首页 > 最新文献

Biology Direct最新文献

英文 中文
miR-630 as a therapeutic target in pancreatic cancer stem cells: modulation of the PRKCI-Hedgehog signaling axis. 作为胰腺癌干细胞治疗靶点的 miR-630:PRKCI-Hedgehog 信号轴的调节。
IF 5.7 2区 生物学 Q1 BIOLOGY Pub Date : 2024-11-11 DOI: 10.1186/s13062-024-00539-1
Jun Zou, Sha Yang, Chongwu He, Lei Deng, Bangran Xu, Shuai Chen

Background: MicroRNAs (miRNAs) are critical regulators of cancer progression, prompting our investigation into the specific function of miR-630 in pancreatic cancer stem cells (PCSCs). Analysis of miRNA and mRNA expression data in PCSCs revealed downregulation of miR-630 and upregulation of PRKCI, implying a potential role for miR-630 in PCSC function and tumorigenicity.

Results: Functional assays confirmed that miR-630 directly targets PRKCI, leading to the suppression of the Hedgehog signaling pathway and consequent inhibition of PCSC self-renewal and tumorigenicity in murine models. This study unveiled the modulation of the PRKCI-Hedgehog signaling axis by miR-630, highlighting its promising therapeutic potential for pancreatic cancer (PC) treatment.

Conclusions: MiR-630 emerges as a pivotal regulator in PCSC biology, opening up new avenues for targeted interventions in PC. The inhibitory effect of miR-630 on PCSC behavior underscores its potential as a valuable therapeutic target, offering insights into innovative treatment strategies for this challenging disease.

背景:微RNA(miRNA)是癌症进展的关键调控因子,这促使我们研究miR-630在胰腺癌干细胞(PCSCs)中的特殊功能。对PCSCs中miRNA和mRNA表达数据的分析表明,miR-630下调,PRKCI上调,这意味着miR-630在PCSC的功能和致瘤性中可能发挥作用:功能测定证实,miR-630直接靶向PRKCI,导致Hedgehog信号通路受到抑制,从而抑制了小鼠模型中PCSC的自我更新和致瘤性。这项研究揭示了miR-630对PRKCI-Hedgehog信号轴的调控作用,凸显了其在胰腺癌(PC)治疗中的巨大潜力:结论:miR-630是胰腺癌细胞生物学的关键调控因子,为靶向干预胰腺癌开辟了新途径。miR-630对PCSC行为的抑制作用凸显了其作为有价值的治疗靶点的潜力,为这一具有挑战性的疾病的创新治疗策略提供了启示。
{"title":"miR-630 as a therapeutic target in pancreatic cancer stem cells: modulation of the PRKCI-Hedgehog signaling axis.","authors":"Jun Zou, Sha Yang, Chongwu He, Lei Deng, Bangran Xu, Shuai Chen","doi":"10.1186/s13062-024-00539-1","DOIUrl":"10.1186/s13062-024-00539-1","url":null,"abstract":"<p><strong>Background: </strong>MicroRNAs (miRNAs) are critical regulators of cancer progression, prompting our investigation into the specific function of miR-630 in pancreatic cancer stem cells (PCSCs). Analysis of miRNA and mRNA expression data in PCSCs revealed downregulation of miR-630 and upregulation of PRKCI, implying a potential role for miR-630 in PCSC function and tumorigenicity.</p><p><strong>Results: </strong>Functional assays confirmed that miR-630 directly targets PRKCI, leading to the suppression of the Hedgehog signaling pathway and consequent inhibition of PCSC self-renewal and tumorigenicity in murine models. This study unveiled the modulation of the PRKCI-Hedgehog signaling axis by miR-630, highlighting its promising therapeutic potential for pancreatic cancer (PC) treatment.</p><p><strong>Conclusions: </strong>MiR-630 emerges as a pivotal regulator in PCSC biology, opening up new avenues for targeted interventions in PC. The inhibitory effect of miR-630 on PCSC behavior underscores its potential as a valuable therapeutic target, offering insights into innovative treatment strategies for this challenging disease.</p>","PeriodicalId":9164,"journal":{"name":"Biology Direct","volume":"19 1","pages":"109"},"PeriodicalIF":5.7,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11555831/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142614888","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Efficient DNA-free co-targeting of nuclear genes in Chlamydomonas reinhardtii. 衣藻核基因的高效无 DNA 协同靶向。
IF 5.7 2区 生物学 Q1 BIOLOGY Pub Date : 2024-11-11 DOI: 10.1186/s13062-024-00545-3
Claudia Battarra, Max Angstenberger, Roberto Bassi, Luca Dall'Osto

Chlamydomonas reinhardtii, a model organism for unicellular green microalgae, is widely used in basic and applied research. Nonetheless, proceeding towards synthetic biology requires a full set of manipulation techniques for inserting, removing, or editing genes. Despite recent advancements in CRISPR/Cas9, still significant limitations in producing gene knock-outs are standing, including (i) unsatisfactory genome editing (GE) efficiency and (ii) uncontrolled DNA random insertion of antibiotic resistance markers. Thus, obtaining efficient gene targeting without using marker genes is instrumental in developing a pipeline for efficient engineering of strains for biotechnological applications. We developed an efficient DNA-free gene disruption strategy, relying on phenotypical identification of mutants, to (i) precisely determine its efficiency compared to marker-relying approaches and (ii) establish a new DNA-free editing tool. This study found that classical CRISPR Cas9-based GE for gene disruption in Chlamydomonas reinhardtii is mainly limited by DNA integration. With respect to previous results achieved on synchronized cell populations, we succeeded in increasing the GE efficiency of single gene targeting by about 200 times and up to 270 times by applying phosphate starvation. Moreover, we determined the efficiency of multiplex simultaneous gene disruption by using an additional gene target whose knock-out did not lead to a visible phenotype, achieving a co-targeting efficiency of 22%. These results expand the toolset of GE techniques and, additionally, lead the way to future strategies to generate complex genotypes or to functionally investigate gene families. Furthermore, the approach provides new perspectives on how GE can be applied to (non-) model microalgae species, targeting groups of candidate genes of high interest for basic research and biotechnological applications.

衣藻(Chlamydomonas reinhardtii)是单细胞绿色微藻的模式生物,被广泛应用于基础研究和应用研究。然而,合成生物学的发展需要一整套插入、移除或编辑基因的操作技术。尽管 CRISPR/Cas9 技术最近取得了进展,但在基因敲除方面仍然存在很大的局限性,包括:(i)基因组编辑(GE)效率不尽人意;(ii)抗生素抗性标记的 DNA 随机插入不受控制。因此,在不使用标记基因的情况下获得高效的基因靶向,对于开发用于生物技术应用的高效菌株工程管道至关重要。我们开发了一种高效的无 DNA 基因干扰策略,该策略依赖于突变体的表型鉴定,目的是:(i) 与依赖标记的方法相比,精确确定其效率;(ii) 建立一种新的无 DNA 编辑工具。本研究发现,基于CRISPR Cas9的经典基因工程技术在莱茵衣藻中的基因破坏主要受到DNA整合的限制。与之前在同步细胞群中取得的结果相比,我们成功地将单基因打靶的基因工程效率提高了约200倍,而通过磷酸盐饥饿,效率则提高了270倍。此外,我们还通过使用一个额外的基因靶点(其敲除不会导致明显的表型),确定了多重同步基因破坏的效率,实现了 22% 的共靶效率。这些结果拓展了基因工程技术的工具集,并为未来生成复杂基因型或研究基因家族功能的策略指明了方向。此外,该方法还为如何将基因工程应用于(非)模式微藻物种、针对基础研究和生物技术应用中高度关注的候选基因组提供了新的视角。
{"title":"Efficient DNA-free co-targeting of nuclear genes in Chlamydomonas reinhardtii.","authors":"Claudia Battarra, Max Angstenberger, Roberto Bassi, Luca Dall'Osto","doi":"10.1186/s13062-024-00545-3","DOIUrl":"10.1186/s13062-024-00545-3","url":null,"abstract":"<p><p>Chlamydomonas reinhardtii, a model organism for unicellular green microalgae, is widely used in basic and applied research. Nonetheless, proceeding towards synthetic biology requires a full set of manipulation techniques for inserting, removing, or editing genes. Despite recent advancements in CRISPR/Cas9, still significant limitations in producing gene knock-outs are standing, including (i) unsatisfactory genome editing (GE) efficiency and (ii) uncontrolled DNA random insertion of antibiotic resistance markers. Thus, obtaining efficient gene targeting without using marker genes is instrumental in developing a pipeline for efficient engineering of strains for biotechnological applications. We developed an efficient DNA-free gene disruption strategy, relying on phenotypical identification of mutants, to (i) precisely determine its efficiency compared to marker-relying approaches and (ii) establish a new DNA-free editing tool. This study found that classical CRISPR Cas9-based GE for gene disruption in Chlamydomonas reinhardtii is mainly limited by DNA integration. With respect to previous results achieved on synchronized cell populations, we succeeded in increasing the GE efficiency of single gene targeting by about 200 times and up to 270 times by applying phosphate starvation. Moreover, we determined the efficiency of multiplex simultaneous gene disruption by using an additional gene target whose knock-out did not lead to a visible phenotype, achieving a co-targeting efficiency of 22%. These results expand the toolset of GE techniques and, additionally, lead the way to future strategies to generate complex genotypes or to functionally investigate gene families. Furthermore, the approach provides new perspectives on how GE can be applied to (non-) model microalgae species, targeting groups of candidate genes of high interest for basic research and biotechnological applications.</p>","PeriodicalId":9164,"journal":{"name":"Biology Direct","volume":"19 1","pages":"108"},"PeriodicalIF":5.7,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11556018/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142614846","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The impact of androgen-induced translation in modulating androgen receptor activity. 雄激素诱导的翻译在调节雄激素受体活性方面的影响。
IF 5.7 2区 生物学 Q1 BIOLOGY Pub Date : 2024-11-11 DOI: 10.1186/s13062-024-00550-6
Justus S Israel, Laura-Maria Marcelin, Sherif Mehralivand, Jana Scholze, Jörg Hofmann, Matthias B Stope, Martin Puhr, Christian Thomas, Holger H H Erb

Introduction: Dysregulated androgen receptor (AR) activity is central to various diseases, particularly prostate cancer (PCa), in which it drives tumour initiation and progression. Consequently, antagonising AR activity via anti-androgens is an indispensable treatment option for metastatic PCa. However, despite initial tumour remission, drug resistance occurs. Therefore, the AR signalling pathway has been intensively investigated. However, the role of AR protein stability in AR signalling and therapy resistance has not yet been deciphered. Therefore, this study aimed to investigate the role of AR protein changes in transactivity and assess its mechanism as a possible target in PCa.

Methods: LNCaP, C4-2, and 22Rv1 cells were treated with R1881, enzalutamide, cycloheximide, and Rocaglamide. Mass spectrometry analyses were performed on LNCaP cells to identify the pathways enriched by the treatments. Western blotting was performed to investigate AR protein levels and localisation changes. Changes in AR transactivity were determined by qPCR.

Results: Mass spectrometry analyses were performed on LNCaP cells to decipher the molecular mechanisms underlying androgen- and antiandrogen-induced alterations in the AR protein. Pathway analysis revealed the enrichment of proteins involved in different pathways that regulate translation. Translational and proteasome inhibitor experiments revealed that these AR protein changes were attributable to modifications in translational activity. Interestingly, the effects on AR protein levels in castration-resistant PCa (CRPC) cells C4-2 or enzalutamide-resistant cells 22Rv1 were less prominent and non-existent. This outcome was similarly observed in the alteration of AR transactivation, which was suppressed in hormone-sensitive prostate cancer (HSPC) LNCaP cells by translational inhibition, akin to the effect of enzalutamide. In contrast, treatment-resistant cell lines showed only a slight change in AR transcription.

Conclusion: This study suggests that in HSPC, AR activation triggers a signalling cascade that increases AR protein levels by enhancing its translation rate, thereby amplifying AR activity. However, this mechanism appears to be dysregulated in castration-resistant PCa cells.

导言:雄激素受体(AR)活性失调是各种疾病,尤其是前列腺癌(PCa)的核心问题,它是肿瘤发生和发展的驱动力。因此,通过抗雄激素拮抗 AR 活性是治疗转移性 PCa 不可或缺的方法。然而,尽管最初肿瘤有所缓解,但仍会出现耐药性。因此,人们对 AR 信号通路进行了深入研究。然而,AR蛋白的稳定性在AR信号传导和耐药性中的作用尚未被揭示。因此,本研究旨在调查AR蛋白变化在转录中的作用,并评估其作为PCa可能靶点的机制:方法:用 R1881、恩扎鲁胺、环己亚胺和 Rocaglamide 处理 LNCaP、C4-2 和 22Rv1 细胞。对 LNCaP 细胞进行质谱分析,以确定处理所富集的通路。对 LNCaP 细胞进行了质谱分析,以确定处理所富集的通路。通过 qPCR 确定 AR 转录活性的变化:对LNCaP细胞进行了质谱分析,以破译雄激素和抗雄激素诱导的AR蛋白变化的分子机制。通路分析表明,参与调节翻译的不同通路的蛋白质富集。翻译和蛋白酶体抑制剂实验显示,这些 AR 蛋白的变化可归因于翻译活性的改变。有趣的是,对阉割耐药 PCa(CRPC)细胞 C4-2 或恩杂鲁胺耐药细胞 22Rv1 中 AR 蛋白水平的影响并不明显,甚至不存在。在激素敏感性前列腺癌(HSPC)LNCaP 细胞中,通过翻译抑制作用抑制了 AR 的转录活化,这与恩杂鲁胺的作用类似。相比之下,耐药细胞系的AR转录仅有轻微变化:这项研究表明,在HSPC中,AR激活会触发一个信号级联,通过提高AR的翻译率来增加AR蛋白水平,从而放大AR的活性。结论:这项研究表明,在HSPC中,AR激活会触发信号级联,通过提高AR的翻译率来增加AR蛋白水平,从而增强AR的活性。
{"title":"The impact of androgen-induced translation in modulating androgen receptor activity.","authors":"Justus S Israel, Laura-Maria Marcelin, Sherif Mehralivand, Jana Scholze, Jörg Hofmann, Matthias B Stope, Martin Puhr, Christian Thomas, Holger H H Erb","doi":"10.1186/s13062-024-00550-6","DOIUrl":"10.1186/s13062-024-00550-6","url":null,"abstract":"<p><strong>Introduction: </strong>Dysregulated androgen receptor (AR) activity is central to various diseases, particularly prostate cancer (PCa), in which it drives tumour initiation and progression. Consequently, antagonising AR activity via anti-androgens is an indispensable treatment option for metastatic PCa. However, despite initial tumour remission, drug resistance occurs. Therefore, the AR signalling pathway has been intensively investigated. However, the role of AR protein stability in AR signalling and therapy resistance has not yet been deciphered. Therefore, this study aimed to investigate the role of AR protein changes in transactivity and assess its mechanism as a possible target in PCa.</p><p><strong>Methods: </strong>LNCaP, C4-2, and 22Rv1 cells were treated with R1881, enzalutamide, cycloheximide, and Rocaglamide. Mass spectrometry analyses were performed on LNCaP cells to identify the pathways enriched by the treatments. Western blotting was performed to investigate AR protein levels and localisation changes. Changes in AR transactivity were determined by qPCR.</p><p><strong>Results: </strong>Mass spectrometry analyses were performed on LNCaP cells to decipher the molecular mechanisms underlying androgen- and antiandrogen-induced alterations in the AR protein. Pathway analysis revealed the enrichment of proteins involved in different pathways that regulate translation. Translational and proteasome inhibitor experiments revealed that these AR protein changes were attributable to modifications in translational activity. Interestingly, the effects on AR protein levels in castration-resistant PCa (CRPC) cells C4-2 or enzalutamide-resistant cells 22Rv1 were less prominent and non-existent. This outcome was similarly observed in the alteration of AR transactivation, which was suppressed in hormone-sensitive prostate cancer (HSPC) LNCaP cells by translational inhibition, akin to the effect of enzalutamide. In contrast, treatment-resistant cell lines showed only a slight change in AR transcription.</p><p><strong>Conclusion: </strong>This study suggests that in HSPC, AR activation triggers a signalling cascade that increases AR protein levels by enhancing its translation rate, thereby amplifying AR activity. However, this mechanism appears to be dysregulated in castration-resistant PCa cells.</p>","PeriodicalId":9164,"journal":{"name":"Biology Direct","volume":"19 1","pages":"111"},"PeriodicalIF":5.7,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11555926/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142614923","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
LncRNA NORFA promotes the synthesis of estradiol and inhibits the apoptosis of sow ovarian granulosa cells through SF-1/CYP11A1 axis. LncRNA NORFA通过SF-1/CYP11A1轴促进雌二醇的合成并抑制母猪卵巢颗粒细胞的凋亡。
IF 5.7 2区 生物学 Q1 BIOLOGY Pub Date : 2024-11-10 DOI: 10.1186/s13062-024-00563-1
Zhennan Guo, Qiang Zeng, Qiqi Li, Baosen Shan, Yangan Huo, Xiaoli Shi, Qifa Li, Xing Du

Background: Biosynthesis of 17β-estradiol (E2) is a crucial ovarian function in mammals, which is essential for follicular development and pregnancy outcome. Exploring the epigenetic regulation of E2 synthesis is beneficial for maintaining ovary health and the optimal reproductive traits. NORFA is the first validated sow fertility-associated long non-coding RNA (lncRNA). However, its role on steroidogenesis is elusive. The aim of this study is to investigate the regulation and underlying mechanism of NORFA to E2 synthesis in sow granulosa cells (GCs).

Results: Through Pearson correlation analysis and comparative detection, we found that NORFA expression was positively correlated with the levels of pregnenolone (PREG) and E2 in follicles, which also exhibited similar alteration patterns during follicular atresia. ELISA was conducted and indicated for the first time that NORFA induced the synthesis of PREG and E2 in sow GCs in a dose- and time-dependent manner. RNA-seq, GSEA and quantitative analyses results validated that CYP11A1, the coding gene of P450SCC which is the first step rate-limiting enzyme of E2 synthesis, was a positive functional target of NORFA. Mechanistically, NORFA promotes SF-1 expression by stabilizing NR5A1 mRNA through directly interacting with its 3'-UTR, and also tethers SF-1 to shuttle into nucleus. Additionally, SF-1 in the nucleus activates CYP11A1 transcription by directly binding to its promoter, which ultimately induces E2 synthesis and inhibits GC apoptosis.

Conclusion: Our findings highlight that NORFA, a multifunctional lncRNA, induces E2 synthesis and inhibits GC apoptosis through the SF-1/CYP11A1 axis in a ceRNA-independent manner, which provide valuable clues and potential targets for follicular atresia inhibition and female fertility improvement.

背景:17β-雌二醇(E2)的生物合成是哺乳动物卵巢的一项重要功能,对卵泡发育和妊娠结果至关重要。探索 E2 合成的表观遗传调控有利于保持卵巢健康和最佳繁殖性状。NORFA 是第一个经过验证的与母猪生育力相关的长非编码 RNA(lncRNA)。然而,它对类固醇生成的作用尚不明确。本研究旨在探讨 NORFA 对母猪颗粒细胞(GCs)中 E2 合成的调控及其内在机制:结果:通过皮尔逊相关分析和比较检测,我们发现NORFA的表达与卵泡中孕烯醇酮(PREG)和E2的水平呈正相关,在卵泡闭锁过程中也表现出相似的变化规律。通过酶联免疫吸附试验(ELISA),我们首次发现 NORFA 能以剂量和时间依赖性的方式诱导母猪 GC 中 PREG 和 E2 的合成。RNA-seq、GSEA和定量分析结果证实,作为E2合成第一步限速酶的P450SCC的编码基因CYP11A1是NORFA的阳性功能靶标。从机理上讲,NORFA通过与其3'-UTR直接作用稳定NR5A1 mRNA,促进SF-1的表达,并拴系SF-1穿梭进入细胞核。此外,细胞核中的 SF-1 通过直接与其启动子结合激活 CYP11A1 的转录,最终诱导 E2 的合成并抑制 GC 的凋亡:我们的研究结果表明,NORFA是一种多功能lncRNA,它通过SF-1/CYP11A1轴以一种与ceRNA无关的方式诱导E2合成和抑制GC凋亡,这为抑制卵泡闭锁和提高女性生育能力提供了有价值的线索和潜在靶点。
{"title":"LncRNA NORFA promotes the synthesis of estradiol and inhibits the apoptosis of sow ovarian granulosa cells through SF-1/CYP11A1 axis.","authors":"Zhennan Guo, Qiang Zeng, Qiqi Li, Baosen Shan, Yangan Huo, Xiaoli Shi, Qifa Li, Xing Du","doi":"10.1186/s13062-024-00563-1","DOIUrl":"10.1186/s13062-024-00563-1","url":null,"abstract":"<p><strong>Background: </strong>Biosynthesis of 17β-estradiol (E2) is a crucial ovarian function in mammals, which is essential for follicular development and pregnancy outcome. Exploring the epigenetic regulation of E2 synthesis is beneficial for maintaining ovary health and the optimal reproductive traits. NORFA is the first validated sow fertility-associated long non-coding RNA (lncRNA). However, its role on steroidogenesis is elusive. The aim of this study is to investigate the regulation and underlying mechanism of NORFA to E2 synthesis in sow granulosa cells (GCs).</p><p><strong>Results: </strong>Through Pearson correlation analysis and comparative detection, we found that NORFA expression was positively correlated with the levels of pregnenolone (PREG) and E2 in follicles, which also exhibited similar alteration patterns during follicular atresia. ELISA was conducted and indicated for the first time that NORFA induced the synthesis of PREG and E2 in sow GCs in a dose- and time-dependent manner. RNA-seq, GSEA and quantitative analyses results validated that CYP11A1, the coding gene of P450SCC which is the first step rate-limiting enzyme of E2 synthesis, was a positive functional target of NORFA. Mechanistically, NORFA promotes SF-1 expression by stabilizing NR5A1 mRNA through directly interacting with its 3'-UTR, and also tethers SF-1 to shuttle into nucleus. Additionally, SF-1 in the nucleus activates CYP11A1 transcription by directly binding to its promoter, which ultimately induces E2 synthesis and inhibits GC apoptosis.</p><p><strong>Conclusion: </strong>Our findings highlight that NORFA, a multifunctional lncRNA, induces E2 synthesis and inhibits GC apoptosis through the SF-1/CYP11A1 axis in a ceRNA-independent manner, which provide valuable clues and potential targets for follicular atresia inhibition and female fertility improvement.</p>","PeriodicalId":9164,"journal":{"name":"Biology Direct","volume":"19 1","pages":"107"},"PeriodicalIF":5.7,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11552157/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142614850","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
TRIM47 drives gastric cancer cell proliferation and invasion by regulating CYLD protein stability. TRIM47通过调节CYLD蛋白的稳定性来驱动胃癌细胞的增殖和侵袭。
IF 5.7 2区 生物学 Q1 BIOLOGY Pub Date : 2024-11-08 DOI: 10.1186/s13062-024-00555-1
Jianguo Wang, Jing Ye, Rongqiang Liu, Chen Chen, Weixing Wang

The expression of TRIM47, a member of the TRIM protein and E3 ubiquitin ligase families, is elevated in various cancers, such as non-small cell lung cancer and colorectal cancer, and is linked to poor prognosis. This study aimed to investigate the role of TRIM47 in gastric cancer development. Using The Cancer Genome Atlas-Stomach Adenocarcinoma (TCGA-STAD) dataset and analysis of 20 patient samples from our center, TRIM47 was found to be significantly up-regulated in gastric cancer tissues and associated with advanced N-stage and poor prognosis. We constructed stable TRIM47 knockdown and overexpressing gastric cancer cell lines. CCK8, EDU, colony formation, wound healing, and Transwell tests were used to evaluate the effects on cell proliferation, invasion, and migration. The results showed that TRIM47 knockdown inhibited the proliferation, migration and invasion of gastric cancer cells, while TRIM47 overexpression promoted these behaviors. These results were further confirmed in vivo. In the mechanism part, we found that TRIM47 interacts with CYLD protein. Moreover, TRIM47 promotes K48-linked ubiquitination, leading to the degradation of CYLD by the proteasome, thereby activating the NF-κB pathway and regulating the biological behavior of gastric cancer cells. Taken together, our study demonstrated that TRIM47 is involved in the proliferation and metastasis of gastric cancer through the CYLD/NF-κB pathway.

TRIM47是TRIM蛋白和E3泛素连接酶家族的成员,在多种癌症(如非小细胞肺癌和结直肠癌)中表达升高,并与预后不良有关。本研究旨在探讨TRIM47在胃癌发展中的作用。利用癌症基因组图谱-胃腺癌(TCGA-STAD)数据集和对本中心20例患者样本的分析,发现TRIM47在胃癌组织中显著上调,并与晚期N期和预后不良相关。我们构建了稳定的 TRIM47 敲除和过表达胃癌细胞系。采用CCK8、EDU、菌落形成、伤口愈合和Transwell试验评估其对细胞增殖、侵袭和迁移的影响。结果表明,TRIM47敲除抑制了胃癌细胞的增殖、迁移和侵袭,而TRIM47过表达则促进了这些行为。这些结果在体内得到了进一步证实。在机制部分,我们发现TRIM47与CYLD蛋白相互作用。此外,TRIM47 促进 K48 链接的泛素化,导致 CYLD 被蛋白酶体降解,从而激活 NF-κB 通路并调节胃癌细胞的生物学行为。综上所述,我们的研究表明,TRIM47通过CYLD/NF-κB途径参与胃癌的增殖和转移。
{"title":"TRIM47 drives gastric cancer cell proliferation and invasion by regulating CYLD protein stability.","authors":"Jianguo Wang, Jing Ye, Rongqiang Liu, Chen Chen, Weixing Wang","doi":"10.1186/s13062-024-00555-1","DOIUrl":"10.1186/s13062-024-00555-1","url":null,"abstract":"<p><p>The expression of TRIM47, a member of the TRIM protein and E3 ubiquitin ligase families, is elevated in various cancers, such as non-small cell lung cancer and colorectal cancer, and is linked to poor prognosis. This study aimed to investigate the role of TRIM47 in gastric cancer development. Using The Cancer Genome Atlas-Stomach Adenocarcinoma (TCGA-STAD) dataset and analysis of 20 patient samples from our center, TRIM47 was found to be significantly up-regulated in gastric cancer tissues and associated with advanced N-stage and poor prognosis. We constructed stable TRIM47 knockdown and overexpressing gastric cancer cell lines. CCK8, EDU, colony formation, wound healing, and Transwell tests were used to evaluate the effects on cell proliferation, invasion, and migration. The results showed that TRIM47 knockdown inhibited the proliferation, migration and invasion of gastric cancer cells, while TRIM47 overexpression promoted these behaviors. These results were further confirmed in vivo. In the mechanism part, we found that TRIM47 interacts with CYLD protein. Moreover, TRIM47 promotes K48-linked ubiquitination, leading to the degradation of CYLD by the proteasome, thereby activating the NF-κB pathway and regulating the biological behavior of gastric cancer cells. Taken together, our study demonstrated that TRIM47 is involved in the proliferation and metastasis of gastric cancer through the CYLD/NF-κB pathway.</p>","PeriodicalId":9164,"journal":{"name":"Biology Direct","volume":"19 1","pages":"106"},"PeriodicalIF":5.7,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11546413/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142614859","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
N6-methyladenosine regulators in hepatocellular carcinoma: investigating the precise definition and clinical applications of biomarkers. 肝细胞癌中的 N6-甲基腺苷调节剂:研究生物标记物的精确定义和临床应用。
IF 8.3 2区 生物学 Q1 BIOLOGY Pub Date : 2024-11-07 DOI: 10.1186/s13062-024-00554-2
Xiaokai Yan, Yao Qi, Xinyue Yao, Lulu Yin, Hao Wang, Ji Fu, Guo Wan, Yanqun Gao, Nanjing Zhou, Xinxin Ye, Xiao Liu, Xing Chen

Background: Accurately identifying effective biomarkers and translating them into clinical practice have significant implications for improving clinical outcomes in hepatocellular carcinoma (HCC). In this study, our objective is to explore appropriate methods to improve the accuracy of biomarker identification and investigate their clinical value.

Methods: Concentrating on the N6-methyladenosine (m6A) modification regulators, we utilized dozens of multi-omics HCC datasets to analyze the expression patterns and genetic features of m6A regulators. Through the integration of big data analysis with function experiments, we have redefined the biological roles of m6A regulators in HCC. Based on the key regulators, we constructed m6A risk models and explored their clinical value in estimating prognosis and guiding personalized therapy for HCC.

Results: Most m6A regulators exhibit abnormal expression in HCC, and their expression is influenced by copy number variations (CNV) and DNA methylation. Large-scale data analysis has revealed the biological roles of many key m6A regulators, and these findings are well consistent with experimental results. The m6A risk models offer significant prognostic value. Moreover, they assist in reassessing the therapeutic potential of drugs such as sorafenib, gemcitabine, CTLA4 and PD1 blockers in HCC.

Conclusions: Our findings suggest that the mutual validation of big data analysis and functional experiments may facilitate the precise identification and definition of biomarkers, and our m6A risk models may have the potential to guide personalized chemotherapy, targeted treatment, and immunotherapy decisions in HCC.

背景:准确鉴定有效的生物标志物并将其转化为临床实践对改善肝细胞癌(HCC)的临床预后具有重要意义。在本研究中,我们的目标是探索提高生物标志物鉴定准确性的适当方法,并研究其临床价值:方法:我们以N6-甲基腺苷(m6A)修饰调节因子为研究对象,利用数十个多组学HCC数据集分析了m6A调节因子的表达模式和遗传特征。通过将大数据分析与功能实验相结合,我们重新定义了 m6A 调控因子在 HCC 中的生物学作用。基于关键调控因子,我们构建了m6A风险模型,并探讨了其在估计HCC预后和指导个性化治疗方面的临床价值:结果:大多数 m6A 调控因子在 HCC 中表现出异常表达,其表达受拷贝数变异(CNV)和 DNA 甲基化的影响。大规模数据分析揭示了许多关键 m6A 调节因子的生物学作用,这些发现与实验结果完全一致。m6A 风险模型具有重要的预后价值。此外,它们还有助于重新评估索拉非尼、吉西他滨、CTLA4 和 PD1 阻断剂等药物在 HCC 中的治疗潜力:我们的研究结果表明,大数据分析和功能实验的相互验证可促进生物标志物的精确识别和定义,我们的 m6A 风险模型可能具有指导 HCC 中个性化化疗、靶向治疗和免疫治疗决策的潜力。
{"title":"N6-methyladenosine regulators in hepatocellular carcinoma: investigating the precise definition and clinical applications of biomarkers.","authors":"Xiaokai Yan, Yao Qi, Xinyue Yao, Lulu Yin, Hao Wang, Ji Fu, Guo Wan, Yanqun Gao, Nanjing Zhou, Xinxin Ye, Xiao Liu, Xing Chen","doi":"10.1186/s13062-024-00554-2","DOIUrl":"10.1186/s13062-024-00554-2","url":null,"abstract":"<p><strong>Background: </strong>Accurately identifying effective biomarkers and translating them into clinical practice have significant implications for improving clinical outcomes in hepatocellular carcinoma (HCC). In this study, our objective is to explore appropriate methods to improve the accuracy of biomarker identification and investigate their clinical value.</p><p><strong>Methods: </strong>Concentrating on the N6-methyladenosine (m6A) modification regulators, we utilized dozens of multi-omics HCC datasets to analyze the expression patterns and genetic features of m6A regulators. Through the integration of big data analysis with function experiments, we have redefined the biological roles of m6A regulators in HCC. Based on the key regulators, we constructed m6A risk models and explored their clinical value in estimating prognosis and guiding personalized therapy for HCC.</p><p><strong>Results: </strong>Most m6A regulators exhibit abnormal expression in HCC, and their expression is influenced by copy number variations (CNV) and DNA methylation. Large-scale data analysis has revealed the biological roles of many key m6A regulators, and these findings are well consistent with experimental results. The m6A risk models offer significant prognostic value. Moreover, they assist in reassessing the therapeutic potential of drugs such as sorafenib, gemcitabine, CTLA4 and PD1 blockers in HCC.</p><p><strong>Conclusions: </strong>Our findings suggest that the mutual validation of big data analysis and functional experiments may facilitate the precise identification and definition of biomarkers, and our m6A risk models may have the potential to guide personalized chemotherapy, targeted treatment, and immunotherapy decisions in HCC.</p>","PeriodicalId":9164,"journal":{"name":"Biology Direct","volume":"19 1","pages":"103"},"PeriodicalIF":8.3,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11542411/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142602988","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ALKBH5 activates CEP55 transcription through m6A demethylation in FOXP2 mRNA and expedites cell cycle entry and EMT in ovarian cancer. ALKBH5 通过 FOXP2 mRNA 中的 m6A 去甲基化激活 CEP55 的转录,并加速卵巢癌的细胞周期进入和 EMT。
IF 8.3 2区 生物学 Q1 BIOLOGY Pub Date : 2024-11-07 DOI: 10.1186/s13062-024-00551-5
Junhui Yu, Xing Chen, Xiaoxiao Ding, Kang Lin, Tianxin Zhang, Kai Wang

Background: Centrosomal protein of 55 kDa (CEP55) overexpression has been linked to tumor stage, aggressiveness of the tumor, poor prognosis, and metastasis. This study aims to elucidate the action of CEP55 in ovarian cancer (OC) and the regulation by the alpha-ketoglutarate-dependent dioxygenase alkB homolog 5 (ALKBH5)/Forkhead box protein P2 (FOXP2) axis.

Methods: Differentially expressed genes in OC were identified using in silico identification, followed by prognostic value assessment. Lentiviral vectors were constructed to downregulate CEP55 in OC cells, and colony formation, EdU, TUNEL, flow cytometry, Transwell assays, and Phalloidin staining were conducted. Transcription factors regulating CEP55 were predicted and verified, and rescue experiments were performed. The effect of ALKBH5-mediated demethylation on FOXP2 mRNA stability and OC cell cycle and EMT were analyzed.

Results: High expression of CEP55 in OC was linked to unsatisfactory prognosis of patients. Knockdown of CEP55 repressed proliferation, invasiveness, and epithelial-mesenchymal transition (EMT) while inducing apoptosis and cell cycle arrest in OC cells. FOXP2 bound to the promoter of CEP55 to repress CEP55 transcription. FOXP2 regulated transcriptional repression of CEP55 to impede the malignant progression of OC and inhibit tumor metastasis. ALKBH5-mediated demethylation modification induced mRNA degradation of FOXP2. Knockdown of ALKBH5 induced cell cycle arrest and inhibited EMT in OC cells.

Conclusions: ALKBH5 hinders FOXP2-mediated transcriptional repression of CEP55 to promote the malignant progression of OC via cell cycle and EMT.

背景:55 kDa中心体蛋白(CEP55)过表达与肿瘤分期、肿瘤侵袭性、预后不良和转移有关。本研究旨在阐明 CEP55 在卵巢癌(OC)中的作用以及α-酮戊二酸依赖性二氧合酶 alkB 同源物 5(ALKBH5)/叉头盒蛋白 P2(FOXP2)轴的调控作用:方法:采用硅学识别方法确定OC中的差异表达基因,然后进行预后价值评估。构建慢病毒载体以下调 OC 细胞中的 CEP55,并进行集落形成、EdU、TUNEL、流式细胞术、Transwell 试验和类磷脂染色。预测并验证了调控 CEP55 的转录因子,并进行了挽救实验。分析了ALKBH5介导的去甲基化对FOXP2 mRNA稳定性、OC细胞周期和EMT的影响:结果:CEP55在OC中的高表达与患者不理想的预后有关。敲除CEP55可抑制OC细胞的增殖、侵袭性和上皮-间质转化(EMT),同时诱导细胞凋亡和细胞周期停滞。FOXP2 与 CEP55 启动子结合,抑制 CEP55 的转录。FOXP2调节CEP55的转录抑制,从而阻碍OC的恶性进展并抑制肿瘤转移。ALKBH5 介导的去甲基化修饰诱导 FOXP2 的 mRNA 降解。敲除ALKBH5可诱导细胞周期停滞并抑制OC细胞的EMT:结论:ALKBH5阻碍了FOXP2介导的CEP55转录抑制,通过细胞周期和EMT促进了OC的恶性进展。
{"title":"ALKBH5 activates CEP55 transcription through m6A demethylation in FOXP2 mRNA and expedites cell cycle entry and EMT in ovarian cancer.","authors":"Junhui Yu, Xing Chen, Xiaoxiao Ding, Kang Lin, Tianxin Zhang, Kai Wang","doi":"10.1186/s13062-024-00551-5","DOIUrl":"10.1186/s13062-024-00551-5","url":null,"abstract":"<p><strong>Background: </strong>Centrosomal protein of 55 kDa (CEP55) overexpression has been linked to tumor stage, aggressiveness of the tumor, poor prognosis, and metastasis. This study aims to elucidate the action of CEP55 in ovarian cancer (OC) and the regulation by the alpha-ketoglutarate-dependent dioxygenase alkB homolog 5 (ALKBH5)/Forkhead box protein P2 (FOXP2) axis.</p><p><strong>Methods: </strong>Differentially expressed genes in OC were identified using in silico identification, followed by prognostic value assessment. Lentiviral vectors were constructed to downregulate CEP55 in OC cells, and colony formation, EdU, TUNEL, flow cytometry, Transwell assays, and Phalloidin staining were conducted. Transcription factors regulating CEP55 were predicted and verified, and rescue experiments were performed. The effect of ALKBH5-mediated demethylation on FOXP2 mRNA stability and OC cell cycle and EMT were analyzed.</p><p><strong>Results: </strong>High expression of CEP55 in OC was linked to unsatisfactory prognosis of patients. Knockdown of CEP55 repressed proliferation, invasiveness, and epithelial-mesenchymal transition (EMT) while inducing apoptosis and cell cycle arrest in OC cells. FOXP2 bound to the promoter of CEP55 to repress CEP55 transcription. FOXP2 regulated transcriptional repression of CEP55 to impede the malignant progression of OC and inhibit tumor metastasis. ALKBH5-mediated demethylation modification induced mRNA degradation of FOXP2. Knockdown of ALKBH5 induced cell cycle arrest and inhibited EMT in OC cells.</p><p><strong>Conclusions: </strong>ALKBH5 hinders FOXP2-mediated transcriptional repression of CEP55 to promote the malignant progression of OC via cell cycle and EMT.</p>","PeriodicalId":9164,"journal":{"name":"Biology Direct","volume":"19 1","pages":"105"},"PeriodicalIF":8.3,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11546498/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142603021","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
FXR1 associates with and degrades PDZK1IP1 and ATOH8 mRNAs and promotes esophageal cancer progression. FXR1 与 PDZK1IP1 和 ATOH8 mRNA 结合并降解,促进食管癌的进展。
IF 8.3 2区 生物学 Q1 BIOLOGY Pub Date : 2024-11-07 DOI: 10.1186/s13062-024-00553-3
Faiz Ali Khan, Dalia Fouad, Farid S Ataya, Na Fang, Jingcheng Dong, Shaoping Ji

Background: The growing body of evidence suggests that RNA-binding proteins (RBPs) have an important function in cancer biology. This research characterizes the expression status of fragile X-related protein 1 (FXR1) in esophageal cancer (ESCA) cell lines and understands its mechanistic importance in ESCA tumor biology.

Methods: The role of FXR1, PDZK1IP1, and ATOH8 in the malignant biological behaviors of ESCA cells was investigated using in-vitro and in-vivo experiments.

Results: FXR1 was aberrantly overexpressed at both the transcript and protein levels in ESCA cells. Deficiency of FXR1 in ESCA cells was associated with decreased cell proliferation, viability and compromised cell migration compared to the control group. In addition, the inhibition of FXR1 leads to the promotion of apoptosis and cell cycle arrest in ESCA cells. Furthermore, FXR1 knockdown stabilizes senescence markers, promoting cellular senescence and decreasing cancer growth. Mechanistically, FXR1 negatively regulated PDZK1IP1 or ATOH8 transcripts by promoting mRNA degradation via direct interaction with its 3'UTR. PDZK1IP1 or ATOH8 overexpression predominantly inhibited the tumor-promotive phenotype in FXR1-overexpressed cells. Furthermore, FXR1 inhibition and PDZK1IP1 or ATOH8 overexpression in combination with FXR1-overexpressed cells significantly decreased xenograft tumor formation and enhanced nude mouse survival without causing apparent toxicity (P < 0.01). In the FXR1 knockdown group, the tumor weight of mice decreased by 80% compared to the control group (p < 0.01).

Conclusions: Our results demonstrate FXR1's oncogenic involvement in ESCA cell lines, suggesting that FXR1 may be implicated in ESCA development by regulating the stability of PDZK1IP1 and ATOH8 mRNAs. For the first time, our findings emphasize the importance of FXR1-PDZK1IP1 and -ATOH8 functional modules in the development of ESCA, which might have potential diagnostic or therapeutic implications.

背景:越来越多的证据表明,RNA结合蛋白(RBPs)在癌症生物学中具有重要功能。本研究描述了脆性X相关蛋白1(FXR1)在食管癌细胞系中的表达状况,并了解其在食管癌肿瘤生物学中的重要机制:方法:采用体外和体内实验研究了FXR1、PDZK1IP1和ATOH8在ESCA细胞恶性生物学行为中的作用:结果:FXR1在ESCA细胞中的转录本和蛋白水平均异常过表达。与对照组相比,ESCA 细胞中 FXR1 的缺乏与细胞增殖、活力和细胞迁移能力下降有关。此外,抑制 FXR1 会促进 ESCA 细胞的凋亡和细胞周期停滞。此外,敲除 FXR1 还能稳定衰老标志物,促进细胞衰老并降低癌症生长。从机理上讲,FXR1通过与其3'UTR直接相互作用促进mRNA降解,从而负向调节PDZK1IP1或ATOH8转录本。PDZK1IP1或ATOH8的过表达主要抑制了FXR1过表达细胞的肿瘤促进表型。此外,FXR1抑制和PDZK1IP1或ATOH8过表达与FXR1-erexpressed细胞联合使用可显著减少异种移植肿瘤的形成,并提高裸鼠存活率,而不会引起明显的毒性(P 结论):我们的研究结果表明,FXR1参与了ESCA细胞系的致癌过程,这表明FXR1可能通过调节PDZK1IP1和ATOH8 mRNA的稳定性参与了ESCA的发生发展。我们的研究结果首次强调了 FXR1-PDZK1IP1 和 ATOH8 功能模块在 ESCA 发病过程中的重要性,这可能具有潜在的诊断或治疗意义。
{"title":"FXR1 associates with and degrades PDZK1IP1 and ATOH8 mRNAs and promotes esophageal cancer progression.","authors":"Faiz Ali Khan, Dalia Fouad, Farid S Ataya, Na Fang, Jingcheng Dong, Shaoping Ji","doi":"10.1186/s13062-024-00553-3","DOIUrl":"10.1186/s13062-024-00553-3","url":null,"abstract":"<p><strong>Background: </strong>The growing body of evidence suggests that RNA-binding proteins (RBPs) have an important function in cancer biology. This research characterizes the expression status of fragile X-related protein 1 (FXR1) in esophageal cancer (ESCA) cell lines and understands its mechanistic importance in ESCA tumor biology.</p><p><strong>Methods: </strong>The role of FXR1, PDZK1IP1, and ATOH8 in the malignant biological behaviors of ESCA cells was investigated using in-vitro and in-vivo experiments.</p><p><strong>Results: </strong>FXR1 was aberrantly overexpressed at both the transcript and protein levels in ESCA cells. Deficiency of FXR1 in ESCA cells was associated with decreased cell proliferation, viability and compromised cell migration compared to the control group. In addition, the inhibition of FXR1 leads to the promotion of apoptosis and cell cycle arrest in ESCA cells. Furthermore, FXR1 knockdown stabilizes senescence markers, promoting cellular senescence and decreasing cancer growth. Mechanistically, FXR1 negatively regulated PDZK1IP1 or ATOH8 transcripts by promoting mRNA degradation via direct interaction with its 3'UTR. PDZK1IP1 or ATOH8 overexpression predominantly inhibited the tumor-promotive phenotype in FXR1-overexpressed cells. Furthermore, FXR1 inhibition and PDZK1IP1 or ATOH8 overexpression in combination with FXR1-overexpressed cells significantly decreased xenograft tumor formation and enhanced nude mouse survival without causing apparent toxicity (P < 0.01). In the FXR1 knockdown group, the tumor weight of mice decreased by 80% compared to the control group (p < 0.01).</p><p><strong>Conclusions: </strong>Our results demonstrate FXR1's oncogenic involvement in ESCA cell lines, suggesting that FXR1 may be implicated in ESCA development by regulating the stability of PDZK1IP1 and ATOH8 mRNAs. For the first time, our findings emphasize the importance of FXR1-PDZK1IP1 and -ATOH8 functional modules in the development of ESCA, which might have potential diagnostic or therapeutic implications.</p>","PeriodicalId":9164,"journal":{"name":"Biology Direct","volume":"19 1","pages":"104"},"PeriodicalIF":8.3,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11542266/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142602986","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
RNF19A inhibits bladder cancer progression by regulating ILK ubiquitination and inactivating the AKT/mTOR signalling pathway. RNF19A 通过调节 ILK 泛素化和使 AKT/mTOR 信号通路失活来抑制膀胱癌的进展。
IF 5.7 2区 生物学 Q1 BIOLOGY Pub Date : 2024-11-06 DOI: 10.1186/s13062-024-00562-2
Hao Deng, Guanghai Ji, Jun Ma, Jun Cai, Shaoping Cheng, Fan Cheng

Background: The role of the RING finger protein superfamily in carcinogenesis has been widely studied, but one member of this family, RNF19A, has not yet been thoroughly explored in bladder cancer (BCa).

Methods: The expression levels of RNF19A in BCa samples and cell lines were analysed through data mining of public resources and further experiments. BCa cells in which RNF19A was stably overexpressed or knocked down were generated through lentivirus infection. The effects of RNF19A on cell proliferation, migration, and invasion were explored by performing a series of in vitro experiments, including CCK-8, colony formation, wound healing, and Transwell invasion assays. Using bioinformatics methods and multiple experiments, including western blot, qRT‒PCR, immunoprecipitation, cycloheximide, ubiquitination, and rescue assays, the mechanism underlying the effect of RNF19A on the progression of BCa was investigated.

Results: Here, we found that RNF19A expression was reduced in BCa samples and cell lines and that lower RNF19A expression predicted shorter overall survival of BCa patients. Functionally, forced expression of RNF19A suppressed BCa cell proliferation, migration, and invasion by inactivating the AKT/mTOR signalling pathway, whereas silencing RNF19A had the opposite effects. Mechanistically, RNF19A could directly interact with ILK and promote its ubiquitination and degradation. Rescue experiments revealed that forced ILK expression partially rescued the decreased phosphorylation of AKT, mTOR, and S6K1 caused by RNF19A overexpression and that the increased levels of the p-AKT, p-mTOR, and p-S6K1 proteins induced by RNF19A knockdown were eliminated after silencing ILK. Similarly, the effects of RNF19A overexpression or knockdown on the phenotypes of cell proliferation, migration, and invasion could also be restored by forced or decreased ILK expression.

Conclusions: RNF19A suppressed the proliferation, migration, and invasion abilities of BCa cells by regulating ILK ubiquitination and inactivating the AKT/mTOR signalling pathway. RNF19A might be a potential prognostic biomarker and promising therapeutic target for BCa.

背景:RING 手指蛋白超家族在致癌过程中的作用已被广泛研究:RING 手指蛋白超家族在致癌过程中的作用已被广泛研究,但该家族的一个成员 RNF19A 在膀胱癌(BCa)中的作用尚未得到深入探讨:方法:通过对公共资源的数据挖掘和进一步实验,分析了 RNF19A 在 BCa 样本和细胞系中的表达水平。通过慢病毒感染生成稳定过表达或敲除 RNF19A 的 BCa 细胞。通过一系列体外实验,包括CCK-8、集落形成、伤口愈合和Transwell侵袭实验,探讨了RNF19A对细胞增殖、迁移和侵袭的影响。利用生物信息学方法和多种实验,包括 Western 印迹、qRT-PCR、免疫沉淀、环己亚胺、泛素化和拯救实验,研究了 RNF19A 对 BCa 进展的影响机制:结果:我们发现,RNF19A在BCa样本和细胞系中的表达减少,RNF19A的低表达预示着BCa患者的总生存期缩短。在功能上,强制表达 RNF19A 可通过使 AKT/mTOR 信号通路失活来抑制 BCa 细胞的增殖、迁移和侵袭,而沉默 RNF19A 则会产生相反的效果。从机制上讲,RNF19A可直接与ILK相互作用,促进其泛素化和降解。挽救实验显示,强制表达ILK可部分挽救RNF19A过表达引起的AKT、mTOR和S6K1磷酸化水平的降低,而沉默ILK后,RNF19A敲除引起的p-AKT、p-mTOR和p-S6K1蛋白水平的升高也被消除。同样,RNF19A过表达或敲除对细胞增殖、迁移和侵袭表型的影响也可以通过强制或减少ILK的表达来恢复:结论:RNF19A通过调节ILK泛素化和AKT/mTOR信号通路失活,抑制了BCa细胞的增殖、迁移和侵袭能力。RNF19A可能是BCa潜在的预后生物标志物和治疗靶点。
{"title":"RNF19A inhibits bladder cancer progression by regulating ILK ubiquitination and inactivating the AKT/mTOR signalling pathway.","authors":"Hao Deng, Guanghai Ji, Jun Ma, Jun Cai, Shaoping Cheng, Fan Cheng","doi":"10.1186/s13062-024-00562-2","DOIUrl":"10.1186/s13062-024-00562-2","url":null,"abstract":"<p><strong>Background: </strong>The role of the RING finger protein superfamily in carcinogenesis has been widely studied, but one member of this family, RNF19A, has not yet been thoroughly explored in bladder cancer (BCa).</p><p><strong>Methods: </strong>The expression levels of RNF19A in BCa samples and cell lines were analysed through data mining of public resources and further experiments. BCa cells in which RNF19A was stably overexpressed or knocked down were generated through lentivirus infection. The effects of RNF19A on cell proliferation, migration, and invasion were explored by performing a series of in vitro experiments, including CCK-8, colony formation, wound healing, and Transwell invasion assays. Using bioinformatics methods and multiple experiments, including western blot, qRT‒PCR, immunoprecipitation, cycloheximide, ubiquitination, and rescue assays, the mechanism underlying the effect of RNF19A on the progression of BCa was investigated.</p><p><strong>Results: </strong>Here, we found that RNF19A expression was reduced in BCa samples and cell lines and that lower RNF19A expression predicted shorter overall survival of BCa patients. Functionally, forced expression of RNF19A suppressed BCa cell proliferation, migration, and invasion by inactivating the AKT/mTOR signalling pathway, whereas silencing RNF19A had the opposite effects. Mechanistically, RNF19A could directly interact with ILK and promote its ubiquitination and degradation. Rescue experiments revealed that forced ILK expression partially rescued the decreased phosphorylation of AKT, mTOR, and S6K1 caused by RNF19A overexpression and that the increased levels of the p-AKT, p-mTOR, and p-S6K1 proteins induced by RNF19A knockdown were eliminated after silencing ILK. Similarly, the effects of RNF19A overexpression or knockdown on the phenotypes of cell proliferation, migration, and invasion could also be restored by forced or decreased ILK expression.</p><p><strong>Conclusions: </strong>RNF19A suppressed the proliferation, migration, and invasion abilities of BCa cells by regulating ILK ubiquitination and inactivating the AKT/mTOR signalling pathway. RNF19A might be a potential prognostic biomarker and promising therapeutic target for BCa.</p>","PeriodicalId":9164,"journal":{"name":"Biology Direct","volume":"19 1","pages":"102"},"PeriodicalIF":5.7,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11539788/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142589501","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Discovery of potential natural therapeutics targeting cell wall biosynthesis in multidrug-resistant Enterococcus faecalis: a computational perspective. 发现针对耐多药粪肠球菌细胞壁生物合成的潜在天然疗法:一种计算视角。
IF 5.7 2区 生物学 Q1 BIOLOGY Pub Date : 2024-11-05 DOI: 10.1186/s13062-024-00538-2
Km Rakhi, Monika Jain, Amit Kumar Singh, Mohd Sajid Ali, Hamad A Al-Lohedan, Jayaraman Muthukumaran

Background: Identifying therapeutic inhibitors of crucial enzymes involved in the peptidoglycan biosynthesis pathway is pivotal for developing new treatments against multidrug-resistant Enterococcus faecalis V583. MurM, an essential enzyme in this pathway, plays a significant role in the bacterium's cell wall synthesis, making it an attractive druggable target for novel antimicrobial strategies. This study explored the potential of natural compounds as inhibitors of MurM, aiming to discover promising drug candidates that could serve as the foundation for future therapeutic development.

Methods: The three-dimensional structure of MurM was predicted, optimized, and its binding pocket was analyzed by comparing it with related structures. Over 4,70,000 natural compounds from the COCONUT database were subjected to virtual high-throughput screening (vHTS). The top lead candidates were selected based on their Lipinski's profile, ADME profile, toxicity profile, estimated binding free energy (ΔG) and estimated inhibition constant (Ki). Interaction pattern analysis was used to evaluate the non-covalent interactions between the inhibitors and key residues in MurM's binding pocket. Molecular dynamics simulations were performed over 300 ns to assess the structural stability and impact of these inhibitors on MurM's enzyme.

Results: Three lead compounds-CNP0056520, CNP0126952, and CNP0248480-were identified and prioritized with estimated ΔG ranging from - 9.35 to -7.9 kcal/mol. Molecular dynamics simulations revealed minimal impact on MurM's overall structure and dynamics, with the candidate inhibitors forming stable protein-ligand complexes. These interactions were supported by several non-covalent interactions between the candidate inhibitors and key residues within MurM's binding pocket.

Conclusion: These findings suggest that the identified natural product candidates could serve as promising inhibitors of MurM, potentially leading to novel therapeutics targeting cell wall biosynthesis in multidrug-resistant E. faecalis.

背景:确定参与肽聚糖生物合成途径的关键酶的治疗抑制剂对于开发针对耐多药粪肠球菌 V583 的新疗法至关重要。MurM 是这一途径中的一个重要酶,在该细菌的细胞壁合成过程中发挥着重要作用,因此成为新型抗菌策略的一个有吸引力的药物靶点。本研究探索了天然化合物作为 MurM 抑制剂的潜力,旨在发现有潜力的候选药物,为未来的治疗开发奠定基础:方法:对 MurM 的三维结构进行了预测和优化,并通过与相关结构的比较分析了其结合口袋。对 COCONUT 数据库中的 470,000 多种天然化合物进行了虚拟高通量筛选(vHTS)。根据它们的利宾斯基特征、ADME特征、毒性特征、估计的结合自由能(ΔG)和估计的抑制常数(Ki),筛选出了最重要的候选先导化合物。相互作用模式分析用于评估抑制剂与 MurM 结合袋中关键残基之间的非共价相互作用。进行了 300 ns 的分子动力学模拟,以评估这些抑制剂的结构稳定性及其对 MurM 酶的影响:结果:确定了三个先导化合物-CNP0056520、CNP0126952 和 CNP0248480,并将其列为优先化合物,其估计 ΔG 范围为 - 9.35 至 - 7.9 kcal/mol。分子动力学模拟显示,候选抑制剂对 MurM 的整体结构和动力学影响极小,能形成稳定的蛋白质配体复合物。候选抑制剂与 MurM 结合口袋中的关键残基之间的几种非共价相互作用支持了这些相互作用:这些研究结果表明,已确定的候选天然产物可作为 MurM 的有效抑制剂,从而有可能开发出针对耐多药粪肠球菌细胞壁生物合成的新型疗法。
{"title":"Discovery of potential natural therapeutics targeting cell wall biosynthesis in multidrug-resistant Enterococcus faecalis: a computational perspective.","authors":"Km Rakhi, Monika Jain, Amit Kumar Singh, Mohd Sajid Ali, Hamad A Al-Lohedan, Jayaraman Muthukumaran","doi":"10.1186/s13062-024-00538-2","DOIUrl":"10.1186/s13062-024-00538-2","url":null,"abstract":"<p><strong>Background: </strong>Identifying therapeutic inhibitors of crucial enzymes involved in the peptidoglycan biosynthesis pathway is pivotal for developing new treatments against multidrug-resistant Enterococcus faecalis V583. MurM, an essential enzyme in this pathway, plays a significant role in the bacterium's cell wall synthesis, making it an attractive druggable target for novel antimicrobial strategies. This study explored the potential of natural compounds as inhibitors of MurM, aiming to discover promising drug candidates that could serve as the foundation for future therapeutic development.</p><p><strong>Methods: </strong>The three-dimensional structure of MurM was predicted, optimized, and its binding pocket was analyzed by comparing it with related structures. Over 4,70,000 natural compounds from the COCONUT database were subjected to virtual high-throughput screening (vHTS). The top lead candidates were selected based on their Lipinski's profile, ADME profile, toxicity profile, estimated binding free energy (ΔG) and estimated inhibition constant (Ki). Interaction pattern analysis was used to evaluate the non-covalent interactions between the inhibitors and key residues in MurM's binding pocket. Molecular dynamics simulations were performed over 300 ns to assess the structural stability and impact of these inhibitors on MurM's enzyme.</p><p><strong>Results: </strong>Three lead compounds-CNP0056520, CNP0126952, and CNP0248480-were identified and prioritized with estimated ΔG ranging from - 9.35 to -7.9 kcal/mol. Molecular dynamics simulations revealed minimal impact on MurM's overall structure and dynamics, with the candidate inhibitors forming stable protein-ligand complexes. These interactions were supported by several non-covalent interactions between the candidate inhibitors and key residues within MurM's binding pocket.</p><p><strong>Conclusion: </strong>These findings suggest that the identified natural product candidates could serve as promising inhibitors of MurM, potentially leading to novel therapeutics targeting cell wall biosynthesis in multidrug-resistant E. faecalis.</p>","PeriodicalId":9164,"journal":{"name":"Biology Direct","volume":"19 1","pages":"101"},"PeriodicalIF":5.7,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11536910/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142581283","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Biology Direct
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1