysed using the Bacterial and Viral Bioinformatics Resource Center (BV-BRC), and online bioinformatics tools. A phylogenetic tree was constructed for our sequenced strains, in addition to a set of 59 previously sequenced M. bovis genomes from different hosts and countries.
Results: Out of total 112 mycobacterial positive cultures, five M. bovis were isolated and underwent WGS. All sequenced strains belonged to Mycobacterium tuberculosis var bovis, spoligotype BOV_1; BOV_11. Resistance gene mutations were determined in 100% of strains to pyrazinamide (pncA and rpsA), isoniazid (KatG and ahpC), ethambutol (embB, embC, embR and ubiA), streptomycin (rpsl) and fluoroquinolones (gyrA and gyrB). Rifampin (rpoB and rpoC) and delamanid (fbiC) resistance genes were found in 80% of strains. The major represented virulence classes were the secretion system, cell surface components and regulation system. The phylogenetic analysis revealed close genetic relatedness of three sequenced M. bovis strains to previous reported cow strains from Egypt and human strains from France, as well as relatedness of one M. bovis strain to four human Algerian strains. One sequenced strain was related to one cow strain from Egypt and a human strain from South Africa.
Conclusions: All sequenced M. bovis isolates showed the same spoligotype, but diverse phylogeny. Resistance gene mutations were detected for anti-TB drugs including pyrazinamide, isoniazid, streptomycin, ethambutol, fluoroquinolones, cycloserine, rifampin and delamanid. The virulence profile comprised genes assigned mainly to secretion system, cell surface components and regulation system. Phylogenetic analysis revealed genetic relatedness between our isolates and previously sequenced bovine strains from Egypt as well as human strains from other nearby countries in the region.
{"title":"Genetic diversities and drug resistance in Mycobacterium bovis isolates from zoonotic tuberculosis using whole genome sequencing.","authors":"Noha Salah Soliman, May Sherif Soliman, Sahar Mohammed Khairat, Maha Ali Gad, Sherine Shawky, Amani Ali Elkholy","doi":"10.1186/s12864-024-10909-8","DOIUrl":"10.1186/s12864-024-10909-8","url":null,"abstract":"<p><strong>Background: </strong>Zoonotic human tuberculosis (TB) caused by Mycobacterium bovis (M. bovis) is as vital as Mycobacterium tuberculosis, however with scarce available information. We aimed to use whole-genome sequencing (WGS) technology to take a deep insight into the circulating genotypes of human M. bovis and the genomic characteristics underlying virulence and drug resistance.</p><p><strong>Methods: </strong>The study included smear positive Ziehl-Neelsen samples from patients with suspected tuberculosis. Samples were cultured on Lowenstein-Jensen media and suspected colonies of M. bovis were selected to undergo DNA extraction and WGS. Data was analysed using the Bacterial and Viral Bioinformatics Resource Center (BV-BRC), and online bioinformatics tools. A phylogenetic tree was constructed for our sequenced strains, in addition to a set of 59 previously sequenced M. bovis genomes from different hosts and countries.</p><p><strong>Results: </strong>Out of total 112 mycobacterial positive cultures, five M. bovis were isolated and underwent WGS. All sequenced strains belonged to Mycobacterium tuberculosis var bovis, spoligotype BOV_1; BOV_11. Resistance gene mutations were determined in 100% of strains to pyrazinamide (pncA and rpsA), isoniazid (KatG and ahpC), ethambutol (embB, embC, embR and ubiA), streptomycin (rpsl) and fluoroquinolones (gyrA and gyrB). Rifampin (rpoB and rpoC) and delamanid (fbiC) resistance genes were found in 80% of strains. The major represented virulence classes were the secretion system, cell surface components and regulation system. The phylogenetic analysis revealed close genetic relatedness of three sequenced M. bovis strains to previous reported cow strains from Egypt and human strains from France, as well as relatedness of one M. bovis strain to four human Algerian strains. One sequenced strain was related to one cow strain from Egypt and a human strain from South Africa.</p><p><strong>Conclusions: </strong>All sequenced M. bovis isolates showed the same spoligotype, but diverse phylogeny. Resistance gene mutations were detected for anti-TB drugs including pyrazinamide, isoniazid, streptomycin, ethambutol, fluoroquinolones, cycloserine, rifampin and delamanid. The virulence profile comprised genes assigned mainly to secretion system, cell surface components and regulation system. Phylogenetic analysis revealed genetic relatedness between our isolates and previously sequenced bovine strains from Egypt as well as human strains from other nearby countries in the region.</p>","PeriodicalId":9030,"journal":{"name":"BMC Genomics","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11529264/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142563848","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01DOI: 10.1186/s12864-024-10945-4
Artun Yibar, Nihed Ajmi, Muhammed Duman
Background: This study aimed to assess the prevalence and genomic characteristics of Shiga-toxigenic (STEC) and Enteroaggregative E. coli (EAEC) strains in raw mussels and ready-to-eat (RTE)-stuffed mussels, focusing on potential public health implications for identifying virulence and antimicrobial resistance genes.
Results: The genome sequence analysis identified the E. coli strain named 23EM as serotype O111:H12, with adhesion (fimH-54) and fumarate hydratase (fumC-11) genes. The draft genome (4.9 Mb, 50.6% GC content, 111 contigs, 4,688 genes) is available in NCBI GenBank (accession JAWXVJ000000000). The strain, classified as ST292 and CC ST10, showed high similarity to nonpathogenic E. coli MG1655 but was distinct from pathogenic strains such as EAEC and ExPEC. In silico serotyping revealed the presence of O111-antigen flippase (wzx) and H12-antigen flagellin (fliC) genes. The strain harbors an IncFII (pCoo) plasmid with 96.95% identity. PathogenFinder predicted a 92% probability of being a human pathogen, supported by 720 pathogenic protein families. CRISPR analysis identified one high-evidence sequence with nine spacers and six low-evidence sequences. Phylogenetic analysis using RAxML positioned 23EM close to nonpathogenic E. coli but distant from other pathogenic strains. Antimicrobial resistance genes across multiple classes, including macrolides, fluoroquinolones, and aminoglycosides, were identified. The strain also contains several virulence factors, such as adhesins (e.g., ECP, ELF, TIF, type IV pili), and autotransporter genes (espP, pic), highlighting its significant pathogenic potential and public health risk.
Conclusions: This study highlights the ability of the detection of E. coli strains harboring virulence and antimicrobial resistance genes in mussels, thus emphasizing the importance of ongoing surveillance and careful consideration of the potential risks associated with the consumption of these shellfish.
{"title":"First report and genomic characterization of Escherichia coli O111:H12 serotype from raw mussels in Türkiye.","authors":"Artun Yibar, Nihed Ajmi, Muhammed Duman","doi":"10.1186/s12864-024-10945-4","DOIUrl":"10.1186/s12864-024-10945-4","url":null,"abstract":"<p><strong>Background: </strong>This study aimed to assess the prevalence and genomic characteristics of Shiga-toxigenic (STEC) and Enteroaggregative E. coli (EAEC) strains in raw mussels and ready-to-eat (RTE)-stuffed mussels, focusing on potential public health implications for identifying virulence and antimicrobial resistance genes.</p><p><strong>Results: </strong>The genome sequence analysis identified the E. coli strain named 23EM as serotype O111:H12, with adhesion (fimH-54) and fumarate hydratase (fumC-11) genes. The draft genome (4.9 Mb, 50.6% GC content, 111 contigs, 4,688 genes) is available in NCBI GenBank (accession JAWXVJ000000000). The strain, classified as ST292 and CC ST10, showed high similarity to nonpathogenic E. coli MG1655 but was distinct from pathogenic strains such as EAEC and ExPEC. In silico serotyping revealed the presence of O111-antigen flippase (wzx) and H12-antigen flagellin (fliC) genes. The strain harbors an IncFII (pCoo) plasmid with 96.95% identity. PathogenFinder predicted a 92% probability of being a human pathogen, supported by 720 pathogenic protein families. CRISPR analysis identified one high-evidence sequence with nine spacers and six low-evidence sequences. Phylogenetic analysis using RAxML positioned 23EM close to nonpathogenic E. coli but distant from other pathogenic strains. Antimicrobial resistance genes across multiple classes, including macrolides, fluoroquinolones, and aminoglycosides, were identified. The strain also contains several virulence factors, such as adhesins (e.g., ECP, ELF, TIF, type IV pili), and autotransporter genes (espP, pic), highlighting its significant pathogenic potential and public health risk.</p><p><strong>Conclusions: </strong>This study highlights the ability of the detection of E. coli strains harboring virulence and antimicrobial resistance genes in mussels, thus emphasizing the importance of ongoing surveillance and careful consideration of the potential risks associated with the consumption of these shellfish.</p>","PeriodicalId":9030,"journal":{"name":"BMC Genomics","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11531133/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142563857","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01DOI: 10.1186/s12864-024-10867-1
Cheng Zhang, Kailu Zhang, Min Zhang, Daowu Zhang, Qi Ye, Xianrong Wang, Takashi Akagi, Yifan Duan
Colored leaves, a notable horticultural trait, have high research and ornamental value. The evergreen sweet olive (Osmanthus fragrans), one of the top ten traditional flowers in China, has been cultivated for more than two thousand years. However, in recent years, an increasing number of O. fragrans cultivars with colored leaves have been cultivated for their ornamental value. To study the molecular mechanism underlying the observed changes in leaf color, we selected O. fragrans 'Yinbi Shuanghui' (Y), which has yellow-white leaves, and O. fragrans 'Sijigui' (S), which has green leaves, as materials. Pigment content measurement showed that the chlorophyll, carotenoid and anthocyanin contents in Y were lower than in S. According to the SWATH-MS sequencing results, a total of 3,959 proteins were quantitatively identified, 1,300 of which were differentially expressed proteins (DEPs), including 782 up-regulated and 518 down-regulated proteins in Y compared to S. Functional enrichment analysis of DEPs revealed that down-regulated expression of photosynthesis related proteins may lead to the inhibition of chlorophyll synthesis in Y, this may be the main cause of leaf color change. Moreover, a protein interaction prediction model also showed that proteins such as PetC, PsbO, PsbP, and PsbQ were key proteins in the interaction network, and the up-regulated proteins participating in the anthocyanin and carotenoid pathways may be related to the formation of yellow-white leaves. Taken together, our findings represent the first SWATH-MS-based proteomic report on colored leaf O. fragrans and reveal that chlorophyll synthesis and secondary metabolism pathways contribute to the changes in leaf color.
{"title":"SWATH-MS based proteomics reveals the role of photosynthesis related proteins and secondary metabolic pathways in the colored leaves of sweet olive (Osmanthus fragrans).","authors":"Cheng Zhang, Kailu Zhang, Min Zhang, Daowu Zhang, Qi Ye, Xianrong Wang, Takashi Akagi, Yifan Duan","doi":"10.1186/s12864-024-10867-1","DOIUrl":"10.1186/s12864-024-10867-1","url":null,"abstract":"<p><p>Colored leaves, a notable horticultural trait, have high research and ornamental value. The evergreen sweet olive (Osmanthus fragrans), one of the top ten traditional flowers in China, has been cultivated for more than two thousand years. However, in recent years, an increasing number of O. fragrans cultivars with colored leaves have been cultivated for their ornamental value. To study the molecular mechanism underlying the observed changes in leaf color, we selected O. fragrans 'Yinbi Shuanghui' (Y), which has yellow-white leaves, and O. fragrans 'Sijigui' (S), which has green leaves, as materials. Pigment content measurement showed that the chlorophyll, carotenoid and anthocyanin contents in Y were lower than in S. According to the SWATH-MS sequencing results, a total of 3,959 proteins were quantitatively identified, 1,300 of which were differentially expressed proteins (DEPs), including 782 up-regulated and 518 down-regulated proteins in Y compared to S. Functional enrichment analysis of DEPs revealed that down-regulated expression of photosynthesis related proteins may lead to the inhibition of chlorophyll synthesis in Y, this may be the main cause of leaf color change. Moreover, a protein interaction prediction model also showed that proteins such as PetC, PsbO, PsbP, and PsbQ were key proteins in the interaction network, and the up-regulated proteins participating in the anthocyanin and carotenoid pathways may be related to the formation of yellow-white leaves. Taken together, our findings represent the first SWATH-MS-based proteomic report on colored leaf O. fragrans and reveal that chlorophyll synthesis and secondary metabolism pathways contribute to the changes in leaf color.</p>","PeriodicalId":9030,"journal":{"name":"BMC Genomics","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11529170/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142563864","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-31DOI: 10.1186/s12864-024-10931-w
Harpreet Kaur, Laura M Shannon, Deborah A Samac
Background: The concept of pangenomics and the importance of structural variants is gaining recognition within the plant genomics community. Due to advancements in sequencing and computational technology, it has become feasible to sequence the entire genome of numerous individuals of a single species at a reasonable cost. Pangenomes have been constructed for many major diploid crops, including rice, maize, soybean, sorghum, pearl millet, peas, sunflower, grapes, and mustards. However, pangenomes for polyploid species are relatively scarce and are available in only few crops including wheat, cotton, rapeseed, and potatoes.
Main body: In this review, we explore the various methods used in crop pangenome development, discussing the challenges and implications of these techniques based on insights from published pangenome studies. We offer a systematic guide and discuss the tools available for constructing a pangenome and conducting downstream analyses. Alfalfa, a highly heterozygous, cross pollinated and autotetraploid forage crop species, is used as an example to discuss the concerns and challenges offered by polyploid crop species. We conducted a comparative analysis using linear and graph-based methods by constructing an alfalfa graph pangenome using three publicly available genome assemblies. To illustrate the intricacies captured by pangenome graphs for a complex crop genome, we used five different gene sequences and aligned them against the three graph-based pangenomes. The comparison of the three graph pangenome methods reveals notable variations in the genomic variation captured by each pipeline.
Conclusion: Pangenome resources are proving invaluable by offering insights into core and dispensable genes, novel gene discovery, and genome-wide patterns of variation. Developing user-friendly online portals for linear pangenome visualization has made these resources accessible to the broader scientific and breeding community. However, challenges remain with graph-based pangenomes including compatibility with other tools, extraction of sequence for regions of interest, and visualization of genetic variation captured in pangenome graphs. These issues necessitate further refinement of tools and pipelines to effectively address the complexities of polyploid, highly heterozygous, and cross-pollinated species.
{"title":"A stepwise guide for pangenome development in crop plants: an alfalfa (Medicago sativa) case study.","authors":"Harpreet Kaur, Laura M Shannon, Deborah A Samac","doi":"10.1186/s12864-024-10931-w","DOIUrl":"10.1186/s12864-024-10931-w","url":null,"abstract":"<p><strong>Background: </strong>The concept of pangenomics and the importance of structural variants is gaining recognition within the plant genomics community. Due to advancements in sequencing and computational technology, it has become feasible to sequence the entire genome of numerous individuals of a single species at a reasonable cost. Pangenomes have been constructed for many major diploid crops, including rice, maize, soybean, sorghum, pearl millet, peas, sunflower, grapes, and mustards. However, pangenomes for polyploid species are relatively scarce and are available in only few crops including wheat, cotton, rapeseed, and potatoes.</p><p><strong>Main body: </strong>In this review, we explore the various methods used in crop pangenome development, discussing the challenges and implications of these techniques based on insights from published pangenome studies. We offer a systematic guide and discuss the tools available for constructing a pangenome and conducting downstream analyses. Alfalfa, a highly heterozygous, cross pollinated and autotetraploid forage crop species, is used as an example to discuss the concerns and challenges offered by polyploid crop species. We conducted a comparative analysis using linear and graph-based methods by constructing an alfalfa graph pangenome using three publicly available genome assemblies. To illustrate the intricacies captured by pangenome graphs for a complex crop genome, we used five different gene sequences and aligned them against the three graph-based pangenomes. The comparison of the three graph pangenome methods reveals notable variations in the genomic variation captured by each pipeline.</p><p><strong>Conclusion: </strong>Pangenome resources are proving invaluable by offering insights into core and dispensable genes, novel gene discovery, and genome-wide patterns of variation. Developing user-friendly online portals for linear pangenome visualization has made these resources accessible to the broader scientific and breeding community. However, challenges remain with graph-based pangenomes including compatibility with other tools, extraction of sequence for regions of interest, and visualization of genetic variation captured in pangenome graphs. These issues necessitate further refinement of tools and pipelines to effectively address the complexities of polyploid, highly heterozygous, and cross-pollinated species.</p>","PeriodicalId":9030,"journal":{"name":"BMC Genomics","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11526573/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142557133","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}