首页 > 最新文献

BMC Genomics最新文献

英文 中文
Whole-genome relaxed selection and molecular constraints in Triplophysa under adapted Qinghai-Tibetan Plateau.
IF 3.5 2区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2025-02-10 DOI: 10.1186/s12864-025-11290-w
Qingyuan Zhao, Fei Xie, Qiuyue He, Lulu Wang, Kenan Guo, Cong Zhang, Yong Wang

High-altitude environments are inhospitable, but Triplophysa, the largest taxon among the three major fish groups in the Qinghai-Tibetan Plateau (QTP), is an exception. However, the evolutionary profiling of the common ancestor and its contribution to the adaptation of existing QTP native species is unclear.We researched the comparative genomics of Triplophysa species and found that the genome-wide genes of Triplophysa and its ancestry have the characteristics of rapid evolution.Moreover, the rapid evolution of the ancestral genes was caused by relaxed selection. Natural selection analysis showed that more ancestral relaxed selection genes were under strongly purifying selection and showed higher expression in QTP endemic Triplophysa species.The change in natural selection might be associated with the adaptation to QTP. It should be noted that SPT5 homolog, DSIF elongation factor subunit (supt5h) experienced relaxed selection in common ancestral populations of Triplophysa but under purifying selection in extant species, which might be related to hypoxia adaptation of QTP. In summary, the extant species in different environments were used to infer the evolutionary profile of the common ancestor and to identify candidate genes based on changes in natural selection. Our work might provide new clues for understanding adaptation to extreme environments.

{"title":"Whole-genome relaxed selection and molecular constraints in Triplophysa under adapted Qinghai-Tibetan Plateau.","authors":"Qingyuan Zhao, Fei Xie, Qiuyue He, Lulu Wang, Kenan Guo, Cong Zhang, Yong Wang","doi":"10.1186/s12864-025-11290-w","DOIUrl":"10.1186/s12864-025-11290-w","url":null,"abstract":"<p><p>High-altitude environments are inhospitable, but Triplophysa, the largest taxon among the three major fish groups in the Qinghai-Tibetan Plateau (QTP), is an exception. However, the evolutionary profiling of the common ancestor and its contribution to the adaptation of existing QTP native species is unclear.We researched the comparative genomics of Triplophysa species and found that the genome-wide genes of Triplophysa and its ancestry have the characteristics of rapid evolution.Moreover, the rapid evolution of the ancestral genes was caused by relaxed selection. Natural selection analysis showed that more ancestral relaxed selection genes were under strongly purifying selection and showed higher expression in QTP endemic Triplophysa species.The change in natural selection might be associated with the adaptation to QTP. It should be noted that SPT5 homolog, DSIF elongation factor subunit (supt5h) experienced relaxed selection in common ancestral populations of Triplophysa but under purifying selection in extant species, which might be related to hypoxia adaptation of QTP. In summary, the extant species in different environments were used to infer the evolutionary profile of the common ancestor and to identify candidate genes based on changes in natural selection. Our work might provide new clues for understanding adaptation to extreme environments.</p>","PeriodicalId":9030,"journal":{"name":"BMC Genomics","volume":"26 1","pages":"123"},"PeriodicalIF":3.5,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11808961/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143381462","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nanopore adaptive sampling to identify the NLR gene family in melon (Cucumis melo L.).
IF 3.5 2区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2025-02-10 DOI: 10.1186/s12864-025-11295-5
Javier Belinchon-Moreno, Aurélie Berard, Aurélie Canaguier, Véronique Chovelon, Corinne Cruaud, Stéfan Engelen, Rafael Feriche-Linares, Isabelle Le-Clainche, William Marande, Vincent Rittener-Ruff, Jacques Lagnel, Damien Hinsinger, Nathalie Boissot, Patricia Faivre-Rampant

Background: Nanopore adaptive sampling (NAS) offers a promising approach for assessing genetic diversity in targeted genomic regions. Here we designed and validated an experiment to enrich a set of resistance genes in several melon cultivars as a proof of concept.

Results: Using the same reference to guide read acceptance or rejection with NAS, we successfully and accurately reconstructed the 15 regions in two newly assembled ssp. melo genomes and in a third ssp. agrestis cultivar. We obtained fourfold enrichment regardless of the tested samples, but with some variations according to the enriched regions. The accuracy of our assembly was further confirmed by PCR in the agrestis cultivar. We discussed parameters that could influence the enrichment and accuracy of NAS generated assemblies.

Conclusions: Overall, we demonstrated that NAS is a simple and efficient approach for exploring complex genomic regions, such as clusters of Nucleotide-binding site leucine-rich repeat (NLR) resistance genes. These regions are characterized by containing a high number of copy number variations, presence-absence polymorphisms and repetitive elements. These features make accurate assembly challenging but are crucial to study due to their central role in plant immunity and disease resistance. This approach facilitates resistance gene characterization in a large number of individuals, as required when breeding new cultivars suitable for the agroecological transition.

{"title":"Nanopore adaptive sampling to identify the NLR gene family in melon (Cucumis melo L.).","authors":"Javier Belinchon-Moreno, Aurélie Berard, Aurélie Canaguier, Véronique Chovelon, Corinne Cruaud, Stéfan Engelen, Rafael Feriche-Linares, Isabelle Le-Clainche, William Marande, Vincent Rittener-Ruff, Jacques Lagnel, Damien Hinsinger, Nathalie Boissot, Patricia Faivre-Rampant","doi":"10.1186/s12864-025-11295-5","DOIUrl":"10.1186/s12864-025-11295-5","url":null,"abstract":"<p><strong>Background: </strong>Nanopore adaptive sampling (NAS) offers a promising approach for assessing genetic diversity in targeted genomic regions. Here we designed and validated an experiment to enrich a set of resistance genes in several melon cultivars as a proof of concept.</p><p><strong>Results: </strong>Using the same reference to guide read acceptance or rejection with NAS, we successfully and accurately reconstructed the 15 regions in two newly assembled ssp. melo genomes and in a third ssp. agrestis cultivar. We obtained fourfold enrichment regardless of the tested samples, but with some variations according to the enriched regions. The accuracy of our assembly was further confirmed by PCR in the agrestis cultivar. We discussed parameters that could influence the enrichment and accuracy of NAS generated assemblies.</p><p><strong>Conclusions: </strong>Overall, we demonstrated that NAS is a simple and efficient approach for exploring complex genomic regions, such as clusters of Nucleotide-binding site leucine-rich repeat (NLR) resistance genes. These regions are characterized by containing a high number of copy number variations, presence-absence polymorphisms and repetitive elements. These features make accurate assembly challenging but are crucial to study due to their central role in plant immunity and disease resistance. This approach facilitates resistance gene characterization in a large number of individuals, as required when breeding new cultivars suitable for the agroecological transition.</p>","PeriodicalId":9030,"journal":{"name":"BMC Genomics","volume":"26 1","pages":"126"},"PeriodicalIF":3.5,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11808957/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143390000","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of a transient lack of dietary mineral phosphorus on renal gene expression and plasma metabolites in two high-yielding laying hen strains.
IF 3.5 2区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2025-02-10 DOI: 10.1186/s12864-025-11294-6
Hiba Qasir, Henry Reyer, Michael Oster, Siriluck Ponsuksili, Nares Trakooljul, Vera Sommerfeld, Markus Rodehutscord, Klaus Wimmers

Background: There is an emerging body of evidence that current poultry feed is formulated in excess for phosphorus (P), which results in unnecessarily high P excretions. Sustainable concepts for agricultural P flows should trigger animal-intrinsic mechanisms for efficient P utilization. In the current study, Lohmann Brown (LB) and Lohmann Selected Leghorn (LSL) laying hens were fed either a high P diet (P+) with 1 g/kg mineral P supplement or a low P diet (P-) with 0 g/kg mineral P supplement for a period of 4 weeks prior to sampling. Before and after onset of laying, i.e., at 19 and 24 weeks of life, kidney and plasma samples were collected to investigate the endogenous P utilization in response to restricted dietary P, laying hen strain, and sexual maturation.

Results: Plasma analyses of minerals and metabolites confirmed the response to a low P diet, which was characterized by a significant reduction in plasma P levels at week 19 in both strains. The plasma calcium (Ca) levels were tightly regulated throughout the entire experimental period. Notably, there was a numerical trend of increased plasma calcitriol levels in P- fed birds of both strains compared to the P + group, which might have mediated a substantial role regarding the adaptive responses to low P supply. At week 19, RNA sequencing of kidney identified 1,114 and 556 differentially expressed genes (DEGs) unique to the LB and LSL strains, respectively. The number of DEGs declined with increasing maturity of the hens culminating in 90 and 146 DEGs for LB and LSL strains at week 24. Analyses revealed an enrichment of pathways related to energy metabolism and cell cycle, particularly at week 19 in both strains. The diet-specific expression of target genes involved in P homeostasis highlighted transcripts related to active (SLC34A1, SLC20A2) and passive mineral transport (CLDN14, CLDN16), Ca utilization (STC1, CALB1), and acid-base balance (CA2, SLC4A1).

Conclusions: Results suggest that both laying hen strains adapted to the lack of mineral P supplements and achieved a physiological Ca: P-ratio in body compartments through endogenous regulation as evidenced via the endocrine profile.

{"title":"Effects of a transient lack of dietary mineral phosphorus on renal gene expression and plasma metabolites in two high-yielding laying hen strains.","authors":"Hiba Qasir, Henry Reyer, Michael Oster, Siriluck Ponsuksili, Nares Trakooljul, Vera Sommerfeld, Markus Rodehutscord, Klaus Wimmers","doi":"10.1186/s12864-025-11294-6","DOIUrl":"10.1186/s12864-025-11294-6","url":null,"abstract":"<p><strong>Background: </strong>There is an emerging body of evidence that current poultry feed is formulated in excess for phosphorus (P), which results in unnecessarily high P excretions. Sustainable concepts for agricultural P flows should trigger animal-intrinsic mechanisms for efficient P utilization. In the current study, Lohmann Brown (LB) and Lohmann Selected Leghorn (LSL) laying hens were fed either a high P diet (P+) with 1 g/kg mineral P supplement or a low P diet (P-) with 0 g/kg mineral P supplement for a period of 4 weeks prior to sampling. Before and after onset of laying, i.e., at 19 and 24 weeks of life, kidney and plasma samples were collected to investigate the endogenous P utilization in response to restricted dietary P, laying hen strain, and sexual maturation.</p><p><strong>Results: </strong>Plasma analyses of minerals and metabolites confirmed the response to a low P diet, which was characterized by a significant reduction in plasma P levels at week 19 in both strains. The plasma calcium (Ca) levels were tightly regulated throughout the entire experimental period. Notably, there was a numerical trend of increased plasma calcitriol levels in P- fed birds of both strains compared to the P + group, which might have mediated a substantial role regarding the adaptive responses to low P supply. At week 19, RNA sequencing of kidney identified 1,114 and 556 differentially expressed genes (DEGs) unique to the LB and LSL strains, respectively. The number of DEGs declined with increasing maturity of the hens culminating in 90 and 146 DEGs for LB and LSL strains at week 24. Analyses revealed an enrichment of pathways related to energy metabolism and cell cycle, particularly at week 19 in both strains. The diet-specific expression of target genes involved in P homeostasis highlighted transcripts related to active (SLC34A1, SLC20A2) and passive mineral transport (CLDN14, CLDN16), Ca utilization (STC1, CALB1), and acid-base balance (CA2, SLC4A1).</p><p><strong>Conclusions: </strong>Results suggest that both laying hen strains adapted to the lack of mineral P supplements and achieved a physiological Ca: P-ratio in body compartments through endogenous regulation as evidenced via the endocrine profile.</p>","PeriodicalId":9030,"journal":{"name":"BMC Genomics","volume":"26 1","pages":"129"},"PeriodicalIF":3.5,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11812262/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143389913","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genome-wide characterization of circular RNAs in three rat models of pulmonary hypertension reveals distinct pathological patterns.
IF 3.5 2区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2025-02-10 DOI: 10.1186/s12864-025-11239-z
Gaohui Fu, Lin Qiu, Jun Wang, Shujin Li, Jinglin Tian, Jiayu Wu, Xinyang Lin, Yiheng Zhu, Zixin Liu, Lingjie Luo, Ku Wang, Feilong Zhao, Jiahao Kuang, Shuangqing Liang, Shiran Liang, Yuqing Guo, Yuping Hong, Yonghao Yi, Jinyong Huang, Yanqin Niu, Kang Kang, Deming Gou

Background: Pulmonary hypertension (PH) is a devastating disease marked by elevated pulmonary artery pressure, resulting in right ventricular (RV) failure and mortality. Despite the identification of several dysregulated genes in PH, the involvement of circular RNAs (circRNAs), a subset of long noncoding RNAs, remains largely unknown.

Methods: In this study, high-throughput RNA sequencing was performed to analyze the genome-wide expression patterns of circRNAs in pulmonary arteries from three models of PH rats induced by hypoxia (Hyp), hypoxia/Sugen5416 (HySu), and monocrotaline (MCT). Differentially expressed circRNAs (DEcircRNAs) were identified, and a weighted gene coexpression network was constructed to explore circRNA networks associated with PH pathogenesis. A circRNA-miRNA-mRNA regulatory network was built, and the functional significance of targeted mRNAs was evaluated. Single-cell RNA sequencing provided insights into the distribution of cell type-specific circRNAs across PH progression.

Results: Our analysis revealed 45 circRNAs exhibiting significant changes across all three PH rat models, with their host genes participating in the calcium signaling and muscle contraction. We identified 372 PH-related circRNA-miRNA-mRNA interactions, shedding light on the regulatory networks during PH development. Furthermore, we uncovered 186, 195 and 311 Hyp-, Hysu- and MCT-specific circRNAs, respectively. These circRNAs were enriched in distinct biological processes, emphasizing their unique regulatory roles. Single-cell spatial distribution analysis of these circRNAs in the pulmonary arteries of PH patients revealed that Hyp-specific circRNA predominantly appeared in the pulmonary vascular structural cells, while HySu- and MCT-specific circRNAs exhibited broader distribution, including significant enrichment in immune-related cells.

Conclusion: Our study presents the first comprehensive view of circRNA regulatory networks in the pulmonary arteries of three PH rat models. We provide insights into PH-associated circRNAs, particularly their involvement in calcium signaling and muscle contraction.

{"title":"Genome-wide characterization of circular RNAs in three rat models of pulmonary hypertension reveals distinct pathological patterns.","authors":"Gaohui Fu, Lin Qiu, Jun Wang, Shujin Li, Jinglin Tian, Jiayu Wu, Xinyang Lin, Yiheng Zhu, Zixin Liu, Lingjie Luo, Ku Wang, Feilong Zhao, Jiahao Kuang, Shuangqing Liang, Shiran Liang, Yuqing Guo, Yuping Hong, Yonghao Yi, Jinyong Huang, Yanqin Niu, Kang Kang, Deming Gou","doi":"10.1186/s12864-025-11239-z","DOIUrl":"10.1186/s12864-025-11239-z","url":null,"abstract":"<p><strong>Background: </strong>Pulmonary hypertension (PH) is a devastating disease marked by elevated pulmonary artery pressure, resulting in right ventricular (RV) failure and mortality. Despite the identification of several dysregulated genes in PH, the involvement of circular RNAs (circRNAs), a subset of long noncoding RNAs, remains largely unknown.</p><p><strong>Methods: </strong>In this study, high-throughput RNA sequencing was performed to analyze the genome-wide expression patterns of circRNAs in pulmonary arteries from three models of PH rats induced by hypoxia (Hyp), hypoxia/Sugen5416 (HySu), and monocrotaline (MCT). Differentially expressed circRNAs (DEcircRNAs) were identified, and a weighted gene coexpression network was constructed to explore circRNA networks associated with PH pathogenesis. A circRNA-miRNA-mRNA regulatory network was built, and the functional significance of targeted mRNAs was evaluated. Single-cell RNA sequencing provided insights into the distribution of cell type-specific circRNAs across PH progression.</p><p><strong>Results: </strong>Our analysis revealed 45 circRNAs exhibiting significant changes across all three PH rat models, with their host genes participating in the calcium signaling and muscle contraction. We identified 372 PH-related circRNA-miRNA-mRNA interactions, shedding light on the regulatory networks during PH development. Furthermore, we uncovered 186, 195 and 311 Hyp-, Hysu- and MCT-specific circRNAs, respectively. These circRNAs were enriched in distinct biological processes, emphasizing their unique regulatory roles. Single-cell spatial distribution analysis of these circRNAs in the pulmonary arteries of PH patients revealed that Hyp-specific circRNA predominantly appeared in the pulmonary vascular structural cells, while HySu- and MCT-specific circRNAs exhibited broader distribution, including significant enrichment in immune-related cells.</p><p><strong>Conclusion: </strong>Our study presents the first comprehensive view of circRNA regulatory networks in the pulmonary arteries of three PH rat models. We provide insights into PH-associated circRNAs, particularly their involvement in calcium signaling and muscle contraction.</p>","PeriodicalId":9030,"journal":{"name":"BMC Genomics","volume":"26 1","pages":"127"},"PeriodicalIF":3.5,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11812181/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143389956","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Epidermal growth factor dampens pro-inflammatory gene expression induced by interferon-gamma in global transcriptome analysis of keratinocytes.
IF 3.5 2区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2025-02-10 DOI: 10.1186/s12864-025-11237-1
David C Gibbs, Myles R McCrary, Carlos S Moreno, Lindsey Seldin, Chaoran Li, Nourine A H Kamili, Brian P Pollack

Background: Epidermal growth factor receptor inhibitors (EGFRIs) are used to treat certain cancers but frequently cause cutaneous inflammation that can hinder treatment. This is due in part to the effects of EGFRIs on pro-inflammatory signaling by interferon-γ (IFN-γ). However, the impact of EGFR ligands (i.e. EGF) on interferon signaling is unclear. The purpose of this study was to investigate the impact of EGF on IFN-γ transcriptional responses on a genome-wide scale in keratinocytes.

Methods: RNA-seq was performed in human keratinocyte (HaCaT) cells treated with IFN-γ, EGF, both, or neither (control). Differentially expressed genes in each treatment group, relative to control, were identified using DESeq2 with a false discovery rate (FDR) threshold of 0.01. Associated biologic processes and gene pathways were examined in gene-set enrichment analyses. Correlations between gene expression were investigated in vivo using RNA-seq data from biopsies of psoriatic and matched normal skin, which were collected from 116 individuals with psoriasis enrolled in the AMAGINE randomized clinical trials.

Results: Of the 2,792 differentially expressed genes following IFN-γ treatment, 2,083 (75%) were no longer differentially expressed when EGF was added. IFN-γ-induced genes with significantly lower expression in the presence of EGF included CXCL10, IL-6, IL-1 A, HLA-DMA, and GBP5 (activator of the NLRP3 inflammasome); the top enriched biologic processes and pathways were related to MHC-class II antigen presentation (GO:0019886) and cytokine signaling (KEGG:04060). Consistent with our in vitro findings, the expression of CXCL10 and GBP5, as well as the combined expression z-scores of genes in the enriched MHC-class II and cytokine signaling pathways, were significantly lower in skin biopsies with higher EGF expression compared to those with lower EGF expression among individuals with psoriasis.

Conclusions: Our findings suggest that the pro-inflammatory IFN-γ-induced transcriptome may be globally attenuated by EGF in keratinocytes, supporting an immunomodulatory role of EGF in the skin. These studies provide insights for the non-canonical immunomodulatory role of EGF signaling and why blocking EGFR signaling (e.g., with EGFRIs) can cause cutaneous inflammation.

{"title":"Epidermal growth factor dampens pro-inflammatory gene expression induced by interferon-gamma in global transcriptome analysis of keratinocytes.","authors":"David C Gibbs, Myles R McCrary, Carlos S Moreno, Lindsey Seldin, Chaoran Li, Nourine A H Kamili, Brian P Pollack","doi":"10.1186/s12864-025-11237-1","DOIUrl":"10.1186/s12864-025-11237-1","url":null,"abstract":"<p><strong>Background: </strong>Epidermal growth factor receptor inhibitors (EGFRIs) are used to treat certain cancers but frequently cause cutaneous inflammation that can hinder treatment. This is due in part to the effects of EGFRIs on pro-inflammatory signaling by interferon-γ (IFN-γ). However, the impact of EGFR ligands (i.e. EGF) on interferon signaling is unclear. The purpose of this study was to investigate the impact of EGF on IFN-γ transcriptional responses on a genome-wide scale in keratinocytes.</p><p><strong>Methods: </strong>RNA-seq was performed in human keratinocyte (HaCaT) cells treated with IFN-γ, EGF, both, or neither (control). Differentially expressed genes in each treatment group, relative to control, were identified using DESeq2 with a false discovery rate (FDR) threshold of 0.01. Associated biologic processes and gene pathways were examined in gene-set enrichment analyses. Correlations between gene expression were investigated in vivo using RNA-seq data from biopsies of psoriatic and matched normal skin, which were collected from 116 individuals with psoriasis enrolled in the AMAGINE randomized clinical trials.</p><p><strong>Results: </strong>Of the 2,792 differentially expressed genes following IFN-γ treatment, 2,083 (75%) were no longer differentially expressed when EGF was added. IFN-γ-induced genes with significantly lower expression in the presence of EGF included CXCL10, IL-6, IL-1 A, HLA-DMA, and GBP5 (activator of the NLRP3 inflammasome); the top enriched biologic processes and pathways were related to MHC-class II antigen presentation (GO:0019886) and cytokine signaling (KEGG:04060). Consistent with our in vitro findings, the expression of CXCL10 and GBP5, as well as the combined expression z-scores of genes in the enriched MHC-class II and cytokine signaling pathways, were significantly lower in skin biopsies with higher EGF expression compared to those with lower EGF expression among individuals with psoriasis.</p><p><strong>Conclusions: </strong>Our findings suggest that the pro-inflammatory IFN-γ-induced transcriptome may be globally attenuated by EGF in keratinocytes, supporting an immunomodulatory role of EGF in the skin. These studies provide insights for the non-canonical immunomodulatory role of EGF signaling and why blocking EGFR signaling (e.g., with EGFRIs) can cause cutaneous inflammation.</p>","PeriodicalId":9030,"journal":{"name":"BMC Genomics","volume":"26 1","pages":"122"},"PeriodicalIF":3.5,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11809098/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143381458","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A novel roseosiphovirus infecting dinoroseobacter shibae DFL12T represents a new genus.
IF 3.5 2区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2025-02-08 DOI: 10.1186/s12864-025-11274-w
Nana Wei, Longfei Lu, Yingying Li, Bo Ding, Lanlan Cai, Yunlan Yang

Bacteria belonging to the Roseobacter clade are key players in marine ecosystems, contributing significantly to carbon and sulfur cycles. Marine viruses, particularly those targeting Roseobacter, play crucial roles in regulating microbial communities and biogeochemical processes. Despite their importance, phages infecting organisms of the Roseobacter clade remain poorly understood. In this study, a novel roseophage, vB_DshS-R26L (R26L), infecting Dinoroseobacter shibae DFL12T, was isolated and characterized in terms of physiological and genomic properties. R26L has siphovirus morphology with an elongated head and a long, non-flexible tail. The phage has a narrow host range and demonstrates a long infection cycle with a latent period of 3.5 h and a burst size of 22 plaque-forming units (PFU cell- 1). R26L possesses a circular, double-stranded DNA genome of 79,534 bp with a G + C content of 62.6%, encoding a total of 116 open reading frames. Notably, seven auxiliary metabolic genes (AMGs), including those related to phosphate metabolism and queuosine biosynthesis, were identified. Phylogenetic and taxonomic analyses revealed that R26L represents a new genus, with its highest intergenomic similarities being 54.7% to another roseophage (R5C). By elucidating the unique characteristics of R26L, this study highlights the complexity of phage infections and the genomic diversity of roseophages, offering valuable insights into the ecological significance of Roseobacter-phage interactions in marine environments.

{"title":"A novel roseosiphovirus infecting dinoroseobacter shibae DFL12<sup>T</sup> represents a new genus.","authors":"Nana Wei, Longfei Lu, Yingying Li, Bo Ding, Lanlan Cai, Yunlan Yang","doi":"10.1186/s12864-025-11274-w","DOIUrl":"10.1186/s12864-025-11274-w","url":null,"abstract":"<p><p>Bacteria belonging to the Roseobacter clade are key players in marine ecosystems, contributing significantly to carbon and sulfur cycles. Marine viruses, particularly those targeting Roseobacter, play crucial roles in regulating microbial communities and biogeochemical processes. Despite their importance, phages infecting organisms of the Roseobacter clade remain poorly understood. In this study, a novel roseophage, vB_DshS-R26L (R26L), infecting Dinoroseobacter shibae DFL12<sup>T</sup>, was isolated and characterized in terms of physiological and genomic properties. R26L has siphovirus morphology with an elongated head and a long, non-flexible tail. The phage has a narrow host range and demonstrates a long infection cycle with a latent period of 3.5 h and a burst size of 22 plaque-forming units (PFU cell<sup>- 1</sup>). R26L possesses a circular, double-stranded DNA genome of 79,534 bp with a G + C content of 62.6%, encoding a total of 116 open reading frames. Notably, seven auxiliary metabolic genes (AMGs), including those related to phosphate metabolism and queuosine biosynthesis, were identified. Phylogenetic and taxonomic analyses revealed that R26L represents a new genus, with its highest intergenomic similarities being 54.7% to another roseophage (R5C). By elucidating the unique characteristics of R26L, this study highlights the complexity of phage infections and the genomic diversity of roseophages, offering valuable insights into the ecological significance of Roseobacter-phage interactions in marine environments.</p>","PeriodicalId":9030,"journal":{"name":"BMC Genomics","volume":"26 1","pages":"121"},"PeriodicalIF":3.5,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11806900/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143373712","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genomic patterns of strain-specific genetic structure, linkage, and selection across fall armyworm populations.
IF 3.5 2区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2025-02-07 DOI: 10.1186/s12864-025-11214-8
Ashley E Tessnow, Rodney N Nagoshi, Robert L Meagher, Todd M Gilligan, Ben M Sadd, Yves Carrière, Holly N Davis, Shelby J Fleischer, Kelly Richers, John C Palumbo, Patrick Porter, Jose Carlos Verle Rodrigues, Gregory A Sword

Background: Molecular genetic approaches have become vital to understanding the evolutionary processes that act on insect pest populations. From mapping the development of resistance to monitoring and predicting pest movement, genomic tools can inform and enhance pest management programs. Here, we used whole genome sequencing population genomics to unravel novel patterns of population structure, linkage, and selection across the genome of a notorious agricultural pest, the fall armyworm.

Results: Our data strongly support the existence of two genetically distinct strains of fall armyworm in North America, which have previously been referred to as the C-strain and the R-strain. Although these strains have diverged genetically, we find that differentiation is not uniform across the genome. The Z-chromosome appears to drive divergence between strains with high levels of linkage observed across this chromosome. We also show that a region of the Z-chromosome containing a circadian clock gene implicated in allochronic reproductive isolation is under strain-specific selection. Our data indicates that strains differ in their geographic distributions and exhibit distinct patterns of geographic sub-structuring indicative of unique dispersal patterns. We provide the first evidence for nuclear genomic differentiation between the two major overwintering populations of fall armyworm in the US. Finally, our data reveal population-specific patterns of selection on genomic regions containing putative insecticide resistance alleles, which could relate to their biogeography.

Conclusions: Our results support the existence of the fall armyworm as a pest dyad in the US, with genetically-distinct strains differing in their population structure, dispersal patterns, and genomic signatures of selection on regions likely involved reproductive isolation and insecticide resistance. These differences should be considered when devising and implementing management strategies.

{"title":"Genomic patterns of strain-specific genetic structure, linkage, and selection across fall armyworm populations.","authors":"Ashley E Tessnow, Rodney N Nagoshi, Robert L Meagher, Todd M Gilligan, Ben M Sadd, Yves Carrière, Holly N Davis, Shelby J Fleischer, Kelly Richers, John C Palumbo, Patrick Porter, Jose Carlos Verle Rodrigues, Gregory A Sword","doi":"10.1186/s12864-025-11214-8","DOIUrl":"10.1186/s12864-025-11214-8","url":null,"abstract":"<p><strong>Background: </strong>Molecular genetic approaches have become vital to understanding the evolutionary processes that act on insect pest populations. From mapping the development of resistance to monitoring and predicting pest movement, genomic tools can inform and enhance pest management programs. Here, we used whole genome sequencing population genomics to unravel novel patterns of population structure, linkage, and selection across the genome of a notorious agricultural pest, the fall armyworm.</p><p><strong>Results: </strong>Our data strongly support the existence of two genetically distinct strains of fall armyworm in North America, which have previously been referred to as the C-strain and the R-strain. Although these strains have diverged genetically, we find that differentiation is not uniform across the genome. The Z-chromosome appears to drive divergence between strains with high levels of linkage observed across this chromosome. We also show that a region of the Z-chromosome containing a circadian clock gene implicated in allochronic reproductive isolation is under strain-specific selection. Our data indicates that strains differ in their geographic distributions and exhibit distinct patterns of geographic sub-structuring indicative of unique dispersal patterns. We provide the first evidence for nuclear genomic differentiation between the two major overwintering populations of fall armyworm in the US. Finally, our data reveal population-specific patterns of selection on genomic regions containing putative insecticide resistance alleles, which could relate to their biogeography.</p><p><strong>Conclusions: </strong>Our results support the existence of the fall armyworm as a pest dyad in the US, with genetically-distinct strains differing in their population structure, dispersal patterns, and genomic signatures of selection on regions likely involved reproductive isolation and insecticide resistance. These differences should be considered when devising and implementing management strategies.</p>","PeriodicalId":9030,"journal":{"name":"BMC Genomics","volume":"26 1","pages":"116"},"PeriodicalIF":3.5,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11803928/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143370270","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A genome-wide association study identified SNP markers and candidate genes associated with morphometric fruit quality traits in mangoes.
IF 3.5 2区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2025-02-07 DOI: 10.1186/s12864-025-11278-6
Shamseldeen Eltaher, Jin Li, Barbie Freeman, Sukhwinder Singh, Gul Shad Ali

Background: Mangoes (Mangifera indica L.) are a widely grown fruit tree crop across the world, but breeding new varieties can take 15-20 years due to its long juvenile period and high heterozygosity. Marker-assisted selection can accelerate breeding new mango cultivars with desirable traits for fruit quality, storage, horticulture, pest and disease resistance, and nutrition.

Results: To achieve this, a genome-wide association study (GWAS) was conducted to discover molecular markers for 14 morphometric and economically important fruit traits of 161 mango accessions with diverse genetic backgrounds. These traits included pulp and brix; fruit weight, length, thickness, and width; stone weight, length, thickness, and width; and seed weight, length, thickness, and width. In this report, we employed the fixed and random model circulating probability unification (FarmCPU) model for conducting GWAS using 135,079 high-quality SNP markers. These analyses revealed 103 SNPs that were significantly associated with these traits. Of these markers, 7 were commonly associated with different traits, while 96 markers were uniquely associated with specific traits.

Conclusions: To choose the most promising mango accessions for future breeding and for closing genetic gaps among the accessions and increasing genetic diversity, a new selection method is suggested based on phenotypic traits such as high-yielding mango fruit cultivars, number of reference alleles, and genetic distance among the selected genotypes. Based on these criteria, 20 accessions were identified as the most promising parents for crossing to produce high mango yield. Gene annotation of the significant markers revealed candidate genes coding for important proteins, enzymes, and transcription factors associated with fruit development traits.

{"title":"A genome-wide association study identified SNP markers and candidate genes associated with morphometric fruit quality traits in mangoes.","authors":"Shamseldeen Eltaher, Jin Li, Barbie Freeman, Sukhwinder Singh, Gul Shad Ali","doi":"10.1186/s12864-025-11278-6","DOIUrl":"10.1186/s12864-025-11278-6","url":null,"abstract":"<p><strong>Background: </strong>Mangoes (Mangifera indica L.) are a widely grown fruit tree crop across the world, but breeding new varieties can take 15-20 years due to its long juvenile period and high heterozygosity. Marker-assisted selection can accelerate breeding new mango cultivars with desirable traits for fruit quality, storage, horticulture, pest and disease resistance, and nutrition.</p><p><strong>Results: </strong>To achieve this, a genome-wide association study (GWAS) was conducted to discover molecular markers for 14 morphometric and economically important fruit traits of 161 mango accessions with diverse genetic backgrounds. These traits included pulp and brix; fruit weight, length, thickness, and width; stone weight, length, thickness, and width; and seed weight, length, thickness, and width. In this report, we employed the fixed and random model circulating probability unification (FarmCPU) model for conducting GWAS using 135,079 high-quality SNP markers. These analyses revealed 103 SNPs that were significantly associated with these traits. Of these markers, 7 were commonly associated with different traits, while 96 markers were uniquely associated with specific traits.</p><p><strong>Conclusions: </strong>To choose the most promising mango accessions for future breeding and for closing genetic gaps among the accessions and increasing genetic diversity, a new selection method is suggested based on phenotypic traits such as high-yielding mango fruit cultivars, number of reference alleles, and genetic distance among the selected genotypes. Based on these criteria, 20 accessions were identified as the most promising parents for crossing to produce high mango yield. Gene annotation of the significant markers revealed candidate genes coding for important proteins, enzymes, and transcription factors associated with fruit development traits.</p>","PeriodicalId":9030,"journal":{"name":"BMC Genomics","volume":"26 1","pages":"120"},"PeriodicalIF":3.5,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11806778/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143370209","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Autophagy is involved in the toxicity of the biocontrol agent GC16 against Tetranychus pueraricola (Acari: Tetranychidae) based on transcriptomic and proteomic analyses.
IF 3.5 2区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2025-02-07 DOI: 10.1186/s12864-025-11312-7
Yanyan He, Guangzu Du, Guang Wang, Huiming Guan, Shusheng Zhu, Bin Chen, Xiahong He, Youyong Zhu

Background: GC16 is a novel pesticide with acaricidal properties against the spider mite Tetranychus pueraricola (Ehara & Gotoh). Its physiological mechanisms have been described previously, but its molecular mechanisms of action remain unclear. Thus, we aimed to explore the acaricidal mechanisms of GC16 through transcriptomic and proteomic analyses. The results were verified using transmission electron microscopy (TEM), immunofluorescence assay, and western blotting.

Results: Transcriptomic and proteomic analyses revealed 2717 differentially expressed genes (DEGs) and 374 differentially expressed proteins (DEPs) between the GC16-treated and control mites. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis indicated that the DEGs and DEPs were enriched in the autophagy pathway. TEM showed that the number of autophagosomes and autolysosomes was higher in the GC16-treated mites than in the control mites. Immunofluorescence assay and western blot results consistently indicated that GC16 treatment significantly enhanced the relative expression of the autophagy protein LC3 in insect Sf9 cells. The intracellular calcium concentration in the GC16-treated Sf9 cells was 2.30 times higher than that in the control cells, suggesting that GC16 disrupted calcium homeostasis and potentially acted as a calcium-driven nerve agent.

Conclusions: Autophagy is involved in the toxicity of GC16 against T. pueraricola and may be activated by elevated Ca2+ levels. This study reveals the molecular insecticidal mechanisms of GC16 and provides rationale for the field application of GC16 to control pest mites.

{"title":"Autophagy is involved in the toxicity of the biocontrol agent GC16 against Tetranychus pueraricola (Acari: Tetranychidae) based on transcriptomic and proteomic analyses.","authors":"Yanyan He, Guangzu Du, Guang Wang, Huiming Guan, Shusheng Zhu, Bin Chen, Xiahong He, Youyong Zhu","doi":"10.1186/s12864-025-11312-7","DOIUrl":"10.1186/s12864-025-11312-7","url":null,"abstract":"<p><strong>Background: </strong>GC16 is a novel pesticide with acaricidal properties against the spider mite Tetranychus pueraricola (Ehara & Gotoh). Its physiological mechanisms have been described previously, but its molecular mechanisms of action remain unclear. Thus, we aimed to explore the acaricidal mechanisms of GC16 through transcriptomic and proteomic analyses. The results were verified using transmission electron microscopy (TEM), immunofluorescence assay, and western blotting.</p><p><strong>Results: </strong>Transcriptomic and proteomic analyses revealed 2717 differentially expressed genes (DEGs) and 374 differentially expressed proteins (DEPs) between the GC16-treated and control mites. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis indicated that the DEGs and DEPs were enriched in the autophagy pathway. TEM showed that the number of autophagosomes and autolysosomes was higher in the GC16-treated mites than in the control mites. Immunofluorescence assay and western blot results consistently indicated that GC16 treatment significantly enhanced the relative expression of the autophagy protein LC3 in insect Sf9 cells. The intracellular calcium concentration in the GC16-treated Sf9 cells was 2.30 times higher than that in the control cells, suggesting that GC16 disrupted calcium homeostasis and potentially acted as a calcium-driven nerve agent.</p><p><strong>Conclusions: </strong>Autophagy is involved in the toxicity of GC16 against T. pueraricola and may be activated by elevated Ca<sup>2+</sup> levels. This study reveals the molecular insecticidal mechanisms of GC16 and provides rationale for the field application of GC16 to control pest mites.</p>","PeriodicalId":9030,"journal":{"name":"BMC Genomics","volume":"26 1","pages":"119"},"PeriodicalIF":3.5,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11806590/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143370211","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Leveraging genomic insights from the neglected malaria parasites P. malariae and P. ovale using selective whole genome amplification (SWGA) approach.
IF 3.5 2区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2025-02-07 DOI: 10.1186/s12864-025-11292-8
Fathia Ben-Rached, Amit Kumar Subudhi, Chang Li, Mariah Alawi, Rohit Satyam, Sui Xu, Guoding Zhu, Raeece Naeem, Sara Mfarrej, Di Liu, Zenaida Stead, Caroline Askonas, Yaobao Liu, Jun Cao, Arnab Pain

Background: Systematic genomics-guided population-based studies on the neglected malaria parasites, P. malariae, P. ovale curtisi, and P. ovale wallikeri species remain challenging due to their low parasitemia, underestimation, and lack of comprehensive genetic analysis. Techniques that cost-effectively allow the enriching of the genome of interest from complex genome backgrounds for sequencing studies help immensely to perform genomic analyses. One such technique is selective whole-genome amplification (SWGA).

Results: We applied SWGA using specifically designed primer sets targeting the pathogen genome to enrich parasite DNA from clinical samples. This enabled cost-effective and high-quality WGS for these neglected malaria species. WGS on SWGA-treated samples demonstrated improved genome coverage. Our method outperformed the published protocol for P.malariae with higher enrichment of the targeted genome. On average, P. malariae had 93% of the genome covered by ≥ 10 reads; parallel improvements in genome coverage were achieved for both P. ovale spp. with 81% on average of the genome covered by ≥ 10 reads. Consequently, the detection of thousands of additional SNPs not detectable in pre-SWGA samples was facilitated after SWGA, allowing more substantial downstream population genomics analysis, particularly for the polymorphic and antimalarial genes of great interest for all the species. Furthermore, leveraging the long DNA fragments generated by SWGA, we achieved high-quality genome assemblies for P. malariae and P. ovale using PacBio long reads sequencing technology.

Conclusions: SWGA approach implemented here provides a powerful tool for enhancing genomic analysis of these neglected parasites, revealing population diversity, drug resistance markers, and hypervariable regions. This methodology constitutes a transformative tool to surmount the challenges of genomic analysis for neglected malaria parasites and can improve malaria research and control.

{"title":"Leveraging genomic insights from the neglected malaria parasites P. malariae and P. ovale using selective whole genome amplification (SWGA) approach.","authors":"Fathia Ben-Rached, Amit Kumar Subudhi, Chang Li, Mariah Alawi, Rohit Satyam, Sui Xu, Guoding Zhu, Raeece Naeem, Sara Mfarrej, Di Liu, Zenaida Stead, Caroline Askonas, Yaobao Liu, Jun Cao, Arnab Pain","doi":"10.1186/s12864-025-11292-8","DOIUrl":"10.1186/s12864-025-11292-8","url":null,"abstract":"<p><strong>Background: </strong>Systematic genomics-guided population-based studies on the neglected malaria parasites, P. malariae, P. ovale curtisi, and P. ovale wallikeri species remain challenging due to their low parasitemia, underestimation, and lack of comprehensive genetic analysis. Techniques that cost-effectively allow the enriching of the genome of interest from complex genome backgrounds for sequencing studies help immensely to perform genomic analyses. One such technique is selective whole-genome amplification (SWGA).</p><p><strong>Results: </strong>We applied SWGA using specifically designed primer sets targeting the pathogen genome to enrich parasite DNA from clinical samples. This enabled cost-effective and high-quality WGS for these neglected malaria species. WGS on SWGA-treated samples demonstrated improved genome coverage. Our method outperformed the published protocol for P.malariae with higher enrichment of the targeted genome. On average, P. malariae had 93% of the genome covered by ≥ 10 reads; parallel improvements in genome coverage were achieved for both P. ovale spp. with 81% on average of the genome covered by ≥ 10 reads. Consequently, the detection of thousands of additional SNPs not detectable in pre-SWGA samples was facilitated after SWGA, allowing more substantial downstream population genomics analysis, particularly for the polymorphic and antimalarial genes of great interest for all the species. Furthermore, leveraging the long DNA fragments generated by SWGA, we achieved high-quality genome assemblies for P. malariae and P. ovale using PacBio long reads sequencing technology.</p><p><strong>Conclusions: </strong>SWGA approach implemented here provides a powerful tool for enhancing genomic analysis of these neglected parasites, revealing population diversity, drug resistance markers, and hypervariable regions. This methodology constitutes a transformative tool to surmount the challenges of genomic analysis for neglected malaria parasites and can improve malaria research and control.</p>","PeriodicalId":9030,"journal":{"name":"BMC Genomics","volume":"26 1","pages":"118"},"PeriodicalIF":3.5,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11804106/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143370294","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
BMC Genomics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1