Chilean peach growers have achieved worldwide recognition for their high-quality fruit products. Among the main factors influencing peach fruit quality, sweetness is pivotal for maintaining the market's competitiveness. Numerous studies have been conducted in different peach-segregating populations to unravel SSC regulation. However, different cultivars may also have distinct genetic conformation, and other factors, such as environmental conditions, can significantly impact SSC. Using a transcriptomic approach with a gene co-expression network analysis, we aimed to identify the regulatory mechanism that controls the sugar accumulation process in an 'O × N' peach population. This population was previously studied through genomic analysis, associating LG5 with the genetic control of the SSC trait. The results obtained in this study allowed us to identify 91 differentially expressed genes located on chromosome 5 of the peach genome as putative new regulators of sugar accumulation in peach, together with a regulatory network that involves genes directly associated with sugar transport (PpSWEET15), cellulose biosynthesis (PpCSLG2), flavonoid biosynthesis (PpPAL1), pectin modifications (PpPG, PpPL and PpPMEi), expansins (PpEXPA1 and PpEXPA8) and several transcription factors (PpC3H67, PpHB7, PpRVE1 and PpCBF4) involved with the SSC phenotype. These results contribute to a better understanding of the genetic control of the SSC trait for future breeding programs in peaches.
Background: Neisseria gonorrhoeae (Ng) causes the sexually transmitted disease gonorrhoea. There are no vaccines and infections are treated principally with antibiotics. However, gonococci rapidly develop resistance to every antibiotic class used and there is a need for developing new antimicrobial treatments. In this study we focused on two gonococcal enzymes as potential antimicrobial targets, namely the serine protease L,D-carboxypeptidase LdcA (NgO1274/NEIS1546) and the lytic transglycosylase LtgD (NgO0626/NEIS1212). To identify compounds that could interact with these enzymes as potential antimicrobials, we used the AtomNet virtual high-throughput screening technology. We then did a computational modelling study to examine the interactions of the most bioactive compounds with their target enzymes. The identified compounds were tested against gonococci to determine minimum inhibitory and bactericidal concentrations (MIC/MBC), specificity, and compound toxicity in vitro.
Results: AtomNet identified 74 compounds that could potentially interact with Ng-LdcA and 84 compounds that could potentially interact with Ng-LtgD. Through MIC and MBC assays, we selected the three best performing compounds for both enzymes. Compound 16 was the most active against Ng-LdcA, with a MIC50 value < 1.56 µM and MBC50/90 values between 0.195 and 0.39 µM. In general, the Ng-LdcA compounds showed higher activity than the compounds directed against Ng-LtgD, of which compound 45 had MIC50 values of 1.56-3.125 µM and MBC50/90 values between 3.125 and 6.25 µM. The compounds were specific for gonococci and did not kill other bacteria. They were also non-toxic for human conjunctival epithelial cells as judged by a resazurin assay. To support our biological data, in-depth computational modelling study detailed the interactions of the compounds with their target enzymes. Protein models were generated in silico and validated, the active binding sites and amino acids involved elucidated, and the interactions of the compounds interacting with the enzymes visualised through molecular docking and Molecular Dynamics Simulations for 50 ns and Molecular Mechanics Poisson-Boltzmann Surface Area (MM-PBSA).
Conclusions: We have identified bioactive compounds that appear to target the N. gonorrhoeae LdcA and LtgD enzymes. By using a reductionist approach involving biological and computational data, we propose that compound Ng-LdcA-16 and Ng-LtgD-45 are promising anti-gonococcal compounds for further development.
Sex hormones play a pivotal role as endocrine hormones that exert profound effects on the biological characteristics and vascular function of vascular smooth muscle cells (VSMCs). By modulating intracellular signaling pathways, activating nuclear receptors, and regulating gene expression, sex hormones intricately influence the morphology, function, and physiological state of VSMCs, thereby impacting the biological properties of vascular contraction, relaxation, and growth. Increasing evidence suggests that abnormal phenotypic changes in VSMCs contribute to the initiation of vascular diseases, including atherosclerosis. Therefore, understanding the factors governing phenotypic alterations in VSMCs and elucidating the underlying mechanisms can provide crucial insights for refining interventions targeted at vascular diseases. Additionally, the varying levels of different types of sex hormones in the human body, influenced by sex and age, may also affect the phenotypic conversion of VSMCs. This review aims to explore the influence of sex hormones on the phenotypic switching of VSMCs and the development of associated vascular diseases in the human body.
Background: Infertility is a growing global health concern affecting millions of couples worldwide. Among several factors, an extreme body weight adversely affects reproductive functions. Leptin is a well-known adipokine that serves as an endocrine signal between adiposity and fertility. However, the exact mechanisms underlying the effects of high leptin level on female reproduction remain unclear.
Methods: Transgenic pigs overexpressing leptin (♀) were produced by backcrossing and screened for leptin overexpression. The growth curve, fat deposition, reproductive performance, apoptosis, serum hormones and cholesterol production, RNA sequencing, and single-nucleus RNA sequencing (snRNA-seq) of the leptin-overexpressing pigs and wild-type group were evaluated.
Results: Transgenic pigs overexpressing leptin (♀) were obtained, which exhibited significantly reduced body weight, body size, and back fat thickness. These pigs manifested a late onset of puberty (330 ± 54.3 vs. 155 ± 14.7 days), irregular estrous behavior characterized by increased inter-estrous interval (29.2 ± 0 vs. 21.3 ± 0.7 days), and more number of matings until pregnancy (at least 3 times). This reproductive impairment in leptin pigs was related to hormonal imbalances characterized by increased levels of FSH, LH, prolactin, E2, P4, and TSH, altered steroidogenesis such as increased levels of serum cholesterol esters along with steroidogenic markers (StAR, CYP19A), and ovarian dysfunctions manifested by neutrophilic infiltration and low expression of caspase-3 positive cells in the ovaries. Moreover, bulk RNA sequencing of the ovaries also revealed neutrophilic infiltration followed by upregulation of inflammation-related genes. Furthermore, snRNA-seq reflected that leptin overexpression triggered immune response, suppressed follicle development and luteinization, resulting in metabolic dysfunction and hormone imbalance in the ovary.
Conclusions: Low body weight in leptin overexpressing pigs adversely affects the reproductive performance, causing delayed puberty, irregular estrous cycles, and reduced breeding efficiency. This is linked to metabolic imbalances, an increased immune response, and altered ovarian functions. This study provides a theoretical basis for the complex mechanisms underlying leptin, and infertility by employing leptin-overexpressing female pigs.
Background: Tumour dormancy, a resistance mechanism employed by cancer cells, is a significant challenge in cancer treatment, contributing to minimal residual disease (MRD) and potential relapse. Despite its clinical importance, the mechanisms underlying tumour dormancy and MRD remain unclear. In this study, we employed two syngeneic murine models of myeloid leukemia and melanoma to investigate the genetic, epigenetic, transcriptomic and protein signatures associated with tumour dormancy. We used a multiomics approach to elucidate the molecular mechanisms driving MRD and identify potential therapeutic targets.
Results: We conducted an in-depth omics analysis encompassing whole-exome sequencing (WES), copy number variation (CNV) analysis, chromatin immunoprecipitation followed by sequencing (ChIP-seq), transcriptome and proteome investigations. WES analysis revealed a modest overlap of gene mutations between melanoma and leukemia dormancy models, with a significant number of mutated genes found exclusively in dormant cells. These exclusive genetic signatures suggest selective pressure during MRD, potentially conferring resistance to the microenvironment or therapies. CNV, histone marks and transcriptomic gene expression signatures combined with Gene Ontology (GO) enrichment analysis highlighted the potential functional roles of the mutated genes, providing insights into the pathways associated with MRD. In addition, we compared "murine MRD genes" profiles to the corresponding human disease through public datasets and highlighted common features according to disease progression. Proteomic analysis combined with multi-omics genetic investigations, revealed a dysregulated proteins signature in dormant cells with minimal genetic mechanism involvement. Pathway enrichment analysis revealed the metabolic, differentiation and cytoskeletal remodeling processes involved in MRD. Finally, we identified 11 common proteins differentially expressed in dormant cells from both pathologies.
Conclusions: Our study underscores the complexity of tumour dormancy, implicating both genetic and nongenetic factors. By comparing genomic, transcriptomic, proteomic, and epigenomic datasets, our study provides a comprehensive understanding of the molecular landscape of minimal residual disease. These results provide a robust foundation for forthcoming investigations and offer potential avenues for the advancement of targeted MRD therapies in leukemia and melanoma patients, emphasizing the importance of considering both genetic and nongenetic factors in treatment strategies.
Background: Adipocytokines play a pivotal role in maintaining adipose tissue homeostasis by regulating cellular metabolism, proliferation, differentiation, and secretory activity. These soluble factors are relevant components for healthy adipose tissue, while their deficiency is closely associated with the development of obesity and related metabolic diseases, e.g., chronic inflammation. In human adipose tissue, inter-α-trypsin inhibitor heavy chain 5 (ITIH5) is expressed in proportion to the development of adipose tissue, i.e., the individual's BMI. Thus, ITIH5 has been proposed to be an inert marker of human obesity. However, when applied to adipose stem cells in vitro, recombinant (r)ITIH5 protein inhibited proliferation and adipogenesis, suggesting that ITIH5 negatively affects the development of fat mass. We now tested the role of ITIH5 in vivo and compared ITIH5+/+ wildtype with ITIH5-/- knockout mice.
Results: Genetic deletion of ITIH5 significantly increased adipose tissue mass relative to animal bodyweight (p < 0.05). Next, we characterized adipose stem cells (ASCs) from both genotypes in vitro. ITIH5-/- cells exhibited increased proliferation and adipogenic differentiation (p < 0.001), which could explain the increase in adipose tissue in vivo. Furthermore, ASCs from ITIH5-/- animals were more responsive to stimulation with inflammatory mediators, i.e., these cells released greater amounts of IL-6 and MCP-1 (p < 0.001). Importantly, the application of the rITIH5 protein reversed the observed knockout effects in ASCs.
Conclusions: Our data suggest that ITIH5 potently regulates adipose tissue development and homeostasis by modulating ASC biology in mice. In addition, the effect of the rITIH5 protein underscores its potential as a therapeutic agent to correct the adipose tissue dysregulation often associated with obesity and metabolic disorders.
Background: While calcium is known to play a crucial role in mammalian sperm physiology, how it flows in and out of the male gamete is not completely understood. Herein, we investigated the involvement of Na+/Ca2+ exchangers (NCX) in mammalian sperm capacitation. Using the pig as an animal model, we first confirmed the presence of NCX1 and NCX2 isoforms in the sperm midpiece. Next, we partially or totally blocked Ca2+ outflux (forward transport) via NCX1/NCX2 with different concentrations of SEA0400 (2-[4-[(2,5-difluorophenyl)methoxy]phenoxy]-5-ethoxyaniline; 0, 0.5, 5 and 50 µM) and Ca2+ influx (reverse transport) with SN6 (ethyl 2-[[4-[(4-nitrophenyl)methoxy]phenyl]methyl]-1,3-thiazolidine-4-carboxylate; 0, 0.3, 3 or 30 µM). Sperm were incubated under capacitating conditions for 180 min; after 120 min, progesterone was added to induce the acrosome reaction. At 0, 60, 120, 130, and 180 min, sperm motility, membrane lipid disorder, acrosome integrity, mitochondrial membrane potential (MMP), tyrosine phosphorylation of sperm proteins, and intracellular levels of Ca2+, reactive oxygen species (ROS) and superoxides were evaluated.
Results: Partial and complete blockage of Ca2+ outflux and influx via NCX induced a significant reduction of sperm motility after progesterone addition. Early alterations on sperm kinematics were also observed, the effects being more obvious in totally blocked than in partially blocked samples. Decreased sperm motility and kinematics were related to both defective tyrosine phosphorylation and mitochondrial activity, the latter being associated to diminished MMP and ROS levels. As NCX blockage did not affect the lipid disorder of plasma membrane, the impaired acrosome integrity could result from reduced tyrosine phosphorylation.
Conclusions: Inhibition of outflux and influx of Ca2+ triggered similar effects, thus indicating that both forward and reverse Ca2+ transport through NCX exchangers are essential for sperm capacitation.