Hang Tian, X. Zhuge, Anyong Hu, Qingli Dou, Julia H. Miao
In emergency departments and ICUs, a novel noncontact thermometer is urgently required to measure physical temperatures through common clothing to accomplish body temperature precise measurement for critical patients. Hence, a Ku band digital auto gain compensative microwave radiometer is proposed to get a higher theoretical temperature measurement sensitivity than a Dicke radiometer, benefit miniaturization design, and reduce attenuation caused by common clothing. Meanwhile, a novel compensation method for receiver calibration is proposed to improve temperature sensitivity under non-ideal conditions, and the revised systematic calibration method is elaborated. Furthermore, in order to invert body physical temperatures through clothing, a microwave thermal radiation transmission model of clothed human body is constructed, and the microwave radiation apparent temperature equation of clothed human body is derived. Importantly, three groups of experiments are set up to confirm the designed radiometer’s performance, especially the biological tissue temperature measurement. Results show that: 1) the designed radiometer has high temperature sensitivity and accuracy for unsheltered targets; 2) amplitude attenuation caused by cotton cloth for Ku band microwave is much smaller than that for infrared thermal radiation; 3) the designed radiometer can track physical temperatures of targets (such as water and swine skin tissue) sheltered or covered by cotton cloth relatively accurately. In conclusion, our designed Ku band microwave radiometer is certificated to have outstanding performance in temperature measurement for biological tissue through common clothing, which can be developed into a promising product in medical monitoring.
{"title":"A Novel Noncontact Ku-band Microwave Radiometer for Human Body Temperature Measurements","authors":"Hang Tian, X. Zhuge, Anyong Hu, Qingli Dou, Julia H. Miao","doi":"10.2528/pier23042503","DOIUrl":"https://doi.org/10.2528/pier23042503","url":null,"abstract":"In emergency departments and ICUs, a novel noncontact thermometer is urgently required to measure physical temperatures through common clothing to accomplish body temperature precise measurement for critical patients. Hence, a Ku band digital auto gain compensative microwave radiometer is proposed to get a higher theoretical temperature measurement sensitivity than a Dicke radiometer, benefit miniaturization design, and reduce attenuation caused by common clothing. Meanwhile, a novel compensation method for receiver calibration is proposed to improve temperature sensitivity under non-ideal conditions, and the revised systematic calibration method is elaborated. Furthermore, in order to invert body physical temperatures through clothing, a microwave thermal radiation transmission model of clothed human body is constructed, and the microwave radiation apparent temperature equation of clothed human body is derived. Importantly, three groups of experiments are set up to confirm the designed radiometer’s performance, especially the biological tissue temperature measurement. Results show that: 1) the designed radiometer has high temperature sensitivity and accuracy for unsheltered targets; 2) amplitude attenuation caused by cotton cloth for Ku band microwave is much smaller than that for infrared thermal radiation; 3) the designed radiometer can track physical temperatures of targets (such as water and swine skin tissue) sheltered or covered by cotton cloth relatively accurately. In conclusion, our designed Ku band microwave radiometer is certificated to have outstanding performance in temperature measurement for biological tissue through common clothing, which can be developed into a promising product in medical monitoring.","PeriodicalId":90705,"journal":{"name":"Progress in Electromagnetics Research Symposium : [proceedings]. Progress in Electromagnetics Research Symposium","volume":"262 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90775679","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This article contains a digest of the theory of electromagnetism and a review of the transformation between inertial frames, especially under low speed limits. The covariant nature of the Maxwell's equations is explained using the conventional language. We show that even under low speed limits, the relativistic effects should not be neglected to get a self-consistent theory of the electromagnetic fields, unless the intrinsic dynamics of these fields has been omitted completely. The quasi-static limits, where the relativistic effects can be partly neglected are also reviewed, to clarify some common misunderstandings and imprecise use of the theory in presence of moving media and other related situations. The discussion presented in this paper provide a clear view of why classical electromagnetic theory is relativistic in its essence.
{"title":"ON THE LOW SPEED LIMITS OF LORENTZ'S TRANSFORMATION - HOW RELATIVISTIC EFFECTS RETAIN OR VANISH IN ELECTROMAGNETISM","authors":"H. Chen, W. E. Sha, Xinyan Dai, Yue Yu","doi":"10.2528/PIER22021701","DOIUrl":"https://doi.org/10.2528/PIER22021701","url":null,"abstract":"This article contains a digest of the theory of electromagnetism and a review of the transformation between inertial frames, especially under low speed limits. The covariant nature of the Maxwell's equations is explained using the conventional language. We show that even under low speed limits, the relativistic effects should not be neglected to get a self-consistent theory of the electromagnetic fields, unless the intrinsic dynamics of these fields has been omitted completely. The quasi-static limits, where the relativistic effects can be partly neglected are also reviewed, to clarify some common misunderstandings and imprecise use of the theory in presence of moving media and other related situations. The discussion presented in this paper provide a clear view of why classical electromagnetic theory is relativistic in its essence.","PeriodicalId":90705,"journal":{"name":"Progress in Electromagnetics Research Symposium : [proceedings]. Progress in Electromagnetics Research Symposium","volume":"10 7","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72373149","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The trajectory of the polarization state of a monochromatic beam passing through a fixed linear polarizer and a rotating elliptical retarder on the Poincaré sphere is found to be a threedimensional 8-shaped contour, which is determined as the line of intersection of a right-circular cylinder with the Poincaré sphere. The cylinder is parallel to the S3 axis, and the projection of the contour on the S1S2 plane is a circle whose center and radius are determined. A method of projecting the three-dimensional geometric relationships to the two-dimensional S1S2 plane to locate the position of the polarization state of the emerging beam on the Poincaré sphere for a given azimuth of the elliptical retarder is presented, and applied to solve a problem of polarization optics. The proposed graphic method substantially simplifies the polarization state analysis involving elliptical retarders.
{"title":"A SIMPLE GRAPHIC METHOD FOR ANALYZING THE POLARIZATION STATE OF AN OPTICAL SYSTEM WITH A FIXED POLARIZER AND A ROTATING ELLIPTICAL RETARDER","authors":"Nan Wang, Sailing He","doi":"10.2528/pier22033102","DOIUrl":"https://doi.org/10.2528/pier22033102","url":null,"abstract":"The trajectory of the polarization state of a monochromatic beam passing through a fixed linear polarizer and a rotating elliptical retarder on the Poincaré sphere is found to be a threedimensional 8-shaped contour, which is determined as the line of intersection of a right-circular cylinder with the Poincaré sphere. The cylinder is parallel to the S3 axis, and the projection of the contour on the S1S2 plane is a circle whose center and radius are determined. A method of projecting the three-dimensional geometric relationships to the two-dimensional S1S2 plane to locate the position of the polarization state of the emerging beam on the Poincaré sphere for a given azimuth of the elliptical retarder is presented, and applied to solve a problem of polarization optics. The proposed graphic method substantially simplifies the polarization state analysis involving elliptical retarders.","PeriodicalId":90705,"journal":{"name":"Progress in Electromagnetics Research Symposium : [proceedings]. Progress in Electromagnetics Research Symposium","volume":"101 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73330308","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Qingze Tan, Chao Qian, Tong Cai, B. Zheng, Hongsheng Chen
{"title":"Solving Multivariable Equations with Tandem Metamaterialkernels","authors":"Qingze Tan, Chao Qian, Tong Cai, B. Zheng, Hongsheng Chen","doi":"10.2528/pier22060601","DOIUrl":"https://doi.org/10.2528/pier22060601","url":null,"abstract":"","PeriodicalId":90705,"journal":{"name":"Progress in Electromagnetics Research Symposium : [proceedings]. Progress in Electromagnetics Research Symposium","volume":"18 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76530659","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rory A. Bowell, Matthew J. Brandsema, R. Narayanan, S. Howell, Jonathan M. Dilger
|Bipartite systems have become popular in emerging quantum radar and quantum communication systems. This paper analyzes the various correlation coefficients for different types of quantum radar measurement schemes, such as: (i) immediate detection of the idler photon events to be used in post-processing correlation with the signal photon events, (ii) immediate detection of the idler electric (cid:12)eld to be used in post-processing correlation with the signal electric (cid:12)eld, (iii) immediate detection of the idler quadratures to be used in post-processing correlation with the signal quadratures, and (iv) conventional analog correlation method of the optical parametric ampli(cid:12)er. The showcased results compare the performance of these different methodologies for various environmental scenarios. This work is important at developing the fundamentals behind quantum technologies that require covariance measurements and will permit more accurate selection of the appropriate measurement styles for individual systems. of the photon count and the electric (cid:12)eld measurement, but to show the relationship between the covariance of these independent measurements in separate systems. To make the electric
{"title":"COMPARISON OF CORRELATION PERFORMANCE FOR VARIOUS MEASUREMENT SCHEMES IN QUANTUM BIPARTITE RADAR AND COMMUNICATION SYSTEMS","authors":"Rory A. Bowell, Matthew J. Brandsema, R. Narayanan, S. Howell, Jonathan M. Dilger","doi":"10.2528/pier22022506","DOIUrl":"https://doi.org/10.2528/pier22022506","url":null,"abstract":"|Bipartite systems have become popular in emerging quantum radar and quantum communication systems. This paper analyzes the various correlation coefficients for different types of quantum radar measurement schemes, such as: (i) immediate detection of the idler photon events to be used in post-processing correlation with the signal photon events, (ii) immediate detection of the idler electric (cid:12)eld to be used in post-processing correlation with the signal electric (cid:12)eld, (iii) immediate detection of the idler quadratures to be used in post-processing correlation with the signal quadratures, and (iv) conventional analog correlation method of the optical parametric ampli(cid:12)er. The showcased results compare the performance of these different methodologies for various environmental scenarios. This work is important at developing the fundamentals behind quantum technologies that require covariance measurements and will permit more accurate selection of the appropriate measurement styles for individual systems. of the photon count and the electric (cid:12)eld measurement, but to show the relationship between the covariance of these independent measurements in separate systems. To make the electric","PeriodicalId":90705,"journal":{"name":"Progress in Electromagnetics Research Symposium : [proceedings]. Progress in Electromagnetics Research Symposium","volume":"33 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76728992","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yuxin Xing, Gaoxuan Wang, Tie Zhang, Fengjiao Shen, Lingshuo Meng, Lihui Wang, Fangmei Li, Yuqi Zhu, Yuhao Zheng, N. He, Sailing He
|Volatile organic compounds (VOCs or VOC) have received increasing attention recently. They are important Parameter index for air quality monitoring, and biomarkers for diseases diagnosis. For the gas sensor community, various detection technologies were explored not only to detect total VOCs, but also aim for sensor selectivity. Commercially available VOC sensors, such as metal oxide based or photoionization detectors, are suitable for total VOCs but lack of selectivity. With the advancement of optical spectroscopy, it provides a good solution for speci(cid:12)c VOC detections. In this review, various spectroscopy techniques are summarised focusing on increasing sensor selectivity and sensitivity. The techniques considered in the paper are, non-dispersive infrared, multi-pass cell spectroscopy, cavity enhanced absorption spectroscopy, photoacoustic spectroscopy and Fourier transform infrared spectroscopy. Each technique has its advantages and disadvantages, which are also discussed.
{"title":"VOC DETECTIONS WITH OPTICAL SPECTROSCOPY","authors":"Yuxin Xing, Gaoxuan Wang, Tie Zhang, Fengjiao Shen, Lingshuo Meng, Lihui Wang, Fangmei Li, Yuqi Zhu, Yuhao Zheng, N. He, Sailing He","doi":"10.2528/pier22033004","DOIUrl":"https://doi.org/10.2528/pier22033004","url":null,"abstract":"|Volatile organic compounds (VOCs or VOC) have received increasing attention recently. They are important Parameter index for air quality monitoring, and biomarkers for diseases diagnosis. For the gas sensor community, various detection technologies were explored not only to detect total VOCs, but also aim for sensor selectivity. Commercially available VOC sensors, such as metal oxide based or photoionization detectors, are suitable for total VOCs but lack of selectivity. With the advancement of optical spectroscopy, it provides a good solution for speci(cid:12)c VOC detections. In this review, various spectroscopy techniques are summarised focusing on increasing sensor selectivity and sensitivity. The techniques considered in the paper are, non-dispersive infrared, multi-pass cell spectroscopy, cavity enhanced absorption spectroscopy, photoacoustic spectroscopy and Fourier transform infrared spectroscopy. Each technique has its advantages and disadvantages, which are also discussed.","PeriodicalId":90705,"journal":{"name":"Progress in Electromagnetics Research Symposium : [proceedings]. Progress in Electromagnetics Research Symposium","volume":"26 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82942584","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
F. Deng, Zhiwei Guo, Mina Ren, Xiaoqiang Su, L. Dong, Yan Liu, Yun-long Shi, Hong Chen
Bessel beam is an important propagation-invariant optical field. The size and shape of its central spot remain unchanged in the long-distance transmission process, which has a wide application prospect. In this paper, we find that zero-index media (ZIM) metalen can be designed to realize the unique Bessel beam. On the one hand, based on the metal-dielectric multilayered structure with subwavelength unit cells, the anisotropic epsilon-near-zero media (ENZ) metalen is proposed for generating the robust Bessel beam, which is immune to the defects placed in the transmission path or the inside of the structure. The ZIM metalens uncover that ENZ media provide a new way to generate Bessel beams beyond the conventional convex prisms. On the other hand, with the help of the uniform field distribution of ZIM, enhanced (multi-channel) Bessel beams based on multiple point sources (exit surfaces) are studied in the isotropic ENZ metalens. In addition, the Bessel beam generated by the ZIM metalen has also been extend to the epsilon-mu-near zero metamaterial realized by two-dimensional photonic crystals. Our results not only provide a new way to generate Bessel beam based on the ZIM metalens, but also may enable their use in some optical applications, such as in fluorescence microscopy imaging, particle trapping, and wave-front tailoring.
{"title":"BESSEL BEAM GENERATED BY THE ZERO-INDEX METALENS","authors":"F. Deng, Zhiwei Guo, Mina Ren, Xiaoqiang Su, L. Dong, Yan Liu, Yun-long Shi, Hong Chen","doi":"10.2528/pier22050401","DOIUrl":"https://doi.org/10.2528/pier22050401","url":null,"abstract":"Bessel beam is an important propagation-invariant optical field. The size and shape of its central spot remain unchanged in the long-distance transmission process, which has a wide application prospect. In this paper, we find that zero-index media (ZIM) metalen can be designed to realize the unique Bessel beam. On the one hand, based on the metal-dielectric multilayered structure with subwavelength unit cells, the anisotropic epsilon-near-zero media (ENZ) metalen is proposed for generating the robust Bessel beam, which is immune to the defects placed in the transmission path or the inside of the structure. The ZIM metalens uncover that ENZ media provide a new way to generate Bessel beams beyond the conventional convex prisms. On the other hand, with the help of the uniform field distribution of ZIM, enhanced (multi-channel) Bessel beams based on multiple point sources (exit surfaces) are studied in the isotropic ENZ metalens. In addition, the Bessel beam generated by the ZIM metalen has also been extend to the epsilon-mu-near zero metamaterial realized by two-dimensional photonic crystals. Our results not only provide a new way to generate Bessel beam based on the ZIM metalens, but also may enable their use in some optical applications, such as in fluorescence microscopy imaging, particle trapping, and wave-front tailoring.","PeriodicalId":90705,"journal":{"name":"Progress in Electromagnetics Research Symposium : [proceedings]. Progress in Electromagnetics Research Symposium","volume":"22 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87012073","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}