首页 > 最新文献

Biological Research最新文献

英文 中文
Hormonal influence: unraveling the impact of sex hormones on vascular smooth muscle cells. 荷尔蒙的影响:揭示性荷尔蒙对血管平滑肌细胞的影响。
IF 4.3 2区 生物学 Q1 BIOLOGY Pub Date : 2024-09-04 DOI: 10.1186/s40659-024-00542-w
Keran Jia, Xin Luo, Jingyan Yi, Chunxiang Zhang

Sex hormones play a pivotal role as endocrine hormones that exert profound effects on the biological characteristics and vascular function of vascular smooth muscle cells (VSMCs). By modulating intracellular signaling pathways, activating nuclear receptors, and regulating gene expression, sex hormones intricately influence the morphology, function, and physiological state of VSMCs, thereby impacting the biological properties of vascular contraction, relaxation, and growth. Increasing evidence suggests that abnormal phenotypic changes in VSMCs contribute to the initiation of vascular diseases, including atherosclerosis. Therefore, understanding the factors governing phenotypic alterations in VSMCs and elucidating the underlying mechanisms can provide crucial insights for refining interventions targeted at vascular diseases. Additionally, the varying levels of different types of sex hormones in the human body, influenced by sex and age, may also affect the phenotypic conversion of VSMCs. This review aims to explore the influence of sex hormones on the phenotypic switching of VSMCs and the development of associated vascular diseases in the human body.

性激素作为一种内分泌激素,对血管平滑肌细胞(VSMC)的生物特性和血管功能有着举足轻重的影响。通过调节细胞内信号通路、激活核受体和调控基因表达,性激素错综复杂地影响着血管平滑肌细胞的形态、功能和生理状态,从而影响血管收缩、舒张和生长的生物学特性。越来越多的证据表明,血管内皮细胞表型的异常变化是包括动脉粥样硬化在内的血管疾病的诱因。因此,了解支配血管内皮细胞表型改变的因素并阐明其潜在机制,可为完善针对血管疾病的干预措施提供重要见解。此外,人体内不同类型的性激素水平受性别和年龄的影响,也可能影响 VSMC 的表型转换。本综述旨在探讨性激素对人体 VSMC 表型转换及相关血管疾病发展的影响。
{"title":"Hormonal influence: unraveling the impact of sex hormones on vascular smooth muscle cells.","authors":"Keran Jia, Xin Luo, Jingyan Yi, Chunxiang Zhang","doi":"10.1186/s40659-024-00542-w","DOIUrl":"10.1186/s40659-024-00542-w","url":null,"abstract":"<p><p>Sex hormones play a pivotal role as endocrine hormones that exert profound effects on the biological characteristics and vascular function of vascular smooth muscle cells (VSMCs). By modulating intracellular signaling pathways, activating nuclear receptors, and regulating gene expression, sex hormones intricately influence the morphology, function, and physiological state of VSMCs, thereby impacting the biological properties of vascular contraction, relaxation, and growth. Increasing evidence suggests that abnormal phenotypic changes in VSMCs contribute to the initiation of vascular diseases, including atherosclerosis. Therefore, understanding the factors governing phenotypic alterations in VSMCs and elucidating the underlying mechanisms can provide crucial insights for refining interventions targeted at vascular diseases. Additionally, the varying levels of different types of sex hormones in the human body, influenced by sex and age, may also affect the phenotypic conversion of VSMCs. This review aims to explore the influence of sex hormones on the phenotypic switching of VSMCs and the development of associated vascular diseases in the human body.</p>","PeriodicalId":9084,"journal":{"name":"Biological Research","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11373308/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142124795","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unraveling the impact of hyperleptinemia on female reproduction: insights from transgenic pig model. 揭示高瘦血症对雌性生殖的影响:转基因猪模型的启示。
IF 4.3 2区 生物学 Q1 BIOLOGY Pub Date : 2024-09-04 DOI: 10.1186/s40659-024-00545-7
Muhammad Ameen Jamal, Yixiao Cheng, Deling Jiao, Wen Cheng, Di Zou, Xia Wang, Taiyun Wei, Jianxiong Guo, Kaixiang Xu, Heng Zhao, Shaoxia Pu, Chang Yang, Yubo Qing, Baoyu Jia, Honghui Li, Rusong Zhao, Hong-Ye Zhao, Hong-Jiang Wei

Background: Infertility is a growing global health concern affecting millions of couples worldwide. Among several factors, an extreme body weight adversely affects reproductive functions. Leptin is a well-known adipokine that serves as an endocrine signal between adiposity and fertility. However, the exact mechanisms underlying the effects of high leptin level on female reproduction remain unclear.

Methods: Transgenic pigs overexpressing leptin (♀) were produced by backcrossing and screened for leptin overexpression. The growth curve, fat deposition, reproductive performance, apoptosis, serum hormones and cholesterol production, RNA sequencing, and single-nucleus RNA sequencing (snRNA-seq) of the leptin-overexpressing pigs and wild-type group were evaluated.

Results: Transgenic pigs overexpressing leptin (♀) were obtained, which exhibited significantly reduced body weight, body size, and back fat thickness. These pigs manifested a late onset of puberty (330 ± 54.3 vs. 155 ± 14.7 days), irregular estrous behavior characterized by increased inter-estrous interval (29.2 ± 0 vs. 21.3 ± 0.7 days), and more number of matings until pregnancy (at least 3 times). This reproductive impairment in leptin pigs was related to hormonal imbalances characterized by increased levels of FSH, LH, prolactin, E2, P4, and TSH, altered steroidogenesis such as increased levels of serum cholesterol esters along with steroidogenic markers (StAR, CYP19A), and ovarian dysfunctions manifested by neutrophilic infiltration and low expression of caspase-3 positive cells in the ovaries. Moreover, bulk RNA sequencing of the ovaries also revealed neutrophilic infiltration followed by upregulation of inflammation-related genes. Furthermore, snRNA-seq reflected that leptin overexpression triggered immune response, suppressed follicle development and luteinization, resulting in metabolic dysfunction and hormone imbalance in the ovary.

Conclusions: Low body weight in leptin overexpressing pigs adversely affects the reproductive performance, causing delayed puberty, irregular estrous cycles, and reduced breeding efficiency. This is linked to metabolic imbalances, an increased immune response, and altered ovarian functions. This study provides a theoretical basis for the complex mechanisms underlying leptin, and infertility by employing leptin-overexpressing female pigs.

背景:不孕症是一个日益严重的全球性健康问题,影响着全球数百万对夫妇。在多种因素中,体重过重会对生殖功能产生不利影响。瘦素是一种众所周知的脂肪因子,是脂肪与生育之间的内分泌信号。然而,高瘦素水平影响女性生殖的确切机制仍不清楚:方法:通过回交产生过表达瘦素(♀)的转基因猪,并进行瘦素过表达筛选。结果:过表达瘦素的转基因猪和野生型猪的生长曲线、脂肪沉积、繁殖性能、细胞凋亡、血清激素和胆固醇的产生、RNA测序和单核RNA测序(snRNA-seq)都得到了评估:结果:获得了过表达瘦素(♀)的转基因猪,这些猪的体重、体型和背部脂肪厚度显著降低。这些猪的青春期起始较晚(330 ± 54.3 天 vs. 155 ± 14.7 天),发情行为不规律,发情间隔时间延长(29.2 ± 0 天 vs. 21.3 ± 0.7 天),怀孕前的配种次数增加(至少 3 次)。瘦素猪的繁殖障碍与激素失衡有关,表现为 FSH、LH、催乳素、E2、P4 和 TSH 水平升高;类固醇生成发生改变,如血清胆固醇酯和类固醇生成标记物(StAR、CYP19A)水平升高;卵巢功能失调,表现为中性粒细胞浸润和卵巢中 Caspase-3 阳性细胞的低表达。此外,卵巢的大量 RNA 测序也显示了中性粒细胞浸润,随后炎症相关基因上调。此外,snRNA-seq还反映出瘦素过表达会引发免疫反应,抑制卵泡发育和黄体化,导致卵巢代谢功能障碍和激素失衡:结论:过表达瘦素的猪体重过轻会对繁殖性能产生不利影响,导致青春期延迟、发情周期不规则和繁殖效率降低。这与代谢失衡、免疫反应增强和卵巢功能改变有关。本研究通过使用瘦素过表达的母猪,为瘦素与不孕症的复杂机制提供了理论依据。
{"title":"Unraveling the impact of hyperleptinemia on female reproduction: insights from transgenic pig model.","authors":"Muhammad Ameen Jamal, Yixiao Cheng, Deling Jiao, Wen Cheng, Di Zou, Xia Wang, Taiyun Wei, Jianxiong Guo, Kaixiang Xu, Heng Zhao, Shaoxia Pu, Chang Yang, Yubo Qing, Baoyu Jia, Honghui Li, Rusong Zhao, Hong-Ye Zhao, Hong-Jiang Wei","doi":"10.1186/s40659-024-00545-7","DOIUrl":"10.1186/s40659-024-00545-7","url":null,"abstract":"<p><strong>Background: </strong>Infertility is a growing global health concern affecting millions of couples worldwide. Among several factors, an extreme body weight adversely affects reproductive functions. Leptin is a well-known adipokine that serves as an endocrine signal between adiposity and fertility. However, the exact mechanisms underlying the effects of high leptin level on female reproduction remain unclear.</p><p><strong>Methods: </strong>Transgenic pigs overexpressing leptin (♀) were produced by backcrossing and screened for leptin overexpression. The growth curve, fat deposition, reproductive performance, apoptosis, serum hormones and cholesterol production, RNA sequencing, and single-nucleus RNA sequencing (snRNA-seq) of the leptin-overexpressing pigs and wild-type group were evaluated.</p><p><strong>Results: </strong>Transgenic pigs overexpressing leptin (♀) were obtained, which exhibited significantly reduced body weight, body size, and back fat thickness. These pigs manifested a late onset of puberty (330 ± 54.3 vs. 155 ± 14.7 days), irregular estrous behavior characterized by increased inter-estrous interval (29.2 ± 0 vs. 21.3 ± 0.7 days), and more number of matings until pregnancy (at least 3 times). This reproductive impairment in leptin pigs was related to hormonal imbalances characterized by increased levels of FSH, LH, prolactin, E2, P4, and TSH, altered steroidogenesis such as increased levels of serum cholesterol esters along with steroidogenic markers (StAR, CYP19A), and ovarian dysfunctions manifested by neutrophilic infiltration and low expression of caspase-3 positive cells in the ovaries. Moreover, bulk RNA sequencing of the ovaries also revealed neutrophilic infiltration followed by upregulation of inflammation-related genes. Furthermore, snRNA-seq reflected that leptin overexpression triggered immune response, suppressed follicle development and luteinization, resulting in metabolic dysfunction and hormone imbalance in the ovary.</p><p><strong>Conclusions: </strong>Low body weight in leptin overexpressing pigs adversely affects the reproductive performance, causing delayed puberty, irregular estrous cycles, and reduced breeding efficiency. This is linked to metabolic imbalances, an increased immune response, and altered ovarian functions. This study provides a theoretical basis for the complex mechanisms underlying leptin, and infertility by employing leptin-overexpressing female pigs.</p>","PeriodicalId":9084,"journal":{"name":"Biological Research","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11373500/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142124796","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deciphering genetic and nongenetic factors underlying tumour dormancy: insights from multiomics analysis of two syngeneic MRD models of melanoma and leukemia. 解密肿瘤休眠的遗传和非遗传因素:对黑色素瘤和白血病两种共生 MRD 模型进行多组学分析的启示。
IF 4.3 2区 生物学 Q1 BIOLOGY Pub Date : 2024-09-03 DOI: 10.1186/s40659-024-00540-y
Marie-Océane Laguillaumie, Sofia Titah, Aurélie Guillemette, Bernadette Neve, Frederic Leprêtre, Pascaline Ségard, Faruk Azam Shaik, Dominique Collard, Jean-Claude Gerbedoen, Léa Fléchon, Lama Hasan Bou Issa, Audrey Vincent, Martin Figeac, Shéhérazade Sebda, Céline Villenet, Jérôme Kluza, William Laine, Isabelle Fournier, Jean-Pascal Gimeno, Maxence Wisztorski, Salomon Manier, Mehmet Cagatay Tarhan, Bruno Quesnel, Thierry Idziorek, Yasmine Touil

Background: Tumour dormancy, a resistance mechanism employed by cancer cells, is a significant challenge in cancer treatment, contributing to minimal residual disease (MRD) and potential relapse. Despite its clinical importance, the mechanisms underlying tumour dormancy and MRD remain unclear. In this study, we employed two syngeneic murine models of myeloid leukemia and melanoma to investigate the genetic, epigenetic, transcriptomic and protein signatures associated with tumour dormancy. We used a multiomics approach to elucidate the molecular mechanisms driving MRD and identify potential therapeutic targets.

Results: We conducted an in-depth omics analysis encompassing whole-exome sequencing (WES), copy number variation (CNV) analysis, chromatin immunoprecipitation followed by sequencing (ChIP-seq), transcriptome and proteome investigations. WES analysis revealed a modest overlap of gene mutations between melanoma and leukemia dormancy models, with a significant number of mutated genes found exclusively in dormant cells. These exclusive genetic signatures suggest selective pressure during MRD, potentially conferring resistance to the microenvironment or therapies. CNV, histone marks and transcriptomic gene expression signatures combined with Gene Ontology (GO) enrichment analysis highlighted the potential functional roles of the mutated genes, providing insights into the pathways associated with MRD. In addition, we compared "murine MRD genes" profiles to the corresponding human disease through public datasets and highlighted common features according to disease progression. Proteomic analysis combined with multi-omics genetic investigations, revealed a dysregulated proteins signature in dormant cells with minimal genetic mechanism involvement. Pathway enrichment analysis revealed the metabolic, differentiation and cytoskeletal remodeling processes involved in MRD. Finally, we identified 11 common proteins differentially expressed in dormant cells from both pathologies.

Conclusions: Our study underscores the complexity of tumour dormancy, implicating both genetic and nongenetic factors. By comparing genomic, transcriptomic, proteomic, and epigenomic datasets, our study provides a comprehensive understanding of the molecular landscape of minimal residual disease. These results provide a robust foundation for forthcoming investigations and offer potential avenues for the advancement of targeted MRD therapies in leukemia and melanoma patients, emphasizing the importance of considering both genetic and nongenetic factors in treatment strategies.

背景:肿瘤休眠是癌细胞采用的一种抵抗机制,是癌症治疗中的一个重大挑战,会导致最小残留病(MRD)和潜在复发。尽管肿瘤休眠具有重要的临床意义,但肿瘤休眠和 MRD 的机制仍不清楚。在这项研究中,我们采用了骨髓性白血病和黑色素瘤的两种合成小鼠模型来研究与肿瘤休眠相关的遗传学、表观遗传学、转录组学和蛋白质特征。我们采用多组学方法阐明了驱动MRD的分子机制,并确定了潜在的治疗靶点:我们进行了深入的全组学分析,包括全外显子组测序(WES)、拷贝数变异(CNV)分析、染色质免疫沉淀测序(ChIP-seq)、转录组和蛋白质组研究。WES分析显示,黑色素瘤和白血病休眠模型的基因突变略有重叠,大量突变基因只存在于休眠细胞中。这些独有的基因特征表明,在MRD期间存在选择性压力,有可能使细胞对微环境或疗法产生抗药性。CNV、组蛋白标记和转录组基因表达特征与基因本体(GO)富集分析相结合,突显了突变基因的潜在功能作用,为了解与MRD相关的通路提供了线索。此外,我们还通过公共数据集将 "小鼠 MRD 基因 "特征与相应的人类疾病进行了比较,并根据疾病的进展突出了共同特征。蛋白质组分析与多组学遗传学研究相结合,揭示了休眠细胞中蛋白质失调的特征,其中遗传机制的参与度极低。通路富集分析揭示了 MRD 所涉及的代谢、分化和细胞骨架重塑过程。最后,我们确定了两种病理休眠细胞中差异表达的11种常见蛋白质:结论:我们的研究强调了肿瘤休眠的复杂性,涉及遗传和非遗传因素。通过比较基因组、转录组、蛋白质组和表观基因组数据集,我们的研究提供了对极小残留病分子图谱的全面了解。这些结果为今后的研究奠定了坚实的基础,并为推进白血病和黑色素瘤患者的 MRD 靶向治疗提供了潜在的途径,强调了在治疗策略中考虑遗传和非遗传因素的重要性。
{"title":"Deciphering genetic and nongenetic factors underlying tumour dormancy: insights from multiomics analysis of two syngeneic MRD models of melanoma and leukemia.","authors":"Marie-Océane Laguillaumie, Sofia Titah, Aurélie Guillemette, Bernadette Neve, Frederic Leprêtre, Pascaline Ségard, Faruk Azam Shaik, Dominique Collard, Jean-Claude Gerbedoen, Léa Fléchon, Lama Hasan Bou Issa, Audrey Vincent, Martin Figeac, Shéhérazade Sebda, Céline Villenet, Jérôme Kluza, William Laine, Isabelle Fournier, Jean-Pascal Gimeno, Maxence Wisztorski, Salomon Manier, Mehmet Cagatay Tarhan, Bruno Quesnel, Thierry Idziorek, Yasmine Touil","doi":"10.1186/s40659-024-00540-y","DOIUrl":"10.1186/s40659-024-00540-y","url":null,"abstract":"<p><strong>Background: </strong>Tumour dormancy, a resistance mechanism employed by cancer cells, is a significant challenge in cancer treatment, contributing to minimal residual disease (MRD) and potential relapse. Despite its clinical importance, the mechanisms underlying tumour dormancy and MRD remain unclear. In this study, we employed two syngeneic murine models of myeloid leukemia and melanoma to investigate the genetic, epigenetic, transcriptomic and protein signatures associated with tumour dormancy. We used a multiomics approach to elucidate the molecular mechanisms driving MRD and identify potential therapeutic targets.</p><p><strong>Results: </strong>We conducted an in-depth omics analysis encompassing whole-exome sequencing (WES), copy number variation (CNV) analysis, chromatin immunoprecipitation followed by sequencing (ChIP-seq), transcriptome and proteome investigations. WES analysis revealed a modest overlap of gene mutations between melanoma and leukemia dormancy models, with a significant number of mutated genes found exclusively in dormant cells. These exclusive genetic signatures suggest selective pressure during MRD, potentially conferring resistance to the microenvironment or therapies. CNV, histone marks and transcriptomic gene expression signatures combined with Gene Ontology (GO) enrichment analysis highlighted the potential functional roles of the mutated genes, providing insights into the pathways associated with MRD. In addition, we compared \"murine MRD genes\" profiles to the corresponding human disease through public datasets and highlighted common features according to disease progression. Proteomic analysis combined with multi-omics genetic investigations, revealed a dysregulated proteins signature in dormant cells with minimal genetic mechanism involvement. Pathway enrichment analysis revealed the metabolic, differentiation and cytoskeletal remodeling processes involved in MRD. Finally, we identified 11 common proteins differentially expressed in dormant cells from both pathologies.</p><p><strong>Conclusions: </strong>Our study underscores the complexity of tumour dormancy, implicating both genetic and nongenetic factors. By comparing genomic, transcriptomic, proteomic, and epigenomic datasets, our study provides a comprehensive understanding of the molecular landscape of minimal residual disease. These results provide a robust foundation for forthcoming investigations and offer potential avenues for the advancement of targeted MRD therapies in leukemia and melanoma patients, emphasizing the importance of considering both genetic and nongenetic factors in treatment strategies.</p>","PeriodicalId":9084,"journal":{"name":"Biological Research","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11370043/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142118990","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genetic deletion of ITIH5 leads to increased development of adipose tissue in mice. 基因缺失 ITIH5 会导致小鼠脂肪组织发育加快。
IF 4.3 2区 生物学 Q1 BIOLOGY Pub Date : 2024-08-29 DOI: 10.1186/s40659-024-00530-0
Thomas M Sessler, Justus P Beier, Sophia Villwock, Danny Jonigk, Edgar Dahl, Tim Ruhl

Background: Adipocytokines play a pivotal role in maintaining adipose tissue homeostasis by regulating cellular metabolism, proliferation, differentiation, and secretory activity. These soluble factors are relevant components for healthy adipose tissue, while their deficiency is closely associated with the development of obesity and related metabolic diseases, e.g., chronic inflammation. In human adipose tissue, inter-α-trypsin inhibitor heavy chain 5 (ITIH5) is expressed in proportion to the development of adipose tissue, i.e., the individual's BMI. Thus, ITIH5 has been proposed to be an inert marker of human obesity. However, when applied to adipose stem cells in vitro, recombinant (r)ITIH5 protein inhibited proliferation and adipogenesis, suggesting that ITIH5 negatively affects the development of fat mass. We now tested the role of ITIH5 in vivo and compared ITIH5+/+ wildtype with ITIH5-/- knockout mice.

Results: Genetic deletion of ITIH5 significantly increased adipose tissue mass relative to animal bodyweight (p < 0.05). Next, we characterized adipose stem cells (ASCs) from both genotypes in vitro. ITIH5-/- cells exhibited increased proliferation and adipogenic differentiation (p < 0.001), which could explain the increase in adipose tissue in vivo. Furthermore, ASCs from ITIH5-/- animals were more responsive to stimulation with inflammatory mediators, i.e., these cells released greater amounts of IL-6 and MCP-1 (p < 0.001). Importantly, the application of the rITIH5 protein reversed the observed knockout effects in ASCs.

Conclusions: Our data suggest that ITIH5 potently regulates adipose tissue development and homeostasis by modulating ASC biology in mice. In addition, the effect of the rITIH5 protein underscores its potential as a therapeutic agent to correct the adipose tissue dysregulation often associated with obesity and metabolic disorders.

背景:脂肪细胞因子通过调节细胞的新陈代谢、增殖、分化和分泌活性,在维持脂肪组织平衡方面发挥着关键作用。这些可溶性因子是健康脂肪组织的相关成分,而它们的缺乏则与肥胖和相关代谢疾病(如慢性炎症)的发生密切相关。在人体脂肪组织中,α-胰蛋白酶间抑制物重链 5(ITIH5)的表达与脂肪组织的发育(即个人的体重指数)成正比。因此,ITIH5 被认为是人类肥胖的惰性标志物。然而,当应用于体外脂肪干细胞时,重组(r)ITIH5 蛋白会抑制增殖和脂肪生成,这表明 ITIH5 对脂肪量的发展有负面影响。我们现在测试了 ITIH5 在体内的作用,并比较了 ITIH5+/+ 野生型与 ITIH5-/- 基因敲除小鼠:结果:相对于动物体重,遗传性缺失 ITIH5 会显著增加脂肪组织质量(p -/-细胞表现出增殖和成脂分化增加(p -/-动物对炎症介质刺激的反应更强,即这些细胞释放出更多的 IL-6 和 MCP-1(p 结论):我们的数据表明,ITIH5 可通过调节小鼠 ASC 的生物学特性来有效调节脂肪组织的发育和稳态。此外,rITIH5 蛋白的作用还强调了其作为一种治疗剂的潜力,可纠正通常与肥胖和代谢紊乱相关的脂肪组织失调。
{"title":"Genetic deletion of ITIH5 leads to increased development of adipose tissue in mice.","authors":"Thomas M Sessler, Justus P Beier, Sophia Villwock, Danny Jonigk, Edgar Dahl, Tim Ruhl","doi":"10.1186/s40659-024-00530-0","DOIUrl":"10.1186/s40659-024-00530-0","url":null,"abstract":"<p><strong>Background: </strong>Adipocytokines play a pivotal role in maintaining adipose tissue homeostasis by regulating cellular metabolism, proliferation, differentiation, and secretory activity. These soluble factors are relevant components for healthy adipose tissue, while their deficiency is closely associated with the development of obesity and related metabolic diseases, e.g., chronic inflammation. In human adipose tissue, inter-α-trypsin inhibitor heavy chain 5 (ITIH5) is expressed in proportion to the development of adipose tissue, i.e., the individual's BMI. Thus, ITIH5 has been proposed to be an inert marker of human obesity. However, when applied to adipose stem cells in vitro, recombinant (r)ITIH5 protein inhibited proliferation and adipogenesis, suggesting that ITIH5 negatively affects the development of fat mass. We now tested the role of ITIH5 in vivo and compared ITIH5<sup>+/+</sup> wildtype with ITIH5<sup>-/-</sup> knockout mice.</p><p><strong>Results: </strong>Genetic deletion of ITIH5 significantly increased adipose tissue mass relative to animal bodyweight (p < 0.05). Next, we characterized adipose stem cells (ASCs) from both genotypes in vitro. ITIH5<sup>-/-</sup> cells exhibited increased proliferation and adipogenic differentiation (p < 0.001), which could explain the increase in adipose tissue in vivo. Furthermore, ASCs from ITIH5<sup>-/-</sup> animals were more responsive to stimulation with inflammatory mediators, i.e., these cells released greater amounts of IL-6 and MCP-1 (p < 0.001). Importantly, the application of the rITIH5 protein reversed the observed knockout effects in ASCs.</p><p><strong>Conclusions: </strong>Our data suggest that ITIH5 potently regulates adipose tissue development and homeostasis by modulating ASC biology in mice. In addition, the effect of the rITIH5 protein underscores its potential as a therapeutic agent to correct the adipose tissue dysregulation often associated with obesity and metabolic disorders.</p>","PeriodicalId":9084,"journal":{"name":"Biological Research","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11360682/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142092180","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inhibition of forward and reverse transport of Ca2+ via Na+/Ca2+ exchangers (NCX) prevents sperm capacitation. 通过 Na+/Ca2+ 交换器(NCX)抑制 Ca2+ 的正向和反向运输可阻止精子获能。
IF 4.3 2区 生物学 Q1 BIOLOGY Pub Date : 2024-08-23 DOI: 10.1186/s40659-024-00535-9
Marc Yeste, Adeel Ahmad, Estel Viñolas, Sandra Recuero, Sergi Bonet, Elisabeth Pinart

Background: While calcium is known to play a crucial role in mammalian sperm physiology, how it flows in and out of the male gamete is not completely understood. Herein, we investigated the involvement of Na+/Ca2+ exchangers (NCX) in mammalian sperm capacitation. Using the pig as an animal model, we first confirmed the presence of NCX1 and NCX2 isoforms in the sperm midpiece. Next, we partially or totally blocked Ca2+ outflux (forward transport) via NCX1/NCX2 with different concentrations of SEA0400 (2-[4-[(2,5-difluorophenyl)methoxy]phenoxy]-5-ethoxyaniline; 0, 0.5, 5 and 50 µM) and Ca2+ influx (reverse transport) with SN6 (ethyl 2-[[4-[(4-nitrophenyl)methoxy]phenyl]methyl]-1,3-thiazolidine-4-carboxylate; 0, 0.3, 3 or 30 µM). Sperm were incubated under capacitating conditions for 180 min; after 120 min, progesterone was added to induce the acrosome reaction. At 0, 60, 120, 130, and 180 min, sperm motility, membrane lipid disorder, acrosome integrity, mitochondrial membrane potential (MMP), tyrosine phosphorylation of sperm proteins, and intracellular levels of Ca2+, reactive oxygen species (ROS) and superoxides were evaluated.

Results: Partial and complete blockage of Ca2+ outflux and influx via NCX induced a significant reduction of sperm motility after progesterone addition. Early alterations on sperm kinematics were also observed, the effects being more obvious in totally blocked than in partially blocked samples. Decreased sperm motility and kinematics were related to both defective tyrosine phosphorylation and mitochondrial activity, the latter being associated to diminished MMP and ROS levels. As NCX blockage did not affect the lipid disorder of plasma membrane, the impaired acrosome integrity could result from reduced tyrosine phosphorylation.

Conclusions: Inhibition of outflux and influx of Ca2+ triggered similar effects, thus indicating that both forward and reverse Ca2+ transport through NCX exchangers are essential for sperm capacitation.

背景:众所周知,钙在哺乳动物精子的生理过程中起着至关重要的作用,但钙如何进出雄性配子却并不完全清楚。在此,我们研究了 Na+/Ca2+ 交换器(NCX)在哺乳动物精子获能过程中的参与。以猪为动物模型,我们首先证实了精子中段存在 NCX1 和 NCX2 同工酶。接着,我们用不同浓度的 SEA0400(2-[4-[(2,5-二氟苯基)甲氧基]苯氧基]-5-乙氧基苯胺;0、0.5、5 和 50 µM)部分或完全阻断了通过 NCX1/NCX2 的 Ca2+ 外流(前向运输)。SN6(2-[[4-[(4-硝基苯基)甲氧基]苯基]甲基]-1,3-噻唑烷-4-甲酸乙酯;0、0.3、3 或 30 µM)。精子在获能条件下孵育 180 分钟;120 分钟后,加入黄体酮以诱导顶体反应。在 0、60、120、130 和 180 分钟内,对精子的运动能力、膜脂紊乱、顶体完整性、线粒体膜电位(MMP)、精子蛋白质的酪氨酸磷酸化以及细胞内 Ca2+、活性氧(ROS)和超氧化物的水平进行了评估:结果:部分和完全阻断 Ca2+ 通过 NCX 的外流和内流可导致精子活力在黄体酮添加后显著下降。还观察到精子运动学的早期改变,完全阻断比部分阻断样本的影响更明显。精子运动能力和运动学特征的降低与酪氨酸磷酸化和线粒体活性的缺陷有关,后者与 MMP 和 ROS 水平的降低有关。由于NCX阻断并不影响质膜脂质紊乱,顶体完整性受损可能是酪氨酸磷酸化减少所致:结论:抑制Ca2+的外流和流入会引发相似的效应,因此表明通过NCX交换器进行的Ca2+正向和反向运输对精子获能至关重要。
{"title":"Inhibition of forward and reverse transport of Ca<sup>2+</sup> via Na<sup>+</sup>/Ca<sup>2+</sup> exchangers (NCX) prevents sperm capacitation.","authors":"Marc Yeste, Adeel Ahmad, Estel Viñolas, Sandra Recuero, Sergi Bonet, Elisabeth Pinart","doi":"10.1186/s40659-024-00535-9","DOIUrl":"10.1186/s40659-024-00535-9","url":null,"abstract":"<p><strong>Background: </strong>While calcium is known to play a crucial role in mammalian sperm physiology, how it flows in and out of the male gamete is not completely understood. Herein, we investigated the involvement of Na<sup>+</sup>/Ca<sup>2+</sup> exchangers (NCX) in mammalian sperm capacitation. Using the pig as an animal model, we first confirmed the presence of NCX1 and NCX2 isoforms in the sperm midpiece. Next, we partially or totally blocked Ca<sup>2+</sup> outflux (forward transport) via NCX1/NCX2 with different concentrations of SEA0400 (2-[4-[(2,5-difluorophenyl)methoxy]phenoxy]-5-ethoxyaniline; 0, 0.5, 5 and 50 µM) and Ca<sup>2+</sup> influx (reverse transport) with SN6 (ethyl 2-[[4-[(4-nitrophenyl)methoxy]phenyl]methyl]-1,3-thiazolidine-4-carboxylate; 0, 0.3, 3 or 30 µM). Sperm were incubated under capacitating conditions for 180 min; after 120 min, progesterone was added to induce the acrosome reaction. At 0, 60, 120, 130, and 180 min, sperm motility, membrane lipid disorder, acrosome integrity, mitochondrial membrane potential (MMP), tyrosine phosphorylation of sperm proteins, and intracellular levels of Ca<sup>2+</sup>, reactive oxygen species (ROS) and superoxides were evaluated.</p><p><strong>Results: </strong>Partial and complete blockage of Ca<sup>2+</sup> outflux and influx via NCX induced a significant reduction of sperm motility after progesterone addition. Early alterations on sperm kinematics were also observed, the effects being more obvious in totally blocked than in partially blocked samples. Decreased sperm motility and kinematics were related to both defective tyrosine phosphorylation and mitochondrial activity, the latter being associated to diminished MMP and ROS levels. As NCX blockage did not affect the lipid disorder of plasma membrane, the impaired acrosome integrity could result from reduced tyrosine phosphorylation.</p><p><strong>Conclusions: </strong>Inhibition of outflux and influx of Ca<sup>2+</sup> triggered similar effects, thus indicating that both forward and reverse Ca<sup>2+</sup> transport through NCX exchangers are essential for sperm capacitation.</p>","PeriodicalId":9084,"journal":{"name":"Biological Research","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11342557/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142035208","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Selective disruption of synaptic NMDA receptors of the hippocampal trisynaptic circuit in Aβ pathology. 在 Aβ 病理学中选择性破坏海马三突触回路的突触 NMDA 受体
IF 4.3 2区 生物学 Q1 BIOLOGY Pub Date : 2024-08-22 DOI: 10.1186/s40659-024-00537-7
Rocio Alfaro-Ruiz, Alejandro Martín-Belmonte, Carolina Aguado, Ana Esther Moreno-Martínez, Yugo Fukazawa, Rafael Luján

Synaptic dysfunction is an early feature in Alzheimer's disease (AD) pathogenesis and a major morphological correlate of memory deficits. Given the main synaptic location of N-methyl-D-aspartate receptors (NMDARs), their dysregulation has been implicated in these pathological effects. Here, to detect possible alterations in the expression and synaptic localisation of the GluN1 subunit in the brain of amyloidogenic APP/PS1 mice, we employed histoblot and SDS-digested freeze-fracture replica labelling (SDS-FRL) techniques. Histoblots showed that GluN1 expression was significantly reduced in the hippocampus in a layer-dependent manner, in the cortex and the caudate putamen of APP/PS1 transgenic mice at 12 months of age but was unaltered at 1 and 6 months. Using quantitative SDS-FRL, we unravelled the molecular organisation of GluN1 in seven excitatory synapse populations at a high spatial resolution in the CA1 and CA3 fields and the DG of the hippocampus in 12-month-old APP/PS1 mice. In the CA1 field, the labelling density for GluN1 in the excitatory synapses established on spines and interneurons, was significantly reduced in APP/PS1 mice compared to age-matched wild-type mice in the stratum lacunosum-moleculare but unaltered in the stratum radiatum. In the CA3 field, synaptic GluN1 was reduced in mossy fibre-CA3 pyramidal cell synapses but unaltered in the A/C-CA3 pyramidal cell synapses. In the DG, the density of GluN1 in granule cell-perforant pathway synapses was reduced in APP/PS1 mice. Altogether, our findings provide evidence of specific alterations of synaptic GluN1 in the trisynaptic circuit of the hippocampus in Aβ pathology. This differential vulnerability in the disruption of NMDARs may be involved in the mechanisms causing abnormal network activity of the hippocampal circuit and cognitive impairment characteristic of APP/PS1 mice.

突触功能障碍是阿尔茨海默病(AD)发病机制的早期特征,也是记忆缺陷的主要形态学相关因素。鉴于 N-甲基-D-天冬氨酸受体(NMDARs)主要位于突触部位,它们的失调被认为与这些病理效应有关。在此,为了检测淀粉样蛋白致病 APP/PS1 小鼠大脑中 GluN1 亚基的表达和突触定位的可能变化,我们采用了组织印迹和 SDS 消化冷冻-断裂复制标记(SDS-FRL)技术。组织印迹显示,APP/PS1 转基因小鼠在 12 个月大时,GluN1 在海马、皮层和尾状核的表达明显减少,但在 1 个月和 6 个月大时没有变化。利用定量 SDS-FRL,我们在 12 个月大的 APP/PS1 小鼠的 CA1 和 CA3 区域以及海马 DG 中以高空间分辨率揭示了七个兴奋性突触群中 GluN1 的分子组织。在CA1区域,与年龄匹配的野生型小鼠相比,APP/PS1小鼠建立在棘突和中间神经元上的兴奋性突触的GluN1标记密度在裂隙-痣层显著降低,但在放射层没有变化。在CA3区域,苔藓纤维-CA3锥体细胞突触的GluN1减少,但A/C-CA3锥体细胞突触的GluN1没有变化。在DG中,APP/PS1小鼠颗粒细胞-穿孔通路突触的GluN1密度降低。总之,我们的研究结果提供了证据,证明在Aβ病理学中,海马三突触回路中的突触GluN1发生了特异性改变。这种对 NMDARs 破坏的不同脆弱性可能与导致海马回路异常网络活动和 APP/PS1 小鼠特有的认知障碍的机制有关。
{"title":"Selective disruption of synaptic NMDA receptors of the hippocampal trisynaptic circuit in Aβ pathology.","authors":"Rocio Alfaro-Ruiz, Alejandro Martín-Belmonte, Carolina Aguado, Ana Esther Moreno-Martínez, Yugo Fukazawa, Rafael Luján","doi":"10.1186/s40659-024-00537-7","DOIUrl":"10.1186/s40659-024-00537-7","url":null,"abstract":"<p><p>Synaptic dysfunction is an early feature in Alzheimer's disease (AD) pathogenesis and a major morphological correlate of memory deficits. Given the main synaptic location of N-methyl-D-aspartate receptors (NMDARs), their dysregulation has been implicated in these pathological effects. Here, to detect possible alterations in the expression and synaptic localisation of the GluN1 subunit in the brain of amyloidogenic APP/PS1 mice, we employed histoblot and SDS-digested freeze-fracture replica labelling (SDS-FRL) techniques. Histoblots showed that GluN1 expression was significantly reduced in the hippocampus in a layer-dependent manner, in the cortex and the caudate putamen of APP/PS1 transgenic mice at 12 months of age but was unaltered at 1 and 6 months. Using quantitative SDS-FRL, we unravelled the molecular organisation of GluN1 in seven excitatory synapse populations at a high spatial resolution in the CA1 and CA3 fields and the DG of the hippocampus in 12-month-old APP/PS1 mice. In the CA1 field, the labelling density for GluN1 in the excitatory synapses established on spines and interneurons, was significantly reduced in APP/PS1 mice compared to age-matched wild-type mice in the stratum lacunosum-moleculare but unaltered in the stratum radiatum. In the CA3 field, synaptic GluN1 was reduced in mossy fibre-CA3 pyramidal cell synapses but unaltered in the A/C-CA3 pyramidal cell synapses. In the DG, the density of GluN1 in granule cell-perforant pathway synapses was reduced in APP/PS1 mice. Altogether, our findings provide evidence of specific alterations of synaptic GluN1 in the trisynaptic circuit of the hippocampus in Aβ pathology. This differential vulnerability in the disruption of NMDARs may be involved in the mechanisms causing abnormal network activity of the hippocampal circuit and cognitive impairment characteristic of APP/PS1 mice.</p>","PeriodicalId":9084,"journal":{"name":"Biological Research","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11340147/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142035209","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Placental growth factor mediates pathological uterine angiogenesis by activating the NFAT5-SGK1 signaling axis in the endometrium: implications for preeclampsia development. 胎盘生长因子通过激活子宫内膜中的 NFAT5-SGK1 信号轴介导病理性子宫血管生成:对子痫前期发展的影响。
IF 4.3 2区 生物学 Q1 BIOLOGY Pub Date : 2024-08-17 DOI: 10.1186/s40659-024-00526-w
Janet P Raja Xavier, Toshiyuki Okumura, Melina Apweiler, Nirzari A Chacko, Yogesh Singh, Sara Y Brucker, Satoru Takeda, Florian Lang, Madhuri S Salker

After menstruation the uterine spiral arteries are repaired through angiogenesis. This process is tightly regulated by the paracrine communication between endometrial stromal cells (EnSCs) and endothelial cells. Any molecular aberration in these processes can lead to complications in pregnancy including miscarriage or preeclampsia (PE). Placental growth factor (PlGF) is a known contributing factor for pathological angiogenesis but the mechanisms remain poorly understood. In this study, we investigated whether PlGF contributes to pathological uterine angiogenesis by disrupting EnSCs and endothelial paracrine communication. We observed that PlGF mediates a tonicity-independent activation of nuclear factor of activated T cells 5 (NFAT5) in EnSCs. NFAT5 activated downstream targets including SGK1, HIF-1α and VEGF-A. In depth characterization of PlGF - conditioned medium (CM) from EnSCs using mass spectrometry and ELISA methods revealed low VEGF-A and an abundance of extracellular matrix organization associated proteins. Secreted factors in PlGF-CM impeded normal angiogenic cues in endothelial cells (HUVECs) by downregulating Notch-VEGF signaling. Interestingly, PlGF-CM failed to support human placental (BeWo) cell invasion through HUVEC monolayer. Inhibition of SGK1 in EnSCs improved angiogenic effects in HUVECs and promoted BeWo invasion, revealing SGK1 as a key intermediate player modulating PlGF mediated anti-angiogenic signaling. Taken together, perturbed PlGF-NFAT5-SGK1 signaling in the endometrium can contribute to pathological uterine angiogenesis by negatively regulating EnSCs-endothelial crosstalk resulting in poor quality vessels in the uterine microenvironment. Taken together the signaling may impact on normal trophoblast invasion and thus placentation and, may be associated with an increased risk of complications such as PE.

月经后,子宫螺旋动脉通过血管生成得到修复。这一过程由子宫内膜基质细胞(EnSCs)和内皮细胞之间的旁分泌通讯严格调控。这些过程中的任何分子畸变都可能导致妊娠并发症,包括流产或子痫前期(PE)。已知胎盘生长因子(PlGF)是导致病理性血管生成的一个因素,但对其机制仍知之甚少。在这项研究中,我们探讨了 PlGF 是否会通过破坏 EnSCs 和内皮旁分泌通讯来促进病理性子宫血管生成。我们观察到,PlGF 在 EnSCs 中介导了独立于补体的活化 T 细胞核因子 5(NFAT5)的激活。NFAT5激活了下游靶标,包括SGK1、HIF-1α和VEGF-A。使用质谱法和酶联免疫吸附法对来自 EnSCs 的 PlGF - 条件培养基(CM)进行深入鉴定后发现,VEGF-A 含量较低,而细胞外基质组织相关蛋白含量丰富。PlGF-CM 中的分泌因子通过下调 Notch-VEGF 信号,阻碍了内皮细胞(HUVECs)的正常血管生成线索。有趣的是,PlGF-CM 未能支持人胎盘(BeWo)细胞侵入 HUVEC 单层。抑制 EnSCs 中的 SGK1 可改善 HUVECs 的血管生成效应并促进 BeWo 的侵袭,这揭示了 SGK1 是调节 PlGF 介导的抗血管生成信号的关键中间体。综上所述,子宫内膜中紊乱的 PlGF-NFAT5-SGK1 信号传导可通过负向调节 EnSCs-内皮串联导致子宫微环境中血管质量低下,从而促进病理性子宫血管生成。综上所述,这种信号转导可能会影响滋养细胞的正常侵入,从而影响胎盘的形成,并可能与 PE 等并发症的风险增加有关。
{"title":"Placental growth factor mediates pathological uterine angiogenesis by activating the NFAT5-SGK1 signaling axis in the endometrium: implications for preeclampsia development.","authors":"Janet P Raja Xavier, Toshiyuki Okumura, Melina Apweiler, Nirzari A Chacko, Yogesh Singh, Sara Y Brucker, Satoru Takeda, Florian Lang, Madhuri S Salker","doi":"10.1186/s40659-024-00526-w","DOIUrl":"10.1186/s40659-024-00526-w","url":null,"abstract":"<p><p>After menstruation the uterine spiral arteries are repaired through angiogenesis. This process is tightly regulated by the paracrine communication between endometrial stromal cells (EnSCs) and endothelial cells. Any molecular aberration in these processes can lead to complications in pregnancy including miscarriage or preeclampsia (PE). Placental growth factor (PlGF) is a known contributing factor for pathological angiogenesis but the mechanisms remain poorly understood. In this study, we investigated whether PlGF contributes to pathological uterine angiogenesis by disrupting EnSCs and endothelial paracrine communication. We observed that PlGF mediates a tonicity-independent activation of nuclear factor of activated T cells 5 (NFAT5) in EnSCs. NFAT5 activated downstream targets including SGK1, HIF-1α and VEGF-A. In depth characterization of PlGF - conditioned medium (CM) from EnSCs using mass spectrometry and ELISA methods revealed low VEGF-A and an abundance of extracellular matrix organization associated proteins. Secreted factors in PlGF-CM impeded normal angiogenic cues in endothelial cells (HUVECs) by downregulating Notch-VEGF signaling. Interestingly, PlGF-CM failed to support human placental (BeWo) cell invasion through HUVEC monolayer. Inhibition of SGK1 in EnSCs improved angiogenic effects in HUVECs and promoted BeWo invasion, revealing SGK1 as a key intermediate player modulating PlGF mediated anti-angiogenic signaling. Taken together, perturbed PlGF-NFAT5-SGK1 signaling in the endometrium can contribute to pathological uterine angiogenesis by negatively regulating EnSCs-endothelial crosstalk resulting in poor quality vessels in the uterine microenvironment. Taken together the signaling may impact on normal trophoblast invasion and thus placentation and, may be associated with an increased risk of complications such as PE.</p>","PeriodicalId":9084,"journal":{"name":"Biological Research","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11330076/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141995294","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dissecting reactive astrocyte responses: lineage tracing and morphology-based clustering. 剖析反应性星形胶质细胞的反应:系谱追踪和基于形态学的聚类。
IF 4.3 2区 生物学 Q1 BIOLOGY Pub Date : 2024-08-14 DOI: 10.1186/s40659-024-00532-y
Lina M Delgado-García, Ana C Ojalvo-Sanz, Thabatta K E Nakamura, Eduardo Martín-López, Marimelia Porcionatto, Laura Lopez-Mascaraque

Brain damage triggers diverse cellular and molecular events, with astrocytes playing a crucial role in activating local neuroprotective and reparative signaling within damaged neuronal circuits. Here, we investigated reactive astrocytes using a multidimensional approach to categorize their responses into different subtypes based on morphology. This approach utilized the StarTrack lineage tracer, single-cell imaging reconstruction and multivariate data analysis. Our findings identified three profiles of reactive astrocyte responses, categorized by their effects on cell size- and shape- related morphological parameters: "moderate", "strong," and "very strong". We also examined the heterogeneity of astrocyte reactivity, focusing on spatial and clonal distribution. Our research revealed a notable enrichment of protoplasmic and fibrous astrocytes within the "strong" and "very strong" response subtypes. Overall, our study contributes to a better understanding of astrocyte heterogeneity in response to an injury. By characterizing the diverse reactive responses among astrocyte subpopulations, we provide insights that could guide future research aimed at identifying novel therapeutic targets to mitigate brain damage and promote neural repair.

脑损伤会引发多种细胞和分子事件,其中星形胶质细胞在激活受损神经元回路中的局部神经保护和修复信号方面起着至关重要的作用。在这里,我们采用一种多维方法对反应性星形胶质细胞进行了研究,根据形态学将它们的反应分为不同的亚型。这种方法利用了 StarTrack 行系示踪、单细胞成像重建和多变量数据分析。我们的研究结果确定了反应性星形胶质细胞反应的三种类型,根据它们对细胞大小和形状相关形态参数的影响进行分类:"中等"、"强 "和 "非常强"。我们还研究了星形胶质细胞反应的异质性,重点是空间和克隆分布。我们的研究发现,在 "强 "和 "极强 "反应亚型中,原生质和纤维状星形胶质细胞明显增多。总之,我们的研究有助于更好地理解星形胶质细胞对损伤的异质性反应。通过描述星形胶质细胞亚群之间的不同反应性反应,我们提出了一些见解,这些见解可以指导未来的研究,从而确定新的治疗靶点,减轻脑损伤并促进神经修复。
{"title":"Dissecting reactive astrocyte responses: lineage tracing and morphology-based clustering.","authors":"Lina M Delgado-García, Ana C Ojalvo-Sanz, Thabatta K E Nakamura, Eduardo Martín-López, Marimelia Porcionatto, Laura Lopez-Mascaraque","doi":"10.1186/s40659-024-00532-y","DOIUrl":"10.1186/s40659-024-00532-y","url":null,"abstract":"<p><p>Brain damage triggers diverse cellular and molecular events, with astrocytes playing a crucial role in activating local neuroprotective and reparative signaling within damaged neuronal circuits. Here, we investigated reactive astrocytes using a multidimensional approach to categorize their responses into different subtypes based on morphology. This approach utilized the StarTrack lineage tracer, single-cell imaging reconstruction and multivariate data analysis. Our findings identified three profiles of reactive astrocyte responses, categorized by their effects on cell size- and shape- related morphological parameters: \"moderate\", \"strong,\" and \"very strong\". We also examined the heterogeneity of astrocyte reactivity, focusing on spatial and clonal distribution. Our research revealed a notable enrichment of protoplasmic and fibrous astrocytes within the \"strong\" and \"very strong\" response subtypes. Overall, our study contributes to a better understanding of astrocyte heterogeneity in response to an injury. By characterizing the diverse reactive responses among astrocyte subpopulations, we provide insights that could guide future research aimed at identifying novel therapeutic targets to mitigate brain damage and promote neural repair.</p>","PeriodicalId":9084,"journal":{"name":"Biological Research","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11323641/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141981616","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neuronal repair after spinal cord injury by in vivo astrocyte reprogramming mediated by the overexpression of NeuroD1 and Neurogenin-2 通过过表达 NeuroD1 和 Neurogenin-2 介导的体内星形胶质细胞重编程修复脊髓损伤后的神经元
IF 6.7 2区 生物学 Q1 BIOLOGY Pub Date : 2024-08-12 DOI: 10.1186/s40659-024-00534-w
Zuliyaer Talifu, Chunjia Zhang, Xin Xu, Yunzhu Pan, Han Ke, Zehui Li, Wubo Liu, Huayong Du, Xiaoxin Wang, Feng Gao, Degang Yang, Yingli Jing, Yan Yu, Liangjie Du, Jianjun Li
As a common disabling disease, irreversible neuronal death due to spinal cord injury (SCI) is the root cause of functional impairment; however, the capacity for neuronal regeneration in the developing spinal cord tissue is limited. Therefore, there is an urgent need to investigate how defective neurons can be replenished and functionally integrated by neural regeneration; the reprogramming of intrinsic cells into functional neurons may represent an ideal solution. A mouse model of transection SCI was prepared by forceps clamping, and an adeno-associated virus (AAV) carrying the transcription factors NeuroD1 and Neurogenin-2(Ngn2) was injected in situ into the spinal cord to specifically overexpress these transcription factors in astrocytes close to the injury site. 5-bromo-2´-deoxyuridine (BrdU) was subsequently injected intraperitoneally to continuously track cell regeneration, neuroblasts and immature neurons marker expression, neuronal regeneration, and glial scar regeneration. In addition, immunoprotein blotting was used to measure the levels of transforming growth factor-β (TGF-β) pathway-related protein expression. We also evaluated motor function, sensory function, and the integrity of the blood-spinal cord barrier(BSCB). The in situ overexpression of NeuroD1 and Ngn2 in the spinal cord was achieved by specific AAV vectors. This intervention led to a significant increase in cell regeneration and the proportion of cells with neuroblasts and immature neurons cell properties at the injury site(p < 0.0001). Immunofluorescence staining identified astrocytes with neuroblasts and immature neurons cell properties at the site of injury while neuronal marker-specific staining revealed an increased number of mature astrocytes at the injury site. Behavioral assessments showed that the intervention did not improve The BMS (Basso mouse scale) score (p = 0.0726) and gait (p > 0.05), although the treated mice had more sensory sensitivity and greater voluntary motor ability in open field than the non-intervention mice. We observed significant repair of the BSCB at the center of the injury site (p < 0.0001) and a significant improvement in glial scar proliferation. Electrophysiological assessments revealed a significant improvement in spinal nerve conduction (p < 0.0001) while immunostaining revealed that the levels of TGF-β protein at the site of injury in the intervention group were lower than control group (p = 0.0034); in addition, P70 s6 and PP2A related to the TGF-β pathway showed ascending trend (p = 0.0036, p = 0.0152 respectively). The in situ overexpression of NeuroD1 and Ngn2 in the spinal cord after spinal cord injury can reprogram astrocytes into neurons and significantly enhance cell regeneration at the injury site. The reprogramming of astrocytes can lead to tissue repair, thus improving the reduced threshold and increasing voluntary movements. This strategy can also improve the integrity of the blood-spinal cord barrier and enhance nerve con
作为一种常见的致残性疾病,脊髓损伤(SCI)导致的不可逆神经元死亡是功能障碍的根本原因;然而,发育中的脊髓组织的神经元再生能力有限。因此,迫切需要研究如何通过神经再生来补充有缺陷的神经元并实现功能整合;将固有细胞重编程为功能神经元可能是一个理想的解决方案。通过钳夹法制备了小鼠横断性脊髓损伤(SCI)模型,并将携带转录因子NeuroD1和Neurogenin-2(Ngn2)的腺相关病毒(AAV)原位注射到脊髓中,以特异性地在损伤部位附近的星形胶质细胞中过表达这些转录因子。随后腹腔注射 5-溴-2´-脱氧尿苷(BrdU)以持续跟踪细胞再生、神经母细胞和未成熟神经元标记表达、神经元再生和胶质疤痕再生。此外,我们还使用免疫蛋白印迹法测量了转化生长因子-β(TGF-β)通路相关蛋白的表达水平。我们还评估了运动功能、感觉功能和血脊髓屏障(BSCB)的完整性。脊髓中NeuroD1和Ngn2的原位过表达是通过特异性AAV载体实现的。与未干预小鼠相比,干预小鼠的感觉灵敏度更高,野外自主运动能力更强。我们观察到损伤部位中心的 BSCB 有明显修复(p < 0.0001),胶质疤痕增生也有明显改善。免疫染色显示,干预组损伤部位的 TGF-β 蛋白水平低于对照组(p = 0.0034);此外,与 TGF-β 通路相关的 P70 s6 和 PP2A 呈上升趋势(分别为 p = 0.0036 和 p = 0.0152)。在脊髓损伤后的脊髓中原位过表达 NeuroD1 和 Ngn2 可将星形胶质细胞重编程为神经元,并显著促进损伤部位的细胞再生。星形胶质细胞的重编程可导致组织修复,从而改善降低的阈值并增加自主运动。这一策略还能改善血脊髓屏障的完整性,增强神经传导功能。然而,单纯的星形胶质细胞重编程并不能显著改善下肢的跨步功能。
{"title":"Neuronal repair after spinal cord injury by in vivo astrocyte reprogramming mediated by the overexpression of NeuroD1 and Neurogenin-2","authors":"Zuliyaer Talifu, Chunjia Zhang, Xin Xu, Yunzhu Pan, Han Ke, Zehui Li, Wubo Liu, Huayong Du, Xiaoxin Wang, Feng Gao, Degang Yang, Yingli Jing, Yan Yu, Liangjie Du, Jianjun Li","doi":"10.1186/s40659-024-00534-w","DOIUrl":"https://doi.org/10.1186/s40659-024-00534-w","url":null,"abstract":"As a common disabling disease, irreversible neuronal death due to spinal cord injury (SCI) is the root cause of functional impairment; however, the capacity for neuronal regeneration in the developing spinal cord tissue is limited. Therefore, there is an urgent need to investigate how defective neurons can be replenished and functionally integrated by neural regeneration; the reprogramming of intrinsic cells into functional neurons may represent an ideal solution. A mouse model of transection SCI was prepared by forceps clamping, and an adeno-associated virus (AAV) carrying the transcription factors NeuroD1 and Neurogenin-2(Ngn2) was injected in situ into the spinal cord to specifically overexpress these transcription factors in astrocytes close to the injury site. 5-bromo-2´-deoxyuridine (BrdU) was subsequently injected intraperitoneally to continuously track cell regeneration, neuroblasts and immature neurons marker expression, neuronal regeneration, and glial scar regeneration. In addition, immunoprotein blotting was used to measure the levels of transforming growth factor-β (TGF-β) pathway-related protein expression. We also evaluated motor function, sensory function, and the integrity of the blood-spinal cord barrier(BSCB). The in situ overexpression of NeuroD1 and Ngn2 in the spinal cord was achieved by specific AAV vectors. This intervention led to a significant increase in cell regeneration and the proportion of cells with neuroblasts and immature neurons cell properties at the injury site(p < 0.0001). Immunofluorescence staining identified astrocytes with neuroblasts and immature neurons cell properties at the site of injury while neuronal marker-specific staining revealed an increased number of mature astrocytes at the injury site. Behavioral assessments showed that the intervention did not improve The BMS (Basso mouse scale) score (p = 0.0726) and gait (p > 0.05), although the treated mice had more sensory sensitivity and greater voluntary motor ability in open field than the non-intervention mice. We observed significant repair of the BSCB at the center of the injury site (p < 0.0001) and a significant improvement in glial scar proliferation. Electrophysiological assessments revealed a significant improvement in spinal nerve conduction (p < 0.0001) while immunostaining revealed that the levels of TGF-β protein at the site of injury in the intervention group were lower than control group (p = 0.0034); in addition, P70 s6 and PP2A related to the TGF-β pathway showed ascending trend (p = 0.0036, p = 0.0152 respectively). The in situ overexpression of NeuroD1 and Ngn2 in the spinal cord after spinal cord injury can reprogram astrocytes into neurons and significantly enhance cell regeneration at the injury site. The reprogramming of astrocytes can lead to tissue repair, thus improving the reduced threshold and increasing voluntary movements. This strategy can also improve the integrity of the blood-spinal cord barrier and enhance nerve con","PeriodicalId":9084,"journal":{"name":"Biological Research","volume":null,"pages":null},"PeriodicalIF":6.7,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141944913","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
PvMYB60 gene, a candidate for drought tolerance improvement in common bean in a climate change context. PvMYB60 基因是在气候变化背景下提高普通豆类耐旱性的候选基因。
IF 4.3 2区 生物学 Q1 BIOLOGY Pub Date : 2024-08-10 DOI: 10.1186/s40659-024-00528-8
Vera Martínez-Barradas, Massimo Galbiati, Francisco Barco-Rubio, Dario Paolo, Carmen Espinoza, Eleonora Cominelli, Patricio Arce-Johnson

Background: Common bean (Phaseolus vulgaris) is one of the main nutritional resources in the world, and a low environmental impact source of protein. However, the majority of its cultivation areas are affected by drought and this scenario is only expected to worsen with climate change. Stomatal closure is one of the most important plant responses to drought and the MYB60 transcription factor is among the key elements regulating stomatal aperture. If targeting and mutating the MYB60 gene of common bean would be a valuable strategy to establish more drought-tolerant beans was therefore investigated.

Results: The MYB60 gene of common bean, with orthology to the Arabidopsis AtMYB60 gene, was found to have conserved regions with MYB60 typical motifs and architecture. Stomata-specific expression of PvMYB60 was further confirmed by q-RT PCR on organs containing stomata, and stomata-enriched leaf fractions. Further, function of PvMYB60 in promoting stomata aperture was confirmed by complementing the defective phenotype of a previously described Arabidopsis myb60-1 mutant.

Conclusions: Our study finally points PvMYB60 as a potential target for obtaining more drought-tolerant common beans in the present context of climate change which would further greatly contribute to food security particularly in drought-prone countries.

背景:蚕豆(Phaseolus vulgaris)是世界上主要的营养资源之一,也是对环境影响较小的蛋白质来源。然而,其大部分种植区都受到干旱的影响,而且这种情况预计只会随着气候变化而恶化。气孔关闭是植物对干旱最重要的反应之一,而 MYB60 转录因子是调节气孔开度的关键因素之一。因此,我们研究了靶向突变蚕豆的 MYB60 基因是否是建立更耐旱蚕豆的一种有价值的策略:结果:研究发现,蚕豆的 MYB60 基因与拟南芥的 AtMYB60 基因具有同源关系,其保守区域具有 MYB60 基因的典型基序和结构。通过对含有气孔的器官和气孔丰富的叶片部分进行 q-RT PCR,进一步证实了 PvMYB60 的气孔特异性表达。此外,通过补充先前描述的拟南芥 myb60-1 突变体的缺陷表型,证实了 PvMYB60 在促进气孔开度方面的功能:我们的研究最终指出,在当前气候变化的背景下,PvMYB60 是获得更耐旱普通豆类的潜在靶标,这将进一步极大地促进粮食安全,尤其是易受干旱影响国家的粮食安全。
{"title":"PvMYB60 gene, a candidate for drought tolerance improvement in common bean in a climate change context.","authors":"Vera Martínez-Barradas, Massimo Galbiati, Francisco Barco-Rubio, Dario Paolo, Carmen Espinoza, Eleonora Cominelli, Patricio Arce-Johnson","doi":"10.1186/s40659-024-00528-8","DOIUrl":"10.1186/s40659-024-00528-8","url":null,"abstract":"<p><strong>Background: </strong>Common bean (Phaseolus vulgaris) is one of the main nutritional resources in the world, and a low environmental impact source of protein. However, the majority of its cultivation areas are affected by drought and this scenario is only expected to worsen with climate change. Stomatal closure is one of the most important plant responses to drought and the MYB60 transcription factor is among the key elements regulating stomatal aperture. If targeting and mutating the MYB60 gene of common bean would be a valuable strategy to establish more drought-tolerant beans was therefore investigated.</p><p><strong>Results: </strong>The MYB60 gene of common bean, with orthology to the Arabidopsis AtMYB60 gene, was found to have conserved regions with MYB60 typical motifs and architecture. Stomata-specific expression of PvMYB60 was further confirmed by q-RT PCR on organs containing stomata, and stomata-enriched leaf fractions. Further, function of PvMYB60 in promoting stomata aperture was confirmed by complementing the defective phenotype of a previously described Arabidopsis myb60-1 mutant.</p><p><strong>Conclusions: </strong>Our study finally points PvMYB60 as a potential target for obtaining more drought-tolerant common beans in the present context of climate change which would further greatly contribute to food security particularly in drought-prone countries.</p>","PeriodicalId":9084,"journal":{"name":"Biological Research","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11316432/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141911621","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Biological Research
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1