首页 > 最新文献

Biology Direct最新文献

英文 中文
Integrating rna structure and protein interactions to uncover the mechanisms of viral and cellular ires function. 整合rna结构和蛋白质相互作用,揭示病毒和细胞ires功能的机制。
IF 4.9 2区 生物学 Q1 BIOLOGY Pub Date : 2025-12-08 DOI: 10.1186/s13062-025-00706-y
Riccardo Delli Ponti, Andrea Vandelli, Laura Broglia, Gian Gaetano Tartaglia

Background: RNAs fold into complex structures that critically influence gene expression. A prominent class of regulatory elements resides in the 5' untranslated region (5' UTR), where internal ribosome entry sites (IRESs) promote cap-independent translation by directly engaging the ribosome. First discovered in viral genomes, IRESs have been classified into four types according to their structural compactness and factor requirements. While viral IRESs are well studied, cellular IRESs remain poorly understood: they display limited sequence conservation, reduced structural compactness, and variable dependence on auxiliary RNA-binding proteins known as IRES trans-acting factors (ITAFs). Whether their activity relies mainly on RNA structure or protein assistance remains unresolved. Here, we present a computational framework that combines in silico mutagenesis and RNA-protein interaction profiling to investigate IRES mechanisms and guide the design of synthetic elements.

Results: Using the Hepatitis C Virus (HCV) IRES as a benchmark, we performed systematic single-nucleotide mutagenesis coupled with structural predictions. Mutations were classified as synonymous or non-synonymous based on their effect on the secondary structure. The HCV IRES showed overall robustness, but the domain interacting with eIF3 was particularly sensitive, consistent with its essential role in translation initiation. Extending this approach to other viral IRES families revealed distinct profiles of resilience: Aphthoviruses retained structural integrity despite extensive sequence variation, whereas Cripaviruses displayed higher variability. We then applied the same analysis to cellular IRESs, which proved to be more structurally sensitive, suggesting stronger reliance on cofactor support. To probe this connection, we used the catRAPID approach to predict interactions with translation-related proteins. The method distinguished IRESs with known ITAF binding, such as PTBP1, and highlighted stability-promoting mutations that increased the predicted affinity for translation factors.

Conclusions: Our in silico analysis indicates that mutational tolerance mirrors IRES cofactor dependence: compact viral IRESs are structurally robust, whereas non-viral IRESs are more reliant on protein interactions. By linking structure prediction with interaction profiling, we identify variants that both stabilize IRESs and improve binding to ITAFs or translation factors. This framework provides mechanistic insight into sequence-structure-function relationships and supports the rational design of synthetic IRES elements for therapeutic and biotechnological applications.

背景:rna折叠成复杂的结构,对基因表达有重要影响。一类重要的调控元件位于5‘非翻译区(5’ UTR),在那里,内部核糖体进入位点(IRESs)通过直接与核糖体结合来促进帽无关的翻译。IRESs首先在病毒基因组中发现,根据其结构紧凑性和因子需求可分为四种类型。虽然病毒IRESs研究得很好,但细胞IRESs仍然知之甚少:它们表现出有限的序列保守性,结构致密性降低,以及对称为IRES反式作用因子(ITAFs)的辅助rna结合蛋白的可变依赖性。它们的活性是否主要依赖于RNA结构或蛋白质辅助仍未解决。在这里,我们提出了一个计算框架,结合了硅诱变和rna -蛋白质相互作用分析来研究IRES机制并指导合成元件的设计。结果:以丙型肝炎病毒(HCV) IRES为基准,我们进行了系统的单核苷酸诱变和结构预测。根据对二级结构的影响,将突变分为同义或非同义。HCV IRES整体表现出鲁棒性,但与eIF3相互作用的结构域特别敏感,这与eIF3在翻译起始中的重要作用一致。将这种方法扩展到其他IRES病毒家族,揭示了不同的恢复能力:尽管有广泛的序列变化,但aphthov仍保持结构完整性,而cripavvirus则表现出更高的变异性。然后,我们将相同的分析应用于细胞IRESs,证明其结构更敏感,表明更依赖于辅助因子支持。为了探索这种联系,我们使用catRAPID方法来预测与翻译相关蛋白的相互作用。该方法区分了IRESs与已知ITAF结合,如PTBP1,并突出了稳定性促进突变,这些突变增加了对翻译因子的预测亲和力。结论:我们的计算机分析表明,突变耐受性反映了IRES辅因子依赖性:紧凑的病毒IRES在结构上是稳健的,而非病毒IRES更依赖于蛋白质相互作用。通过将结构预测与相互作用分析联系起来,我们确定了既稳定IRESs又改善与itaf或翻译因子结合的变体。该框架提供了对序列-结构-功能关系的机制洞察,并支持用于治疗和生物技术应用的合成IRES元素的合理设计。
{"title":"Integrating rna structure and protein interactions to uncover the mechanisms of viral and cellular ires function.","authors":"Riccardo Delli Ponti, Andrea Vandelli, Laura Broglia, Gian Gaetano Tartaglia","doi":"10.1186/s13062-025-00706-y","DOIUrl":"10.1186/s13062-025-00706-y","url":null,"abstract":"<p><strong>Background: </strong>RNAs fold into complex structures that critically influence gene expression. A prominent class of regulatory elements resides in the 5' untranslated region (5' UTR), where internal ribosome entry sites (IRESs) promote cap-independent translation by directly engaging the ribosome. First discovered in viral genomes, IRESs have been classified into four types according to their structural compactness and factor requirements. While viral IRESs are well studied, cellular IRESs remain poorly understood: they display limited sequence conservation, reduced structural compactness, and variable dependence on auxiliary RNA-binding proteins known as IRES trans-acting factors (ITAFs). Whether their activity relies mainly on RNA structure or protein assistance remains unresolved. Here, we present a computational framework that combines in silico mutagenesis and RNA-protein interaction profiling to investigate IRES mechanisms and guide the design of synthetic elements.</p><p><strong>Results: </strong>Using the Hepatitis C Virus (HCV) IRES as a benchmark, we performed systematic single-nucleotide mutagenesis coupled with structural predictions. Mutations were classified as synonymous or non-synonymous based on their effect on the secondary structure. The HCV IRES showed overall robustness, but the domain interacting with eIF3 was particularly sensitive, consistent with its essential role in translation initiation. Extending this approach to other viral IRES families revealed distinct profiles of resilience: Aphthoviruses retained structural integrity despite extensive sequence variation, whereas Cripaviruses displayed higher variability. We then applied the same analysis to cellular IRESs, which proved to be more structurally sensitive, suggesting stronger reliance on cofactor support. To probe this connection, we used the catRAPID approach to predict interactions with translation-related proteins. The method distinguished IRESs with known ITAF binding, such as PTBP1, and highlighted stability-promoting mutations that increased the predicted affinity for translation factors.</p><p><strong>Conclusions: </strong>Our in silico analysis indicates that mutational tolerance mirrors IRES cofactor dependence: compact viral IRESs are structurally robust, whereas non-viral IRESs are more reliant on protein interactions. By linking structure prediction with interaction profiling, we identify variants that both stabilize IRESs and improve binding to ITAFs or translation factors. This framework provides mechanistic insight into sequence-structure-function relationships and supports the rational design of synthetic IRES elements for therapeutic and biotechnological applications.</p>","PeriodicalId":9164,"journal":{"name":"Biology Direct","volume":" ","pages":"6"},"PeriodicalIF":4.9,"publicationDate":"2025-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12801896/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145699791","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Autophagy and mitophagy in dermatological disease: a comprehensive review from molecular pathways to therapeutic frontiers. 皮肤疾病中的自噬和有丝自噬:从分子途径到治疗前沿的综合综述。
IF 4.9 2区 生物学 Q1 BIOLOGY Pub Date : 2025-12-06 DOI: 10.1186/s13062-025-00703-1
Luca D'Ambrosio, Maria Elisabetta Greco, Maurizio Forte, Daniele Vecchio, Sonia Schiavon, Flavio Di Nonno, Shazia Tahir, Vittorio Picchio, Claudia Cozzolino, Gianmarco Sarto, Marco Bernardi, Luigi Spadafora, Beatrice Simeone, Mattia Vinciguerra, Sebastiano Sciarretta, Giacomo Frati, Ernesto Greco, Concetta Potenza, Ilaria Proietti, Jacopo Morroni, Elisa Dietrich, Leonardo Schirone

Autophagy - the cell's built-in recycling and quality-control programme - touches every layer of cutaneous biology. In keratinocytes it sculpts the cornified envelope; in melanocytes it balances pigment synthesis and oxidative stress; in immune and appendageal cells it fine-tunes defence, repair and hair-follicle cycling. When this choreography falters, skin disorders emerge. This review journeys from basic mechanisms (ULK1 signalling, Beclin-1/VPS34 nucleation, LC3B lipidation, selective mitophagy) to their fingerprints in health and disease. We dissect how autophagy malfunctions drive psoriasis hyper-proliferation, atopic-dermatitis barrier leakiness, vitiligo depigmentation and the metabolic rewiring of melanoma. Non-melanoma cancers, infectious dermatoses, wound repair, ageing and photo-damage are mapped onto the same autophagic atlas. Therapeutically, the pathway is a double-edged sword. mTOR or caloric-restriction mimetics jump-start a protective flux; chloroquine derivatives and ULK1 blockers clip tumour survival circuits; cannabinoids, photodynamic therapy and immune-checkpoint combinations exploit context-specific toggling between induction and brake. Emerging biomarkers (LC3B-II, p62, AMBRA1) promise patient-stratified interventions. By weaving together molecular detail, pre-clinical insight and clinical translation, we show why autophagy is no longer a backstage process but a star player in dermatology - and how targeting its switches could reshape future treatment algorithms.

自噬——细胞内置的循环和质量控制程序——触及皮肤生物的每一层。在角质形成细胞中,它塑造了角质化的包膜;在黑素细胞中,它平衡色素合成和氧化应激;在免疫细胞和附属细胞中,它可以微调防御、修复和毛囊循环。当这种编排出现问题时,皮肤疾病就会出现。本文综述了从基本机制(ULK1信号传导、Beclin-1/VPS34成核、LC3B脂化、选择性线粒体自噬)到它们在健康和疾病中的作用。我们剖析了自噬功能障碍如何驱动牛皮癣过度增殖,特应性皮炎屏障渗漏,白癜风脱色和黑色素瘤的代谢重新布线。非黑色素瘤癌症、传染性皮肤病、伤口修复、衰老和光损伤被映射到相同的自噬图谱上。在治疗上,这条路是一把双刃剑。mTOR或热量限制模拟启动保护通量;氯喹衍生物和ULK1阻滞剂阻断肿瘤存活回路;大麻素、光动力疗法和免疫检查点组合利用诱导和制动之间的上下文特异性切换。新兴的生物标志物(LC3B-II, p62, AMBRA1)有望对患者进行分层干预。通过将分子细节、临床前洞察和临床翻译结合在一起,我们展示了为什么自噬不再是一个后台过程,而是皮肤病学中的一个明星角色,以及如何靶向自噬开关可以重塑未来的治疗算法。
{"title":"Autophagy and mitophagy in dermatological disease: a comprehensive review from molecular pathways to therapeutic frontiers.","authors":"Luca D'Ambrosio, Maria Elisabetta Greco, Maurizio Forte, Daniele Vecchio, Sonia Schiavon, Flavio Di Nonno, Shazia Tahir, Vittorio Picchio, Claudia Cozzolino, Gianmarco Sarto, Marco Bernardi, Luigi Spadafora, Beatrice Simeone, Mattia Vinciguerra, Sebastiano Sciarretta, Giacomo Frati, Ernesto Greco, Concetta Potenza, Ilaria Proietti, Jacopo Morroni, Elisa Dietrich, Leonardo Schirone","doi":"10.1186/s13062-025-00703-1","DOIUrl":"10.1186/s13062-025-00703-1","url":null,"abstract":"<p><p>Autophagy - the cell's built-in recycling and quality-control programme - touches every layer of cutaneous biology. In keratinocytes it sculpts the cornified envelope; in melanocytes it balances pigment synthesis and oxidative stress; in immune and appendageal cells it fine-tunes defence, repair and hair-follicle cycling. When this choreography falters, skin disorders emerge. This review journeys from basic mechanisms (ULK1 signalling, Beclin-1/VPS34 nucleation, LC3B lipidation, selective mitophagy) to their fingerprints in health and disease. We dissect how autophagy malfunctions drive psoriasis hyper-proliferation, atopic-dermatitis barrier leakiness, vitiligo depigmentation and the metabolic rewiring of melanoma. Non-melanoma cancers, infectious dermatoses, wound repair, ageing and photo-damage are mapped onto the same autophagic atlas. Therapeutically, the pathway is a double-edged sword. mTOR or caloric-restriction mimetics jump-start a protective flux; chloroquine derivatives and ULK1 blockers clip tumour survival circuits; cannabinoids, photodynamic therapy and immune-checkpoint combinations exploit context-specific toggling between induction and brake. Emerging biomarkers (LC3B-II, p62, AMBRA1) promise patient-stratified interventions. By weaving together molecular detail, pre-clinical insight and clinical translation, we show why autophagy is no longer a backstage process but a star player in dermatology - and how targeting its switches could reshape future treatment algorithms.</p>","PeriodicalId":9164,"journal":{"name":"Biology Direct","volume":" ","pages":"4"},"PeriodicalIF":4.9,"publicationDate":"2025-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12781533/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145695951","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ssDNA phage FLiP resides in dsDNA form in resistant Flavobacterium host. ssDNA噬菌体FLiP在抗性黄杆菌宿主中以dsDNA形式存在。
IF 4.9 2区 生物学 Q1 BIOLOGY Pub Date : 2025-12-04 DOI: 10.1186/s13062-025-00708-w
Kati Mäkelä, Reetta Penttinen, Janne Ravantti, Elina Laanto, Lotta-Riina Sundberg
{"title":"ssDNA phage FLiP resides in dsDNA form in resistant Flavobacterium host.","authors":"Kati Mäkelä, Reetta Penttinen, Janne Ravantti, Elina Laanto, Lotta-Riina Sundberg","doi":"10.1186/s13062-025-00708-w","DOIUrl":"10.1186/s13062-025-00708-w","url":null,"abstract":"","PeriodicalId":9164,"journal":{"name":"Biology Direct","volume":" ","pages":"2"},"PeriodicalIF":4.9,"publicationDate":"2025-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12781566/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145676486","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cryptochrome interaction networks across different tissues in Drosophila melanogaster. 黑腹果蝇不同组织间隐花色素相互作用网络。
IF 4.9 2区 生物学 Q1 BIOLOGY Pub Date : 2025-11-28 DOI: 10.1186/s13062-025-00696-x
Milena Damulewicz, Francesco Gregoris, Davide Colaianni, Filippo Cendron, Alberto Biscontin, Giovanni Minervini, Gabriella M Mazzotta
{"title":"Cryptochrome interaction networks across different tissues in Drosophila melanogaster.","authors":"Milena Damulewicz, Francesco Gregoris, Davide Colaianni, Filippo Cendron, Alberto Biscontin, Giovanni Minervini, Gabriella M Mazzotta","doi":"10.1186/s13062-025-00696-x","DOIUrl":"10.1186/s13062-025-00696-x","url":null,"abstract":"","PeriodicalId":9164,"journal":{"name":"Biology Direct","volume":"20 1","pages":"114"},"PeriodicalIF":4.9,"publicationDate":"2025-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12661795/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145629943","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The role of TRIM proteins in the pathogenesis of mycobacterium tuberculosis. TRIM蛋白在结核分枝杆菌发病机制中的作用。
IF 4.9 2区 生物学 Q1 BIOLOGY Pub Date : 2025-11-28 DOI: 10.1186/s13062-025-00707-x
Martina Di Rienzo, Candida Zuchegna, Valentina Perri, Mauro Piacentini, Laura Falasca, Alessandra Romagnoli
{"title":"The role of TRIM proteins in the pathogenesis of mycobacterium tuberculosis.","authors":"Martina Di Rienzo, Candida Zuchegna, Valentina Perri, Mauro Piacentini, Laura Falasca, Alessandra Romagnoli","doi":"10.1186/s13062-025-00707-x","DOIUrl":"10.1186/s13062-025-00707-x","url":null,"abstract":"","PeriodicalId":9164,"journal":{"name":"Biology Direct","volume":" ","pages":"1"},"PeriodicalIF":4.9,"publicationDate":"2025-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12765292/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145630078","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
NAMPT modulates muscle fiber type transition in PAD myopathy via the cGMP-PKG signaling pathway. NAMPT通过cGMP-PKG信号通路调节PAD肌病的肌纤维类型转换。
IF 4.9 2区 生物学 Q1 BIOLOGY Pub Date : 2025-11-27 DOI: 10.1186/s13062-025-00705-z
Qiaoyun Yang, Yani Shi, Wei Li, Xiaojing Xiong, Qingwei Chen, Minming Zheng

Background: Peripheral artery disease (PAD), caused by atherosclerosis resulting in reduced blood flow in the lower extremities, impairs both skeletal muscle mass and function in humans, and its molecular mechanism is not clear. Recent studies have demonstrated that Nicotinamide phosphoribosyl transferase (NAMPT) influences skeletal muscle mass and function by modulating NAD+ levels and cellular Ca²⁺ homeostasis. However, its role in muscle fiber type transition remains to be elucidated.

Results: NAMPT is downregulated in ischemic skeletal muscle and CoCl2-treated C2C12 myotubes. NAMPT enhances the functional performance of ischemic limbs, reduces apoptosis, increases the formation of oxidative muscle fibers, and improves mitochondrial function. The cGMP‒PKG pathway is activated by NAMPT in ischemic limbs. Exogenous inhibition of cGMP-PKG signaling inhibits the formation of oxidative muscle fibers induced by NAMPT.

Conclusions: NAMPT protects against ischemic limb injury via the cGMP‒PKG signaling pathway, suggesting that it is a promising therapeutic and predictive target for myopathy associated with PAD.

Clinical trial number: Not applicable.

背景:外周动脉疾病(PAD)由动脉粥样硬化引起的下肢血流量减少,损害人类骨骼肌质量和功能,其分子机制尚不清楚。最近的研究表明,烟酰胺磷酸核糖基转移酶(NAMPT)通过调节NAD+水平和细胞Ca 2 +稳态来影响骨骼肌质量和功能。然而,它在肌纤维类型转换中的作用仍有待阐明。结果:NAMPT在缺血性骨骼肌和cocl2处理的C2C12肌管中下调。NAMPT增强缺血肢体的功能表现,减少细胞凋亡,增加氧化肌纤维的形成,改善线粒体功能。肢体缺血时,NAMPT激活cGMP-PKG通路。外源性抑制cGMP-PKG信号可抑制NAMPT诱导的氧化肌纤维的形成。结论:NAMPT通过cGMP-PKG信号通路保护缺血性肢体损伤,提示它是PAD相关肌病的一个有希望的治疗和预测靶点。临床试验号:不适用。
{"title":"NAMPT modulates muscle fiber type transition in PAD myopathy via the cGMP-PKG signaling pathway.","authors":"Qiaoyun Yang, Yani Shi, Wei Li, Xiaojing Xiong, Qingwei Chen, Minming Zheng","doi":"10.1186/s13062-025-00705-z","DOIUrl":"10.1186/s13062-025-00705-z","url":null,"abstract":"<p><strong>Background: </strong>Peripheral artery disease (PAD), caused by atherosclerosis resulting in reduced blood flow in the lower extremities, impairs both skeletal muscle mass and function in humans, and its molecular mechanism is not clear. Recent studies have demonstrated that Nicotinamide phosphoribosyl transferase (NAMPT) influences skeletal muscle mass and function by modulating NAD<sup>+</sup> levels and cellular Ca²⁺ homeostasis. However, its role in muscle fiber type transition remains to be elucidated.</p><p><strong>Results: </strong>NAMPT is downregulated in ischemic skeletal muscle and CoCl<sub>2</sub>-treated C2C12 myotubes. NAMPT enhances the functional performance of ischemic limbs, reduces apoptosis, increases the formation of oxidative muscle fibers, and improves mitochondrial function. The cGMP‒PKG pathway is activated by NAMPT in ischemic limbs. Exogenous inhibition of cGMP-PKG signaling inhibits the formation of oxidative muscle fibers induced by NAMPT.</p><p><strong>Conclusions: </strong>NAMPT protects against ischemic limb injury via the cGMP‒PKG signaling pathway, suggesting that it is a promising therapeutic and predictive target for myopathy associated with PAD.</p><p><strong>Clinical trial number: </strong>Not applicable.</p>","PeriodicalId":9164,"journal":{"name":"Biology Direct","volume":"20 1","pages":"113"},"PeriodicalIF":4.9,"publicationDate":"2025-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12659372/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145629966","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CLOCK-mediated acetylation of NF-κB p65 drives immune evasion in breast cancer. 时钟介导的NF-κB p65乙酰化驱动乳腺癌的免疫逃避。
IF 4.9 2区 生物学 Q1 BIOLOGY Pub Date : 2025-11-20 DOI: 10.1186/s13062-025-00704-0
Xinyu Quan, Na Li, Jie Huang, Yixin Duan

Background: Disruption of circadian rhythm (DCR) has been connected with breast cancer (BC) susceptibility; whereas it is unclear whether status of key clock genes could be used in predicting BC prognosis, tumor immune microenvironment, and immunotherapy responses.

Results: Circadian clock genes demonstrate significant dysregulation in BC, where elevated CLOCK expression emerges as an independent prognostic factor strongly correlated with adverse clinical outcomes. CLOCK-overexpressing BC cells exhibit enhanced proliferative ability and strong resistance to chemotherapy drugs doxorubicin and gemcitabine. High CLOCK expression correlates with reduced CD8+ T cell infiltration and increased M2 macrophage polarization, consistent with increased immune checkpoint molecule PD-L1 expression in the TCGA BC dataset. Additionally, patients with high CLOCK expression display lower Tumor Immune Dysfunction and Exclusion (TIDE) score. Mechanistically, RNA-sequencing identified suppressed NF-κB, TNF, MAPK pathways, and PD-L1 expression in sh-CLOCK MCF-7 cells. Subsequent in vitro validation demonstrated that CLOCK mediates NF-κB p65 acetylation at K56 site, potentiating its transcriptional activation of PD-L1, thereby facilitating immune evasion in BC.

Conclusions: CLOCK functions as a critical prognostic biomarker in BC by promoting tumor proliferation, chemoresistance, and immune evasion. Mechanistically, CLOCK mediates NF-κB p65 acetylation to enhance PD-L1 transcription, promoting immune evasion in BC.

背景:昼夜节律紊乱(DCR)与乳腺癌(BC)易感性有关;然而,目前尚不清楚关键时钟基因的状态是否可用于预测BC预后、肿瘤免疫微环境和免疫治疗反应。结果:生物钟基因在BC中表现出明显的失调,其中clock表达升高成为与不良临床结果强烈相关的独立预后因素。clock过表达的BC细胞表现出增强的增殖能力和对化疗药物阿霉素和吉西他滨的强耐药性。高CLOCK表达与CD8+ T细胞浸润减少和M2巨噬细胞极化增加相关,与TCGA BC数据集中免疫检查点分子PD-L1表达增加一致。此外,高CLOCK表达的患者表现出较低的肿瘤免疫功能障碍和排斥(TIDE)评分。在机制上,rna测序鉴定了sh-CLOCK MCF-7细胞中抑制的NF-κB、TNF、MAPK通路和PD-L1表达。随后的体外验证表明,CLOCK介导NF-κB p65在K56位点的乙酰化,增强其对PD-L1的转录激活,从而促进BC的免疫逃避。结论:CLOCK通过促进肿瘤增殖、化疗耐药和免疫逃避,在BC中起着重要的预后生物标志物的作用。在机制上,CLOCK介导NF-κB p65乙酰化,增强PD-L1转录,促进BC的免疫逃避。
{"title":"CLOCK-mediated acetylation of NF-κB p65 drives immune evasion in breast cancer.","authors":"Xinyu Quan, Na Li, Jie Huang, Yixin Duan","doi":"10.1186/s13062-025-00704-0","DOIUrl":"10.1186/s13062-025-00704-0","url":null,"abstract":"<p><strong>Background: </strong>Disruption of circadian rhythm (DCR) has been connected with breast cancer (BC) susceptibility; whereas it is unclear whether status of key clock genes could be used in predicting BC prognosis, tumor immune microenvironment, and immunotherapy responses.</p><p><strong>Results: </strong>Circadian clock genes demonstrate significant dysregulation in BC, where elevated CLOCK expression emerges as an independent prognostic factor strongly correlated with adverse clinical outcomes. CLOCK-overexpressing BC cells exhibit enhanced proliferative ability and strong resistance to chemotherapy drugs doxorubicin and gemcitabine. High CLOCK expression correlates with reduced CD8<sup>+</sup> T cell infiltration and increased M2 macrophage polarization, consistent with increased immune checkpoint molecule PD-L1 expression in the TCGA BC dataset. Additionally, patients with high CLOCK expression display lower Tumor Immune Dysfunction and Exclusion (TIDE) score. Mechanistically, RNA-sequencing identified suppressed NF-κB, TNF, MAPK pathways, and PD-L1 expression in sh-CLOCK MCF-7 cells. Subsequent in vitro validation demonstrated that CLOCK mediates NF-κB p65 acetylation at K56 site, potentiating its transcriptional activation of PD-L1, thereby facilitating immune evasion in BC.</p><p><strong>Conclusions: </strong>CLOCK functions as a critical prognostic biomarker in BC by promoting tumor proliferation, chemoresistance, and immune evasion. Mechanistically, CLOCK mediates NF-κB p65 acetylation to enhance PD-L1 transcription, promoting immune evasion in BC.</p>","PeriodicalId":9164,"journal":{"name":"Biology Direct","volume":"20 1","pages":"112"},"PeriodicalIF":4.9,"publicationDate":"2025-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12632107/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145556341","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparative analysis of human Mesenchymal Stromal Cells from Adipose Tissue and Dental Pulp: phenotypic characterization and secretome profiling. 来自脂肪组织和牙髓的人间充质间质细胞的比较分析:表型特征和分泌组分析。
IF 4.9 2区 生物学 Q1 BIOLOGY Pub Date : 2025-11-13 DOI: 10.1186/s13062-025-00697-w
Alessia Ventura, Antonio Libonati, Serena Marcozzi, Maria Assunta Ucci, Giulia Salvatore, Andrea Galgani, Stefano Pirrò, Micol Massimiani, Mario Picozza, Rosita Russo, Simone Vumbaca, Donatella Farini, Angela Chambery, Giovanna Borsellino, Massimo De Felici, Francesca Gioia Klinger, Vincenzo Campanella, Antonella Camaioni
{"title":"Comparative analysis of human Mesenchymal Stromal Cells from Adipose Tissue and Dental Pulp: phenotypic characterization and secretome profiling.","authors":"Alessia Ventura, Antonio Libonati, Serena Marcozzi, Maria Assunta Ucci, Giulia Salvatore, Andrea Galgani, Stefano Pirrò, Micol Massimiani, Mario Picozza, Rosita Russo, Simone Vumbaca, Donatella Farini, Angela Chambery, Giovanna Borsellino, Massimo De Felici, Francesca Gioia Klinger, Vincenzo Campanella, Antonella Camaioni","doi":"10.1186/s13062-025-00697-w","DOIUrl":"10.1186/s13062-025-00697-w","url":null,"abstract":"","PeriodicalId":9164,"journal":{"name":"Biology Direct","volume":"20 1","pages":"111"},"PeriodicalIF":4.9,"publicationDate":"2025-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12616983/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145511589","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Oral intake of aripiprazole compromises male fertility in Drosophila. 口服阿立哌唑会损害果蝇的雄性生育能力。
IF 4.9 2区 生物学 Q1 BIOLOGY Pub Date : 2025-11-11 DOI: 10.1186/s13062-025-00698-9
Amrita Mukherjee, James D Hurcomb, Samantha H Y Loh, L Miguel Martins
{"title":"Oral intake of aripiprazole compromises male fertility in Drosophila.","authors":"Amrita Mukherjee, James D Hurcomb, Samantha H Y Loh, L Miguel Martins","doi":"10.1186/s13062-025-00698-9","DOIUrl":"10.1186/s13062-025-00698-9","url":null,"abstract":"","PeriodicalId":9164,"journal":{"name":"Biology Direct","volume":"20 1","pages":"110"},"PeriodicalIF":4.9,"publicationDate":"2025-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12607071/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145494623","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Plasma membrane calcium ATPases and cerebellar pathology: what's the role in the ataxia? 质膜钙三磷酸腺苷酶与小脑病理:在共济失调中的作用?
IF 4.9 2区 生物学 Q1 BIOLOGY Pub Date : 2025-11-06 DOI: 10.1186/s13062-025-00702-2
Caterina Peggion, Ivan Marchionni, Ernesto Carafoli, Marisa Brini, Tito Calì

Ca²⁺ signaling is essential for neuronal development, migration, synaptic activity, spine plasticity, neurotransmitter release, membrane excitability, and long-term synaptic plasticity, as well as for the coupling between membrane depolarization and downstream signaling. Traditionally, Plasma Membrane Ca²⁺ ATPases (PMCAs) were considered high-affinity, low-capacity calcium extruders. However, recent evidence reveals that the PMCA-Neuroplastin complex facilitates ultrafast Ca²⁺ clearance at kilohertz frequencies, reshaping our understanding of calcium regulation, in particular in neurons. For bulk Ca²⁺ clearance, they are overshadowed by more powerful low-affinity/high-capacity systems on the plasma membrane. This raises key questions: what is the specific physiological and pathological role of PMCAs? Why do cells require a high-affinity/low-capacity, ATP-dependent extrusion mechanism? What is the functional meaning of the diversity of isoforms (four) and splice variants (over thirty)? And why do neurons localize distinct PMCA pumps to pre- and postsynaptic sites? The prevailing hypothesis is that PMCAs fine-tune Ca²⁺ microdomains through local regulation and interactions with specific protein partners. Finally, understanding their role in Purkinje cells (PCs) is particularly relevant, as alterations in PMCA function have been implicated in cerebellar pathology and ataxia.

Ca 2 +信号在神经元发育、迁移、突触活性、脊柱可塑性、神经递质释放、膜兴奋性、突触长期可塑性以及膜去极化与下游信号的耦合中都是必不可少的。传统上,质膜ca2 + atp酶(PMCAs)被认为是高亲和力、低容量的钙挤出剂。然而,最近的证据表明,pmca -神经活素复合物促进了千赫兹频率下Ca 2 +的超快清除,重塑了我们对钙调节的理解,特别是在神经元中。对于大块Ca 2 +的清除,它们被质膜上更强大的低亲和力/高容量系统所掩盖。这就提出了一个关键问题:PMCAs的具体生理和病理作用是什么?为什么细胞需要高亲和力/低容量、依赖atp的挤压机制?同种异构体(4种)和剪接变体(超过30种)多样性的功能意义是什么?为什么神经元会将不同的PMCA泵定位到突触前和突触后的位置?普遍的假设是PMCAs通过局部调节和与特定蛋白质伴侣的相互作用来微调Ca 2 +微结构域。最后,了解它们在浦肯野细胞(PCs)中的作用尤为重要,因为PMCA功能的改变与小脑病理和共济失调有关。
{"title":"Plasma membrane calcium ATPases and cerebellar pathology: what's the role in the ataxia?","authors":"Caterina Peggion, Ivan Marchionni, Ernesto Carafoli, Marisa Brini, Tito Calì","doi":"10.1186/s13062-025-00702-2","DOIUrl":"10.1186/s13062-025-00702-2","url":null,"abstract":"<p><p>Ca²⁺ signaling is essential for neuronal development, migration, synaptic activity, spine plasticity, neurotransmitter release, membrane excitability, and long-term synaptic plasticity, as well as for the coupling between membrane depolarization and downstream signaling. Traditionally, Plasma Membrane Ca²⁺ ATPases (PMCAs) were considered high-affinity, low-capacity calcium extruders. However, recent evidence reveals that the PMCA-Neuroplastin complex facilitates ultrafast Ca²⁺ clearance at kilohertz frequencies, reshaping our understanding of calcium regulation, in particular in neurons. For bulk Ca²⁺ clearance, they are overshadowed by more powerful low-affinity/high-capacity systems on the plasma membrane. This raises key questions: what is the specific physiological and pathological role of PMCAs? Why do cells require a high-affinity/low-capacity, ATP-dependent extrusion mechanism? What is the functional meaning of the diversity of isoforms (four) and splice variants (over thirty)? And why do neurons localize distinct PMCA pumps to pre- and postsynaptic sites? The prevailing hypothesis is that PMCAs fine-tune Ca²⁺ microdomains through local regulation and interactions with specific protein partners. Finally, understanding their role in Purkinje cells (PCs) is particularly relevant, as alterations in PMCA function have been implicated in cerebellar pathology and ataxia.</p>","PeriodicalId":9164,"journal":{"name":"Biology Direct","volume":"20 1","pages":"109"},"PeriodicalIF":4.9,"publicationDate":"2025-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12590814/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145457534","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Biology Direct
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1