Pub Date : 2024-10-01DOI: 10.1007/s00374-024-01865-2
Fawad Khan, Samuel Franco-Luesma, Michael Ulrich Dannenmann, Rainer Gasche, Andreas Gattinger, Frederik Hartmann, Beatrice Tobisch, Ralf Kiese, Benjamin Wolf
Soil gross mineral N production and consumption processes are crucial regulators of plant productivity and N loss from croplands. Substituting synthetic fertilizers by integrating legumes in cultivation systems is common in organic farming, but research on its long-term impact on dynamics of gross soil N transformation and associated environmental N loss is scarce. In particular, studies at a temporal resolution that allows for a mechanistic understanding of long-term effects of organic farming are missing. Therefore, we determined gross N turnover rates of ammonification, nitrification, and ammonium and nitrate immobilization at monthly temporal resolution during a full green rye-maize cropping sequence. Measurements were carried out at sites with same pedo-climatic background but organic farming (OF) and integrated farming (IF) history. During green rye growing, N turnover rates for OF and IF were low and not significantly different, likely owing to low temperatures. During silage maize growing, IF exhibited significantly higher average N turnover rates of 1.86, 4.46, and 5.57 mg N kg⁻1 dry soil d⁻1 for gross ammonification, ammonium immobilization, and nitrate immobilization, respectively, compared to OF values of 1.11, 1.80, and 2.90 mg N kg⁻1 dry soil d⁻1. The significantly higher N turnover rates were likely due to higher soil organic C, N and microbial biomass which result from different long-term management practices. Especially the increased immobilization potential on the IF site contributed to significantly lower area-scaled N₂O emissions (1.45 vs. 4.36 kg N ha⁻1) during periods of high nitrification. This shows that for low SOC soils, integrated farming history with high C return enhances soil N cycling and reduces the risk of N losses in the form of N2O emission.
土壤总矿物氮的产生和消耗过程是植物生产力和农田氮流失的重要调节因素。在有机耕作中,通过将豆科植物纳入耕作系统来替代合成肥料的做法很常见,但有关其对土壤氮转化总量动态和相关环境氮损失的长期影响的研究却很少。尤其是缺乏时间分辨率的研究,无法从机理上理解有机耕作的长期影响。因此,我们以月为时间分辨率,测定了全绿黑麦-玉米种植过程中氨化、硝化以及铵和硝酸盐固定化的总氮转化率。测量是在具有相同植物气候背景,但具有有机耕作(OF)和综合耕作(IF)历史的地点进行的。在绿色黑麦生长期间,有机耕作和综合耕作的氮转化率较低且无显著差异,这可能是由于温度较低的缘故。在青贮玉米生长期间,IF 的平均氮转化率显著较高,总氨化、铵固定和硝酸盐固定的平均氮转化率分别为 1.86、4.46 和 5.57 mg N kg-1 干土/d-1,而 OF 的值分别为 1.11、1.80 和 2.90 mg N kg-1 干土/d-1。氮转化率明显较高的原因可能是不同的长期管理措施提高了土壤有机碳、氮和微生物生物量。特别是在硝化程度较高的时期,IF 地块的固定化潜力增加,导致氮₂O 的面积比例排放(1.45 对 4.36 千克氮公顷-1)明显降低。这表明,对于低 SOC 土壤来说,高碳回报的综合耕作历史可促进土壤氮循环,降低以 N2O 排放形式出现的氮损失风险。
{"title":"Integrated rather than organic farming history facilitates soil nitrogen turnover and N2O reduction in a green rye – silage maize cropping sequence","authors":"Fawad Khan, Samuel Franco-Luesma, Michael Ulrich Dannenmann, Rainer Gasche, Andreas Gattinger, Frederik Hartmann, Beatrice Tobisch, Ralf Kiese, Benjamin Wolf","doi":"10.1007/s00374-024-01865-2","DOIUrl":"https://doi.org/10.1007/s00374-024-01865-2","url":null,"abstract":"<p>Soil gross mineral N production and consumption processes are crucial regulators of plant productivity and N loss from croplands. Substituting synthetic fertilizers by integrating legumes in cultivation systems is common in organic farming, but research on its long-term impact on dynamics of gross soil N transformation and associated environmental N loss is scarce. In particular, studies at a temporal resolution that allows for a mechanistic understanding of long-term effects of organic farming are missing. Therefore, we determined gross N turnover rates of ammonification, nitrification, and ammonium and nitrate immobilization at monthly temporal resolution during a full green rye-maize cropping sequence. Measurements were carried out at sites with same pedo-climatic background but organic farming (OF) and integrated farming (IF) history. During green rye growing, N turnover rates for OF and IF were low and not significantly different, likely owing to low temperatures. During silage maize growing, IF exhibited significantly higher average N turnover rates of 1.86, 4.46, and 5.57 mg N kg⁻<sup>1</sup> dry soil d⁻<sup>1</sup> for gross ammonification, ammonium immobilization, and nitrate immobilization, respectively, compared to OF values of 1.11, 1.80, and 2.90 mg N kg⁻<sup>1</sup> dry soil d⁻<sup>1</sup>. The significantly higher N turnover rates were likely due to higher soil organic C, N and microbial biomass which result from different long-term management practices. Especially the increased immobilization potential on the IF site contributed to significantly lower area-scaled N₂O emissions (1.45 vs. 4.36 kg N ha⁻<sup>1</sup>) during periods of high nitrification. This shows that for low SOC soils, integrated farming history with high C return enhances soil N cycling and reduces the risk of N losses in the form of N<sub>2</sub>O emission.</p>","PeriodicalId":9210,"journal":{"name":"Biology and Fertility of Soils","volume":null,"pages":null},"PeriodicalIF":6.5,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142362778","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Acetochlor (ACE), one of the widely used herbicides in northeastern China, has raised concerns due to its residual presence in the soil. In this study, a pot experiment was conducted to investigate the effects of adding vermicompost on the degradation efficiency and pathways of acetochlor in black soil under dark conditions. The results showed that the vermicompost addition increased the degradation rate of acetochlor, shortened its degradation half-life, and altered the composition of the bacterial community. The influence of vermicompost on bacterial community diversity is minimal, but it can increase the relative abundance of acetochlor degradation bacteria, promoting the collaboration between exogenous and indigenous bacteria to enhance acetochlor utilization. GC-MS analysis revealed the formation of seven metabolites during the acetochlor degradation process, including 2-chloro-N-(2-ethyl-6-methylphenyl) acetamide, 2-ethyl-6-methylaniline, 4-amino-3-ethyl-5-methylpheno, 2-ethyl-6-methylcychexa-2,5-diene-1,4-diol, 2-ethyl-6-methylcychexa-2,5-diene-1,4-dione, N-(2-ethyl-6-methylphenyl)hydroxylamine and 1-ethyl-3-methyl-2-nitrobenzene. The synergistic action of Sphingomonas, Rhodococcus, Bacillus, Arthrobacter, Methylobacillus, and Streptomyces probably lead to the gradual decomposition of acetochlor into H2O and CO2. Comparative analysis of functional genes in the KEGG metabolic pathways showed upregulation of hyaB/hybC, hyaA/hybO, nfsA, nfnB/nfsB, and nemA in the soil treated with vermicompost. These functional genes could promote -NHOH conversion to -NO2. Additionally, redundancy analysis revealed that soil organic matter and pH were the main driving factors for bacterial community variation. These findings suggest that vermicompost can be used as a bioremediation measure to reduce acetochlor in black soil.
{"title":"Response of acetochlor degradation and bacterial community in black soil to the application of vermicompost","authors":"Xia Hou, Xinhong Wang, Yang Ou, Liming Yan, Huiping Liu, Xinyi Li, Minglian Shang","doi":"10.1007/s00374-024-01867-0","DOIUrl":"https://doi.org/10.1007/s00374-024-01867-0","url":null,"abstract":"<p>Acetochlor (ACE), one of the widely used herbicides in northeastern China, has raised concerns due to its residual presence in the soil. In this study, a pot experiment was conducted to investigate the effects of adding vermicompost on the degradation efficiency and pathways of acetochlor in black soil under dark conditions. The results showed that the vermicompost addition increased the degradation rate of acetochlor, shortened its degradation half-life, and altered the composition of the bacterial community. The influence of vermicompost on bacterial community diversity is minimal, but it can increase the relative abundance of acetochlor degradation bacteria, promoting the collaboration between exogenous and indigenous bacteria to enhance acetochlor utilization. GC-MS analysis revealed the formation of seven metabolites during the acetochlor degradation process, including 2-chloro-N-(2-ethyl-6-methylphenyl) acetamide, 2-ethyl-6-methylaniline, 4-amino-3-ethyl-5-methylpheno, 2-ethyl-6-methylcychexa-2,5-diene-1,4-diol, 2-ethyl-6-methylcychexa-2,5-diene-1,4-dione, N-(2-ethyl-6-methylphenyl)hydroxylamine and 1-ethyl-3-methyl-2-nitrobenzene. The synergistic action of <i>Sphingomonas</i>, <i>Rhodococcus</i>, <i>Bacillus</i>, <i>Arthrobacter</i>,<i> Methylobacillus</i>, and <i>Streptomyces</i> probably lead to the gradual decomposition of acetochlor into H<sub>2</sub>O and CO<sub>2</sub>. Comparative analysis of functional genes in the KEGG metabolic pathways showed upregulation of hyaB/hybC, hyaA/hybO, nfsA, nfnB/nfsB, and nemA in the soil treated with vermicompost. These functional genes could promote -NHOH conversion to -NO<sub>2</sub>. Additionally, redundancy analysis revealed that soil organic matter and pH were the main driving factors for bacterial community variation. These findings suggest that vermicompost can be used as a bioremediation measure to reduce acetochlor in black soil.</p>","PeriodicalId":9210,"journal":{"name":"Biology and Fertility of Soils","volume":null,"pages":null},"PeriodicalIF":6.5,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142325386","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-26DOI: 10.1007/s00374-024-01863-4
Hussnain Mukhtar, Jingjie Hao, Gen Xu, Emma Bergmeyer, Musa Ulutas, Jinliang Yang, Daniel P. Schachtman
Despite the crucial role of microbial communities in agroecosystem functioning, a clear picture of how nitrogen shapes rhizosphere microbial complexity and community structure across diverse maize lines remains elusive. To address this gap, we conducted 16S amplicon sequencing of the rhizosphere microbial communities across a diverse range of maize inbred lines (305 genotypes) and their F1 hybrids (196 genotypes) cultivated in both low-nitrogen (unfertilized) and high-nitrogen (fertilized) soils. Our findings reveal that N fertilizer treatment had contrasting effects on the rhizosphere microbial communities of inbreds and hybrids. N fertilization increased alpha diversity but decreased the abundance of Pseudomonas taxa in inbred lines, while the opposite was true for hybrids. The proportion of variance determined by plant host factors was also better explained under low-N, demonstrating that N fertilization reduced the influence of the host over the rhizosphere microbial community. Microbial networks revealed significant differences in the number of nodes and clustering coefficients between the rhizosphere microbial communities of inbred and hybrid maize, with these differences being further differentiated by changes in nitrogen levels. Overall, our study reveals the interplay among rhizosphere microbiomes, abiotic stress induced by low soil nitrogen, and plant host factors facilitating the identification of stable microbial communities in response to environmental stress. These findings contribute to the potential engineering of resilient microbial consortia highlighting the importance of the influence of plant genotype and the environment on the rhizosphere microbiome.
尽管微生物群落在农业生态系统的功能中起着至关重要的作用,但要清楚地了解氮是如何影响不同玉米品系的根瘤微生物复杂性和群落结构的,仍然是一个未知数。为了填补这一空白,我们对在低氮(未施肥)和高氮(施肥)土壤中栽培的各种玉米近交系(305 个基因型)及其 F1 代杂交种(196 个基因型)的根瘤微生物群落进行了 16S 扩增子测序。我们的研究结果表明,氮肥处理对近交系和杂交种根瘤微生物群落的影响截然不同。施用氮肥增加了近交系的α多样性,但降低了假单胞菌类群的丰度,而杂交种的情况恰恰相反。在低氮条件下,由植物宿主因素决定的变异比例也得到了更好的解释,这表明氮肥减少了宿主对根瘤微生物群落的影响。微生物网络显示,近交玉米和杂交玉米的根瘤微生物群落在节点数量和聚类系数上存在显著差异,氮水平的变化进一步区分了这些差异。总之,我们的研究揭示了根瘤微生物群落、土壤低氮诱导的非生物胁迫和植物宿主因素之间的相互作用,有助于识别稳定的微生物群落以应对环境胁迫。这些发现有助于潜在的弹性微生物群工程学,突出了植物基因型和环境对根圈微生物群影响的重要性。
{"title":"Nitrogen input differentially shapes the rhizosphere microbiome diversity and composition across diverse maize lines","authors":"Hussnain Mukhtar, Jingjie Hao, Gen Xu, Emma Bergmeyer, Musa Ulutas, Jinliang Yang, Daniel P. Schachtman","doi":"10.1007/s00374-024-01863-4","DOIUrl":"https://doi.org/10.1007/s00374-024-01863-4","url":null,"abstract":"<p>Despite the crucial role of microbial communities in agroecosystem functioning, a clear picture of how nitrogen shapes rhizosphere microbial complexity and community structure across diverse maize lines remains elusive. To address this gap, we conducted 16S amplicon sequencing of the rhizosphere microbial communities across a diverse range of maize inbred lines (305 genotypes) and their F1 hybrids (196 genotypes) cultivated in both low-nitrogen (unfertilized) and high-nitrogen (fertilized) soils. Our findings reveal that N fertilizer treatment had contrasting effects on the rhizosphere microbial communities of inbreds and hybrids. N fertilization increased alpha diversity but decreased the abundance of <i>Pseudomonas</i> taxa in inbred lines, while the opposite was true for hybrids. The proportion of variance determined by plant host factors was also better explained under low-N, demonstrating that N fertilization reduced the influence of the host over the rhizosphere microbial community. Microbial networks revealed significant differences in the number of nodes and clustering coefficients between the rhizosphere microbial communities of inbred and hybrid maize, with these differences being further differentiated by changes in nitrogen levels. Overall, our study reveals the interplay among rhizosphere microbiomes, abiotic stress induced by low soil nitrogen, and plant host factors facilitating the identification of stable microbial communities in response to environmental stress. These findings contribute to the potential engineering of resilient microbial consortia highlighting the importance of the influence of plant genotype and the environment on the rhizosphere microbiome.</p>","PeriodicalId":9210,"journal":{"name":"Biology and Fertility of Soils","volume":null,"pages":null},"PeriodicalIF":6.5,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142321533","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-21DOI: 10.1007/s00374-024-01866-1
Shengji Yan, Yunlong Liu, Daniel Revillini, Manuel Delgado-Baquerizo, Kees Jan van Groenigen, Ziyin Shang, Xin Zhang, Haoyu Qian, Yu Jiang, Aixing Deng, Pete Smith, Yanfeng Ding, Weijian Zhang
Nitrous oxide (N2O) is one of the most important climate-forcing gases, and a large portion of global anthropogenic N2O emissions come from agricultural soils. Yet, how contrasting global change factors and agricultural management can interact to drive N2O emissions remains poorly understood. Here, conducted within a rice–wheat cropping system, we combined a two-year field experiment with two pot experiments to investigate the influences of elevated atmospheric carbon dioxide (eCO2) and crop straw addition to soil in altering N2O emissions under wheat cropping. Our analyses identified consistent and significant interactions between eCO2 and straw addition, whereby eCO2 increased N2O emissions (+ 19.9%) only when straw was added, and independent of different N fertilizer gradients and wheat varieties. Compared with the control (i.e., ambient CO2 without straw addition), eCO2 + straw addition increased N2O emission by 44.7% and dissolved organic carbon to total dissolved nitrogen (DOC/TDN) ratio by 115.3%. Similarly, eCO2 and straw addition significantly impacted soil N2O-related microbial activity. For instance, the ratio of the abundance of N2O production genes (i.e., nirK and nirS) to the abundance of the N2O reduction gene (i.e., nosZ) with straw addition was 26.0% higher than that without straw under eCO2. This indicates an increased denitrification potential and suggests a change in the stoichiometry of denitrification products, affecting the balance between N2O production and reduction, leading to an increase in N2O emissions. Taken together, our results emphasize the critical role of the interaction between the specific agronomic practice of straw addition and eCO2 in shaping greenhouse gas emissions in the wheat production system studied, and underline the need to test the efficacy of greenhouse gas mitigation measures under various management practices and global change scenarios.