首页 > 最新文献

Biology Direct最新文献

英文 中文
IGF2 regulates proliferation, differentiation, and mitochondrial bioenergetics in human satellite cells. IGF2调节人卫星细胞的增殖、分化和线粒体生物能量学。
IF 4.9 2区 生物学 Q1 BIOLOGY Pub Date : 2025-12-22 DOI: 10.1186/s13062-025-00716-w
Ramouna Voshtani, Pengbo Hou, Zhanhong Liu, Lijuan Cao, Chao Feng, Changshun Shao, Yufang Shi, Jiankai Fang
{"title":"IGF2 regulates proliferation, differentiation, and mitochondrial bioenergetics in human satellite cells.","authors":"Ramouna Voshtani, Pengbo Hou, Zhanhong Liu, Lijuan Cao, Chao Feng, Changshun Shao, Yufang Shi, Jiankai Fang","doi":"10.1186/s13062-025-00716-w","DOIUrl":"10.1186/s13062-025-00716-w","url":null,"abstract":"","PeriodicalId":9164,"journal":{"name":"Biology Direct","volume":" ","pages":"115"},"PeriodicalIF":4.9,"publicationDate":"2025-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12750578/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145809594","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ecological determinants of altruism in prokaryote antivirus defense. 原核生物反病毒防御中利他主义的生态决定因素。
IF 4.9 2区 生物学 Q1 BIOLOGY Pub Date : 2025-12-20 DOI: 10.1186/s13062-025-00699-8
Dmitry A Biba, Kira S Makarova, Yuri I Wolf, Levi Waldron, Eugene V Koonin, Nash D Rochman

Prokaryote evolution is driven in large part by the incessant arms race with viruses. Genomic investments in antivirus defense can be coarsely classified into two categories, immune systems that abrogate virus reproduction resulting in clearance, and programmed cell death (PCD) systems. Prokaryotic defense systems are enormously diverse, as revealed by an avalanche of recent discoveries, but the basic ecological determinants of defense strategy remain poorly understood. Through mathematical modeling of defense against lytic virus infection, we identify two principal determinants of optimal defense strategy and, through comparative genomics, we test this model by measuring the genomic investment into immunity vs. PCD among diverse bacteria and archaea. First, as viral pressure grows, immunity becomes the preferred defense strategy. Second, as host population size grows, PCD becomes the preferred strategy. We additionally predict that, although optimal strategy typically involves investment in both PCD and immunity, investment in immunity can also result in antagonism, increasing the likelihood that a PCD-competent cell will lyse due to infection. Together, these findings indicate that, generally, PCD is preferred at low multiplicity of infection (MOI) and immunity is preferred at high MOI. Finally, we demonstrate that PCD, which is typically considered to be an altruistic trait, is in some cases neutral and can be maintained in an unstructured population over an evolutionary timescale. Our work shows that the landscape of prokaryotic antivirus defense is substantially more complex than previously suspected.

原核生物的进化在很大程度上是由与病毒不断的军备竞赛推动的。在反病毒防御方面的基因组投资可以大致分为两类,一类是消除病毒繁殖导致清除的免疫系统,另一类是程序性细胞死亡(PCD)系统。正如最近的大量发现所揭示的那样,原核生物的防御系统种类繁多,但对防御策略的基本生态决定因素仍然知之甚少。通过对裂解病毒感染防御的数学建模,我们确定了最优防御策略的两个主要决定因素,并通过比较基因组学,我们通过测量不同细菌和古细菌对免疫与PCD的基因组投资来测试该模型。首先,随着病毒压力的增加,免疫成为首选的防御策略。其次,随着宿主种群规模的增长,PCD成为首选策略。我们还预测,尽管最佳策略通常涉及对PCD和免疫的投资,但对免疫的投资也可能导致拮抗,增加PCD-competent cell因感染而溶解的可能性。总之,这些发现表明,一般来说,PCD在低感染多重性(MOI)下优先,免疫在高感染多重性(MOI)下优先。最后,我们证明了通常被认为是利他主义特征的PCD在某些情况下是中性的,并且可以在进化时间尺度上在非结构化种群中保持。我们的工作表明,原核病毒防御的景观比以前怀疑的要复杂得多。
{"title":"Ecological determinants of altruism in prokaryote antivirus defense.","authors":"Dmitry A Biba, Kira S Makarova, Yuri I Wolf, Levi Waldron, Eugene V Koonin, Nash D Rochman","doi":"10.1186/s13062-025-00699-8","DOIUrl":"10.1186/s13062-025-00699-8","url":null,"abstract":"<p><p>Prokaryote evolution is driven in large part by the incessant arms race with viruses. Genomic investments in antivirus defense can be coarsely classified into two categories, immune systems that abrogate virus reproduction resulting in clearance, and programmed cell death (PCD) systems. Prokaryotic defense systems are enormously diverse, as revealed by an avalanche of recent discoveries, but the basic ecological determinants of defense strategy remain poorly understood. Through mathematical modeling of defense against lytic virus infection, we identify two principal determinants of optimal defense strategy and, through comparative genomics, we test this model by measuring the genomic investment into immunity vs. PCD among diverse bacteria and archaea. First, as viral pressure grows, immunity becomes the preferred defense strategy. Second, as host population size grows, PCD becomes the preferred strategy. We additionally predict that, although optimal strategy typically involves investment in both PCD and immunity, investment in immunity can also result in antagonism, increasing the likelihood that a PCD-competent cell will lyse due to infection. Together, these findings indicate that, generally, PCD is preferred at low multiplicity of infection (MOI) and immunity is preferred at high MOI. Finally, we demonstrate that PCD, which is typically considered to be an altruistic trait, is in some cases neutral and can be maintained in an unstructured population over an evolutionary timescale. Our work shows that the landscape of prokaryotic antivirus defense is substantially more complex than previously suspected.</p>","PeriodicalId":9164,"journal":{"name":"Biology Direct","volume":" ","pages":"7"},"PeriodicalIF":4.9,"publicationDate":"2025-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145800234","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Platelet-activating factor induces ferroptosis by binding to ATF3 and inhibiting the SLC7A11/GPX4 axis to suppress the progression of endometrial carcinoma. 血小板活化因子通过与ATF3结合,抑制SLC7A11/GPX4轴,诱导铁下垂,抑制子宫内膜癌的进展。
IF 4.9 2区 生物学 Q1 BIOLOGY Pub Date : 2025-12-15 DOI: 10.1186/s13062-025-00713-z
Feifei Pan, Yuqing Qiu, Zhuojie Huang, Yanqin Zheng, Yun Chen, Yiming Song, Zhe-Sheng Chen, Lirong Guo, Jingyao Wang, Xiaojie Liu, Zixin Tao, Yaqiong Liu, Xingcui Xuan, Kunxiang Gong, Kun Shi
{"title":"Platelet-activating factor induces ferroptosis by binding to ATF3 and inhibiting the SLC7A11/GPX4 axis to suppress the progression of endometrial carcinoma.","authors":"Feifei Pan, Yuqing Qiu, Zhuojie Huang, Yanqin Zheng, Yun Chen, Yiming Song, Zhe-Sheng Chen, Lirong Guo, Jingyao Wang, Xiaojie Liu, Zixin Tao, Yaqiong Liu, Xingcui Xuan, Kunxiang Gong, Kun Shi","doi":"10.1186/s13062-025-00713-z","DOIUrl":"10.1186/s13062-025-00713-z","url":null,"abstract":"","PeriodicalId":9164,"journal":{"name":"Biology Direct","volume":" ","pages":"8"},"PeriodicalIF":4.9,"publicationDate":"2025-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145761615","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
KIF4A in disease pathogenesis and therapeutics: from molecular mechanisms to clinical translation. KIF4A在疾病发病和治疗中的作用:从分子机制到临床翻译。
IF 4.9 2区 生物学 Q1 BIOLOGY Pub Date : 2025-12-08 DOI: 10.1186/s13062-025-00712-0
Yi Liu, Yunhua Li, Chunrong Tang, Honghua Wen, Jingxian Tang, Gangwen Chen, Yongkang Wu

Kinesin family member 4 A (KIF4A) is a multifunctional motor protein essential for chromosome condensation, spindle dynamics, and cytokinesis. Beyond its classical mitotic functions, emerging evidence positions KIF4A as a central regulator of tumorigenesis, therapy resistance, metabolic reprogramming, and immune modulation across diverse cancer types. However, no comprehensive review has integrated its molecular mechanisms with its roles in both oncological and non-oncological diseases, nor clarified its context-dependent behavior, including paradoxical tumor-suppressive effects in cervical cancer. In this review, we synthesize current advances spanning structural biology, transcriptional and post-translational regulation, and pathway-level interactions involving PI3K/AKT, TGF-β/Smad, Hippo-YAP, metabolic remodeling, and DNA damage response networks. We summarize KIF4A's expression and functions across more than 30 malignant tumors and multiple non-neoplastic conditions-including neurodevelopmental disorders, autoimmune diseases, viral infections, fibrotic diseases, and congenital anomalies-highlighting shared molecular themes and disease-specific distinctions. A notable finding is KIF4A's context dependency: while generally oncogenic, high KIF4A expression in cervical cancer correlates with improved survival, suggesting HPV-specific transcriptional rewiring, altered phosphorylation states, or compensatory genome stabilization as potential mechanisms.We further evaluate the translational implications of KIF4A as a biomarker for diagnosis, prognosis, and treatment response, and we critically examine therapeutic strategies targeting KIF4A-ranging from small-molecule inhibitors and gene-silencing approaches to miRNA therapeutics, exosome-based delivery systems, and neoantigen-directed immunotherapy. Finally, we outline major challenges to clinical translation, including its essential roles in mitosis and neuronal integrity, the need for tumor-selective delivery platforms, and incomplete understanding of its tissue-specific functions. Collectively, this review provides a unified mechanistic and translational framework for understanding KIF4A across human diseases, identifies key knowledge gaps, and proposes future research directions to enable safe and effective targeting of this biologically indispensable protein.

运动蛋白家族成员4a (KIF4A)是染色体凝聚、纺锤体动力学和细胞分裂所必需的多功能运动蛋白。除了其经典的有丝分裂功能外,新出现的证据表明KIF4A是多种癌症类型的肿瘤发生、治疗耐药性、代谢重编程和免疫调节的中心调节因子。然而,目前还没有全面的综述将其分子机制与其在肿瘤和非肿瘤疾病中的作用结合起来,也没有阐明其环境依赖性行为,包括在宫颈癌中的矛盾的肿瘤抑制作用。在这篇综述中,我们综合了结构生物学、转录和翻译后调控以及涉及PI3K/AKT、TGF-β/Smad、Hippo-YAP、代谢重塑和DNA损伤反应网络的途径水平相互作用的最新进展。我们总结了KIF4A在30多种恶性肿瘤和多种非肿瘤性疾病(包括神经发育障碍、自身免疫性疾病、病毒感染、纤维化疾病和先天性异常)中的表达和功能,强调了共同的分子主题和疾病特异性差异。一个值得注意的发现是KIF4A的环境依赖性:虽然通常是致癌的,但KIF4A在宫颈癌中的高表达与生存率的提高相关,这表明hpv特异性转录重连接、磷酸化状态改变或代偿性基因组稳定是潜在的机制。我们进一步评估了KIF4A作为诊断、预后和治疗反应的生物标志物的翻译意义,并严格检查了针对KIF4A的治疗策略,从小分子抑制剂和基因沉默方法到miRNA治疗、基于外泌体的递送系统和新抗原定向免疫治疗。最后,我们概述了临床翻译面临的主要挑战,包括其在有丝分裂和神经元完整性中的重要作用,对肿瘤选择性传递平台的需求,以及对其组织特异性功能的不完全了解。总的来说,本综述为理解人类疾病中的KIF4A提供了一个统一的机制和翻译框架,确定了关键的知识空白,并提出了未来的研究方向,以安全有效地靶向这种生物学上不可或缺的蛋白质。
{"title":"KIF4A in disease pathogenesis and therapeutics: from molecular mechanisms to clinical translation.","authors":"Yi Liu, Yunhua Li, Chunrong Tang, Honghua Wen, Jingxian Tang, Gangwen Chen, Yongkang Wu","doi":"10.1186/s13062-025-00712-0","DOIUrl":"10.1186/s13062-025-00712-0","url":null,"abstract":"<p><p>Kinesin family member 4 A (KIF4A) is a multifunctional motor protein essential for chromosome condensation, spindle dynamics, and cytokinesis. Beyond its classical mitotic functions, emerging evidence positions KIF4A as a central regulator of tumorigenesis, therapy resistance, metabolic reprogramming, and immune modulation across diverse cancer types. However, no comprehensive review has integrated its molecular mechanisms with its roles in both oncological and non-oncological diseases, nor clarified its context-dependent behavior, including paradoxical tumor-suppressive effects in cervical cancer. In this review, we synthesize current advances spanning structural biology, transcriptional and post-translational regulation, and pathway-level interactions involving PI3K/AKT, TGF-β/Smad, Hippo-YAP, metabolic remodeling, and DNA damage response networks. We summarize KIF4A's expression and functions across more than 30 malignant tumors and multiple non-neoplastic conditions-including neurodevelopmental disorders, autoimmune diseases, viral infections, fibrotic diseases, and congenital anomalies-highlighting shared molecular themes and disease-specific distinctions. A notable finding is KIF4A's context dependency: while generally oncogenic, high KIF4A expression in cervical cancer correlates with improved survival, suggesting HPV-specific transcriptional rewiring, altered phosphorylation states, or compensatory genome stabilization as potential mechanisms.We further evaluate the translational implications of KIF4A as a biomarker for diagnosis, prognosis, and treatment response, and we critically examine therapeutic strategies targeting KIF4A-ranging from small-molecule inhibitors and gene-silencing approaches to miRNA therapeutics, exosome-based delivery systems, and neoantigen-directed immunotherapy. Finally, we outline major challenges to clinical translation, including its essential roles in mitosis and neuronal integrity, the need for tumor-selective delivery platforms, and incomplete understanding of its tissue-specific functions. Collectively, this review provides a unified mechanistic and translational framework for understanding KIF4A across human diseases, identifies key knowledge gaps, and proposes future research directions to enable safe and effective targeting of this biologically indispensable protein.</p>","PeriodicalId":9164,"journal":{"name":"Biology Direct","volume":" ","pages":"116"},"PeriodicalIF":4.9,"publicationDate":"2025-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12752079/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145707252","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of pesticides on breast cancer tumor. 农药对乳腺癌肿瘤的影响。
IF 4.9 2区 生物学 Q1 BIOLOGY Pub Date : 2025-12-08 DOI: 10.1186/s13062-025-00709-9
Daniele Marcoccia, Stefano Palomba, Giovanni Brajon, Alessandro Baldi, Flavia Silvia Galli, Francesca Servadei, Valeria Palumbo, Rita Bonfiglio, Michele Treglia, Luigi Tonino Marsella, Flavia Botti, Yufang Shi, Eleonora Candi, Gerry Melino, Alessandro Mauriello, Manuel Scimeca
{"title":"Effect of pesticides on breast cancer tumor.","authors":"Daniele Marcoccia, Stefano Palomba, Giovanni Brajon, Alessandro Baldi, Flavia Silvia Galli, Francesca Servadei, Valeria Palumbo, Rita Bonfiglio, Michele Treglia, Luigi Tonino Marsella, Flavia Botti, Yufang Shi, Eleonora Candi, Gerry Melino, Alessandro Mauriello, Manuel Scimeca","doi":"10.1186/s13062-025-00709-9","DOIUrl":"10.1186/s13062-025-00709-9","url":null,"abstract":"","PeriodicalId":9164,"journal":{"name":"Biology Direct","volume":" ","pages":"5"},"PeriodicalIF":4.9,"publicationDate":"2025-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12798136/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145707149","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Integrating rna structure and protein interactions to uncover the mechanisms of viral and cellular ires function. 整合rna结构和蛋白质相互作用,揭示病毒和细胞ires功能的机制。
IF 4.9 2区 生物学 Q1 BIOLOGY Pub Date : 2025-12-08 DOI: 10.1186/s13062-025-00706-y
Riccardo Delli Ponti, Andrea Vandelli, Laura Broglia, Gian Gaetano Tartaglia

Background: RNAs fold into complex structures that critically influence gene expression. A prominent class of regulatory elements resides in the 5' untranslated region (5' UTR), where internal ribosome entry sites (IRESs) promote cap-independent translation by directly engaging the ribosome. First discovered in viral genomes, IRESs have been classified into four types according to their structural compactness and factor requirements. While viral IRESs are well studied, cellular IRESs remain poorly understood: they display limited sequence conservation, reduced structural compactness, and variable dependence on auxiliary RNA-binding proteins known as IRES trans-acting factors (ITAFs). Whether their activity relies mainly on RNA structure or protein assistance remains unresolved. Here, we present a computational framework that combines in silico mutagenesis and RNA-protein interaction profiling to investigate IRES mechanisms and guide the design of synthetic elements.

Results: Using the Hepatitis C Virus (HCV) IRES as a benchmark, we performed systematic single-nucleotide mutagenesis coupled with structural predictions. Mutations were classified as synonymous or non-synonymous based on their effect on the secondary structure. The HCV IRES showed overall robustness, but the domain interacting with eIF3 was particularly sensitive, consistent with its essential role in translation initiation. Extending this approach to other viral IRES families revealed distinct profiles of resilience: Aphthoviruses retained structural integrity despite extensive sequence variation, whereas Cripaviruses displayed higher variability. We then applied the same analysis to cellular IRESs, which proved to be more structurally sensitive, suggesting stronger reliance on cofactor support. To probe this connection, we used the catRAPID approach to predict interactions with translation-related proteins. The method distinguished IRESs with known ITAF binding, such as PTBP1, and highlighted stability-promoting mutations that increased the predicted affinity for translation factors.

Conclusions: Our in silico analysis indicates that mutational tolerance mirrors IRES cofactor dependence: compact viral IRESs are structurally robust, whereas non-viral IRESs are more reliant on protein interactions. By linking structure prediction with interaction profiling, we identify variants that both stabilize IRESs and improve binding to ITAFs or translation factors. This framework provides mechanistic insight into sequence-structure-function relationships and supports the rational design of synthetic IRES elements for therapeutic and biotechnological applications.

背景:rna折叠成复杂的结构,对基因表达有重要影响。一类重要的调控元件位于5‘非翻译区(5’ UTR),在那里,内部核糖体进入位点(IRESs)通过直接与核糖体结合来促进帽无关的翻译。IRESs首先在病毒基因组中发现,根据其结构紧凑性和因子需求可分为四种类型。虽然病毒IRESs研究得很好,但细胞IRESs仍然知之甚少:它们表现出有限的序列保守性,结构致密性降低,以及对称为IRES反式作用因子(ITAFs)的辅助rna结合蛋白的可变依赖性。它们的活性是否主要依赖于RNA结构或蛋白质辅助仍未解决。在这里,我们提出了一个计算框架,结合了硅诱变和rna -蛋白质相互作用分析来研究IRES机制并指导合成元件的设计。结果:以丙型肝炎病毒(HCV) IRES为基准,我们进行了系统的单核苷酸诱变和结构预测。根据对二级结构的影响,将突变分为同义或非同义。HCV IRES整体表现出鲁棒性,但与eIF3相互作用的结构域特别敏感,这与eIF3在翻译起始中的重要作用一致。将这种方法扩展到其他IRES病毒家族,揭示了不同的恢复能力:尽管有广泛的序列变化,但aphthov仍保持结构完整性,而cripavvirus则表现出更高的变异性。然后,我们将相同的分析应用于细胞IRESs,证明其结构更敏感,表明更依赖于辅助因子支持。为了探索这种联系,我们使用catRAPID方法来预测与翻译相关蛋白的相互作用。该方法区分了IRESs与已知ITAF结合,如PTBP1,并突出了稳定性促进突变,这些突变增加了对翻译因子的预测亲和力。结论:我们的计算机分析表明,突变耐受性反映了IRES辅因子依赖性:紧凑的病毒IRES在结构上是稳健的,而非病毒IRES更依赖于蛋白质相互作用。通过将结构预测与相互作用分析联系起来,我们确定了既稳定IRESs又改善与itaf或翻译因子结合的变体。该框架提供了对序列-结构-功能关系的机制洞察,并支持用于治疗和生物技术应用的合成IRES元素的合理设计。
{"title":"Integrating rna structure and protein interactions to uncover the mechanisms of viral and cellular ires function.","authors":"Riccardo Delli Ponti, Andrea Vandelli, Laura Broglia, Gian Gaetano Tartaglia","doi":"10.1186/s13062-025-00706-y","DOIUrl":"10.1186/s13062-025-00706-y","url":null,"abstract":"<p><strong>Background: </strong>RNAs fold into complex structures that critically influence gene expression. A prominent class of regulatory elements resides in the 5' untranslated region (5' UTR), where internal ribosome entry sites (IRESs) promote cap-independent translation by directly engaging the ribosome. First discovered in viral genomes, IRESs have been classified into four types according to their structural compactness and factor requirements. While viral IRESs are well studied, cellular IRESs remain poorly understood: they display limited sequence conservation, reduced structural compactness, and variable dependence on auxiliary RNA-binding proteins known as IRES trans-acting factors (ITAFs). Whether their activity relies mainly on RNA structure or protein assistance remains unresolved. Here, we present a computational framework that combines in silico mutagenesis and RNA-protein interaction profiling to investigate IRES mechanisms and guide the design of synthetic elements.</p><p><strong>Results: </strong>Using the Hepatitis C Virus (HCV) IRES as a benchmark, we performed systematic single-nucleotide mutagenesis coupled with structural predictions. Mutations were classified as synonymous or non-synonymous based on their effect on the secondary structure. The HCV IRES showed overall robustness, but the domain interacting with eIF3 was particularly sensitive, consistent with its essential role in translation initiation. Extending this approach to other viral IRES families revealed distinct profiles of resilience: Aphthoviruses retained structural integrity despite extensive sequence variation, whereas Cripaviruses displayed higher variability. We then applied the same analysis to cellular IRESs, which proved to be more structurally sensitive, suggesting stronger reliance on cofactor support. To probe this connection, we used the catRAPID approach to predict interactions with translation-related proteins. The method distinguished IRESs with known ITAF binding, such as PTBP1, and highlighted stability-promoting mutations that increased the predicted affinity for translation factors.</p><p><strong>Conclusions: </strong>Our in silico analysis indicates that mutational tolerance mirrors IRES cofactor dependence: compact viral IRESs are structurally robust, whereas non-viral IRESs are more reliant on protein interactions. By linking structure prediction with interaction profiling, we identify variants that both stabilize IRESs and improve binding to ITAFs or translation factors. This framework provides mechanistic insight into sequence-structure-function relationships and supports the rational design of synthetic IRES elements for therapeutic and biotechnological applications.</p>","PeriodicalId":9164,"journal":{"name":"Biology Direct","volume":" ","pages":"6"},"PeriodicalIF":4.9,"publicationDate":"2025-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12801896/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145699791","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Autophagy and mitophagy in dermatological disease: a comprehensive review from molecular pathways to therapeutic frontiers. 皮肤疾病中的自噬和有丝自噬:从分子途径到治疗前沿的综合综述。
IF 4.9 2区 生物学 Q1 BIOLOGY Pub Date : 2025-12-06 DOI: 10.1186/s13062-025-00703-1
Luca D'Ambrosio, Maria Elisabetta Greco, Maurizio Forte, Daniele Vecchio, Sonia Schiavon, Flavio Di Nonno, Shazia Tahir, Vittorio Picchio, Claudia Cozzolino, Gianmarco Sarto, Marco Bernardi, Luigi Spadafora, Beatrice Simeone, Mattia Vinciguerra, Sebastiano Sciarretta, Giacomo Frati, Ernesto Greco, Concetta Potenza, Ilaria Proietti, Jacopo Morroni, Elisa Dietrich, Leonardo Schirone

Autophagy - the cell's built-in recycling and quality-control programme - touches every layer of cutaneous biology. In keratinocytes it sculpts the cornified envelope; in melanocytes it balances pigment synthesis and oxidative stress; in immune and appendageal cells it fine-tunes defence, repair and hair-follicle cycling. When this choreography falters, skin disorders emerge. This review journeys from basic mechanisms (ULK1 signalling, Beclin-1/VPS34 nucleation, LC3B lipidation, selective mitophagy) to their fingerprints in health and disease. We dissect how autophagy malfunctions drive psoriasis hyper-proliferation, atopic-dermatitis barrier leakiness, vitiligo depigmentation and the metabolic rewiring of melanoma. Non-melanoma cancers, infectious dermatoses, wound repair, ageing and photo-damage are mapped onto the same autophagic atlas. Therapeutically, the pathway is a double-edged sword. mTOR or caloric-restriction mimetics jump-start a protective flux; chloroquine derivatives and ULK1 blockers clip tumour survival circuits; cannabinoids, photodynamic therapy and immune-checkpoint combinations exploit context-specific toggling between induction and brake. Emerging biomarkers (LC3B-II, p62, AMBRA1) promise patient-stratified interventions. By weaving together molecular detail, pre-clinical insight and clinical translation, we show why autophagy is no longer a backstage process but a star player in dermatology - and how targeting its switches could reshape future treatment algorithms.

自噬——细胞内置的循环和质量控制程序——触及皮肤生物的每一层。在角质形成细胞中,它塑造了角质化的包膜;在黑素细胞中,它平衡色素合成和氧化应激;在免疫细胞和附属细胞中,它可以微调防御、修复和毛囊循环。当这种编排出现问题时,皮肤疾病就会出现。本文综述了从基本机制(ULK1信号传导、Beclin-1/VPS34成核、LC3B脂化、选择性线粒体自噬)到它们在健康和疾病中的作用。我们剖析了自噬功能障碍如何驱动牛皮癣过度增殖,特应性皮炎屏障渗漏,白癜风脱色和黑色素瘤的代谢重新布线。非黑色素瘤癌症、传染性皮肤病、伤口修复、衰老和光损伤被映射到相同的自噬图谱上。在治疗上,这条路是一把双刃剑。mTOR或热量限制模拟启动保护通量;氯喹衍生物和ULK1阻滞剂阻断肿瘤存活回路;大麻素、光动力疗法和免疫检查点组合利用诱导和制动之间的上下文特异性切换。新兴的生物标志物(LC3B-II, p62, AMBRA1)有望对患者进行分层干预。通过将分子细节、临床前洞察和临床翻译结合在一起,我们展示了为什么自噬不再是一个后台过程,而是皮肤病学中的一个明星角色,以及如何靶向自噬开关可以重塑未来的治疗算法。
{"title":"Autophagy and mitophagy in dermatological disease: a comprehensive review from molecular pathways to therapeutic frontiers.","authors":"Luca D'Ambrosio, Maria Elisabetta Greco, Maurizio Forte, Daniele Vecchio, Sonia Schiavon, Flavio Di Nonno, Shazia Tahir, Vittorio Picchio, Claudia Cozzolino, Gianmarco Sarto, Marco Bernardi, Luigi Spadafora, Beatrice Simeone, Mattia Vinciguerra, Sebastiano Sciarretta, Giacomo Frati, Ernesto Greco, Concetta Potenza, Ilaria Proietti, Jacopo Morroni, Elisa Dietrich, Leonardo Schirone","doi":"10.1186/s13062-025-00703-1","DOIUrl":"10.1186/s13062-025-00703-1","url":null,"abstract":"<p><p>Autophagy - the cell's built-in recycling and quality-control programme - touches every layer of cutaneous biology. In keratinocytes it sculpts the cornified envelope; in melanocytes it balances pigment synthesis and oxidative stress; in immune and appendageal cells it fine-tunes defence, repair and hair-follicle cycling. When this choreography falters, skin disorders emerge. This review journeys from basic mechanisms (ULK1 signalling, Beclin-1/VPS34 nucleation, LC3B lipidation, selective mitophagy) to their fingerprints in health and disease. We dissect how autophagy malfunctions drive psoriasis hyper-proliferation, atopic-dermatitis barrier leakiness, vitiligo depigmentation and the metabolic rewiring of melanoma. Non-melanoma cancers, infectious dermatoses, wound repair, ageing and photo-damage are mapped onto the same autophagic atlas. Therapeutically, the pathway is a double-edged sword. mTOR or caloric-restriction mimetics jump-start a protective flux; chloroquine derivatives and ULK1 blockers clip tumour survival circuits; cannabinoids, photodynamic therapy and immune-checkpoint combinations exploit context-specific toggling between induction and brake. Emerging biomarkers (LC3B-II, p62, AMBRA1) promise patient-stratified interventions. By weaving together molecular detail, pre-clinical insight and clinical translation, we show why autophagy is no longer a backstage process but a star player in dermatology - and how targeting its switches could reshape future treatment algorithms.</p>","PeriodicalId":9164,"journal":{"name":"Biology Direct","volume":" ","pages":"4"},"PeriodicalIF":4.9,"publicationDate":"2025-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12781533/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145695951","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ssDNA phage FLiP resides in dsDNA form in resistant Flavobacterium host. ssDNA噬菌体FLiP在抗性黄杆菌宿主中以dsDNA形式存在。
IF 4.9 2区 生物学 Q1 BIOLOGY Pub Date : 2025-12-04 DOI: 10.1186/s13062-025-00708-w
Kati Mäkelä, Reetta Penttinen, Janne Ravantti, Elina Laanto, Lotta-Riina Sundberg
{"title":"ssDNA phage FLiP resides in dsDNA form in resistant Flavobacterium host.","authors":"Kati Mäkelä, Reetta Penttinen, Janne Ravantti, Elina Laanto, Lotta-Riina Sundberg","doi":"10.1186/s13062-025-00708-w","DOIUrl":"10.1186/s13062-025-00708-w","url":null,"abstract":"","PeriodicalId":9164,"journal":{"name":"Biology Direct","volume":" ","pages":"2"},"PeriodicalIF":4.9,"publicationDate":"2025-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12781566/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145676486","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cryptochrome interaction networks across different tissues in Drosophila melanogaster. 黑腹果蝇不同组织间隐花色素相互作用网络。
IF 4.9 2区 生物学 Q1 BIOLOGY Pub Date : 2025-11-28 DOI: 10.1186/s13062-025-00696-x
Milena Damulewicz, Francesco Gregoris, Davide Colaianni, Filippo Cendron, Alberto Biscontin, Giovanni Minervini, Gabriella M Mazzotta
{"title":"Cryptochrome interaction networks across different tissues in Drosophila melanogaster.","authors":"Milena Damulewicz, Francesco Gregoris, Davide Colaianni, Filippo Cendron, Alberto Biscontin, Giovanni Minervini, Gabriella M Mazzotta","doi":"10.1186/s13062-025-00696-x","DOIUrl":"10.1186/s13062-025-00696-x","url":null,"abstract":"","PeriodicalId":9164,"journal":{"name":"Biology Direct","volume":"20 1","pages":"114"},"PeriodicalIF":4.9,"publicationDate":"2025-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12661795/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145629943","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The role of TRIM proteins in the pathogenesis of mycobacterium tuberculosis. TRIM蛋白在结核分枝杆菌发病机制中的作用。
IF 4.9 2区 生物学 Q1 BIOLOGY Pub Date : 2025-11-28 DOI: 10.1186/s13062-025-00707-x
Martina Di Rienzo, Candida Zuchegna, Valentina Perri, Mauro Piacentini, Laura Falasca, Alessandra Romagnoli
{"title":"The role of TRIM proteins in the pathogenesis of mycobacterium tuberculosis.","authors":"Martina Di Rienzo, Candida Zuchegna, Valentina Perri, Mauro Piacentini, Laura Falasca, Alessandra Romagnoli","doi":"10.1186/s13062-025-00707-x","DOIUrl":"10.1186/s13062-025-00707-x","url":null,"abstract":"","PeriodicalId":9164,"journal":{"name":"Biology Direct","volume":" ","pages":"1"},"PeriodicalIF":4.9,"publicationDate":"2025-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12765292/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145630078","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Biology Direct
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1