Pub Date : 2024-07-20DOI: 10.1007/s00374-024-01845-6
Chen Liu, Zeyuan Zhou, Shuo Sun, Qi Zhang, Shiqi Sun, Xinnan Hang, Mohammadhossein Ravanbakhsh, Zhong Wei, Rong Li, Shimei Wang, Wu Xiong, George A. Kowalchuk, Qirong Shen
Organic farming can enhance biodiversity and soil health and is a sustainable alternative to conventional farming. Yet, soil protists especially protistan predators, have received inadequate attention, and their contributions to the sustainability of organic farming remained underexplored. In this study, we examined soil microbial communities from 379 samples, including both organic and chemically fertilized soils from China. Our findings revealed higher bacterial diversity and increases in plant-beneficial bacteria in organically farmed soils. Notably, organic farming systems facilitated dynamic predator-prey interactions, which may be disrupted by the application of chemical fertilizers. Additionally, organic farming enriched protistan predators, enhancing the relative abundance of functional PGPR, thus improving soil health. We further conducted a case study highlighting the critical role of organic matter in sustaining protistan predator populations and their interactions with bacteria. We propose the crucial contributions of organic inputs for supporting protistan predators and the interplay of predator-prey, ultimately enhancing soil functions and promoting agricultural sustainability.
{"title":"Investigating protistan predators and bacteria within soil microbiomes in agricultural ecosystems under organic and chemical fertilizer applications","authors":"Chen Liu, Zeyuan Zhou, Shuo Sun, Qi Zhang, Shiqi Sun, Xinnan Hang, Mohammadhossein Ravanbakhsh, Zhong Wei, Rong Li, Shimei Wang, Wu Xiong, George A. Kowalchuk, Qirong Shen","doi":"10.1007/s00374-024-01845-6","DOIUrl":"https://doi.org/10.1007/s00374-024-01845-6","url":null,"abstract":"<p>Organic farming can enhance biodiversity and soil health and is a sustainable alternative to conventional farming. Yet, soil protists especially protistan predators, have received inadequate attention, and their contributions to the sustainability of organic farming remained underexplored. In this study, we examined soil microbial communities from 379 samples, including both organic and chemically fertilized soils from China. Our findings revealed higher bacterial diversity and increases in plant-beneficial bacteria in organically farmed soils. Notably, organic farming systems facilitated dynamic predator-prey interactions, which may be disrupted by the application of chemical fertilizers. Additionally, organic farming enriched protistan predators, enhancing the relative abundance of functional PGPR, thus improving soil health. We further conducted a case study highlighting the critical role of organic matter in sustaining protistan predator populations and their interactions with bacteria. We propose the crucial contributions of organic inputs for supporting protistan predators and the interplay of predator-prey, ultimately enhancing soil functions and promoting agricultural sustainability.</p>","PeriodicalId":9210,"journal":{"name":"Biology and Fertility of Soils","volume":"60 1","pages":""},"PeriodicalIF":6.5,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141730640","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-19DOI: 10.1007/s00374-024-01852-7
Fuyun Gao, Huiling Lai, Hao Su, Stephen J. Chapman, Yaying Li, Huaiying Yao
Legume/cereal intercropping is an example of classic nitrogen-efficient planting that can effectively improve crop yield and nutrient-utilization efficiency. However, the interaction between rhizosphere microorganisms and rhizodeposition and the related ecological mechanisms remain unclear. We conducted a pot experiment using 13CO2 continuous labeling, DNA stable isotope probe technology, high-throughput sequencing, and the carbon-nitrogen-phosphorus functional gene chip to effectively track rhizosphere-deposited C and compare the microorganisms that utilize this C pool in the rhizosphere of a soybean/maize intercropping system at 21 days after labeling. The relative abundance of Caldalkalibacillus and Nesterenkonia that use rhizosphere-deposited C was significantly higher in the soybean/maize intercropping system than in monocropped soybean, but there were no significant differences between intercropped and monocropped maize. The soybean/maize intercropping system altered the composition of the microbial community that utilizes rhizosphere-deposited C and reduced the community richness. Moreover, intercropping improved the expression of functional genes associated with carbon fixation (acsH and exg) and nitrous oxide reduction (nosZ1). Overall, by tracking the flow of C from plant photosynthetic products to root exudates, our research provides new insights into identifying the microbial communities that assimilate and deposit carbon in soil.
豆科/谷类间作是典型的节氮种植,可有效提高作物产量和养分利用效率。然而,根瘤微生物与根瘤沉积之间的相互作用及相关生态机制仍不清楚。我们利用 13CO2 连续标记、DNA 稳定同位素探针技术、高通量测序和碳氮磷功能基因芯片进行了盆栽实验,以有效追踪大豆/玉米间作系统根圈沉积的 C,并比较标记后 21 天根圈中利用该 C 池的微生物。在大豆/玉米间作系统中,利用根圈沉积 C 的 Caldalkalibacillus 和 Nesterenkonia 的相对丰度显著高于单作大豆,但间作玉米和单作玉米之间没有显著差异。大豆/玉米间作系统改变了利用根圈沉积 C 的微生物群落的组成,降低了群落的丰富度。此外,间作还改善了与碳固定(acesH 和 exg)和氧化亚氮还原(nosZ1)相关的功能基因的表达。总之,通过跟踪从植物光合产物到根系渗出物的碳流,我们的研究为确定土壤中同化和沉积碳的微生物群落提供了新的见解。
{"title":"Characterization of microbial communities assimilating rhizosphere-deposited carbon in a soybean/maize intercropping system using the DNA-SIP technique","authors":"Fuyun Gao, Huiling Lai, Hao Su, Stephen J. Chapman, Yaying Li, Huaiying Yao","doi":"10.1007/s00374-024-01852-7","DOIUrl":"https://doi.org/10.1007/s00374-024-01852-7","url":null,"abstract":"<p>Legume/cereal intercropping is an example of classic nitrogen-efficient planting that can effectively improve crop yield and nutrient-utilization efficiency. However, the interaction between rhizosphere microorganisms and rhizodeposition and the related ecological mechanisms remain unclear. We conducted a pot experiment using <sup>13</sup>CO<sub>2</sub> continuous labeling, DNA stable isotope probe technology, high-throughput sequencing, and the carbon-nitrogen-phosphorus functional gene chip to effectively track rhizosphere-deposited C and compare the microorganisms that utilize this C pool in the rhizosphere of a soybean/maize intercropping system at 21 days after labeling. The relative abundance of <i>Caldalkalibacillus</i> and <i>Nesterenkonia</i> that use rhizosphere-deposited C was significantly higher in the soybean/maize intercropping system than in monocropped soybean, but there were no significant differences between intercropped and monocropped maize. The soybean/maize intercropping system altered the composition of the microbial community that utilizes rhizosphere-deposited C and reduced the community richness. Moreover, intercropping improved the expression of functional genes associated with carbon fixation (<i>acsH</i> and <i>exg</i>) and nitrous oxide reduction (<i>nosZ1</i>). Overall, by tracking the flow of C from plant photosynthetic products to root exudates, our research provides new insights into identifying the microbial communities that assimilate and deposit carbon in soil.</p>","PeriodicalId":9210,"journal":{"name":"Biology and Fertility of Soils","volume":"7 1","pages":""},"PeriodicalIF":6.5,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141725761","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
It is unknown whether soil microbiota and soil bacteria isolated from the rhizosphere of selenium hyperaccumulator plants can affect selenium absorption by selenium non-hyperaccumulator plants. Here, we used pot experiments and split root experiments to investigate the role of soil microbiota and isolated rhizosphere bacteria from a selenium hyperaccumulator plant (Cardamine violifolia) in affecting selenium absorption by a selenium non-hyperaccumulator plant (Brassica napus), combining root metabolism analysis, microbiome profiling, strain isolation and its selenium absorption functional validation. We found that soil microbiota of Cardamine violifolia significantly increased the root selenium content by 31.8% and regulated root exudation by Brassica napus. Additionally, the application of upregulated long-chain organic acids + amino acids, long-chain organic acids + short-chain organic acids, ethanolamine, and 2-ketobutyric acid increased the selenium contents in the roots of Brassica napus by 69.6%, 38.4%, 81.2%, and 48.8%, respectively. Further investigation revealed that dominant bacteria were significantly enriched in the rhizosphere of C. violifolia compared to B. napus. After that, we isolated the rhizosphere bacteria of Cardamine violifolia and observed that Bacillus sp.-2, Chryseobacterium sp., and Pseudomonas sp., as well as their combined communities, significantly improved selenium absorption in Brassica napus. Moreover, the combined bacterial communities significantly regulated specific-root metabolism, enhanced rhizosphere soil available selenium content, promoted root development, increased expression levels of genes encoding selenium transporter in root. These findings provide insights into utilizing rhizosphere bacteria of selenium hyperaccumulator plants to increase selenium absorption by non-hyperaccumulator plants.