首页 > 最新文献

Bioengineering & Translational Medicine最新文献

英文 中文
Investigating the impact of synonymous gene recoding on a recombinantly expressed monoclonal antibody under different process parameters
IF 7.4 2区 医学 Q1 ENGINEERING, BIOMEDICAL Pub Date : 2025-01-28 DOI: 10.1002/btm2.10750
Nayiri M. Kaissarian, Stephanie L. Sandefur, Arnab Ghosh, Upendra K. Katneni, Wendy Walton, Christopher C. Frye, Anton A. Komar, Chava Kimchi‐Sarfaty
Monoclonal antibodies (mAbs) are commonly used biologic therapeutics with a wide variety of clinical applications. During the development process, manufacturers consider different production parameters to improve protein yield and achieve appropriate quality of the product. Synonymous gene recoding is one of such attributes that is often considered and implemented to enhance protein expression. However, it has to be used with caution, as it may lead to protein misfolding and ER stress, which complicates efforts to manufacture the desired mAb. To investigate how changing mRNA sequence composition under different protein production parameters might affect the quality of recombinantly produced mAbs, we performed a comprehensive and systematic study assessing impact of synonymous gene recoding (commonly referred to as codon optimization) strategies in the context of varied cell culture parameters on product quality, biochemical and functional characteristics. We report the impact of these parameters on mAb glycosylation profiles, charge variant profile, aggregation, fragmentation, and mAb functional response from combinations of different production parameters. These results uncovered a complex interplay of sequence composition and manufacturing parameters and emphasize the importance of assessing changes to key quality attributes when optimizing mAb manufacturing, including the use of synonymous gene recoding.
{"title":"Investigating the impact of synonymous gene recoding on a recombinantly expressed monoclonal antibody under different process parameters","authors":"Nayiri M. Kaissarian, Stephanie L. Sandefur, Arnab Ghosh, Upendra K. Katneni, Wendy Walton, Christopher C. Frye, Anton A. Komar, Chava Kimchi‐Sarfaty","doi":"10.1002/btm2.10750","DOIUrl":"https://doi.org/10.1002/btm2.10750","url":null,"abstract":"Monoclonal antibodies (mAbs) are commonly used biologic therapeutics with a wide variety of clinical applications. During the development process, manufacturers consider different production parameters to improve protein yield and achieve appropriate quality of the product. Synonymous gene recoding is one of such attributes that is often considered and implemented to enhance protein expression. However, it has to be used with caution, as it may lead to protein misfolding and ER stress, which complicates efforts to manufacture the desired mAb. To investigate how changing mRNA sequence composition under different protein production parameters might affect the quality of recombinantly produced mAbs, we performed a comprehensive and systematic study assessing impact of synonymous gene recoding (commonly referred to as codon optimization) strategies in the context of varied cell culture parameters on product quality, biochemical and functional characteristics. We report the impact of these parameters on mAb glycosylation profiles, charge variant profile, aggregation, fragmentation, and mAb functional response from combinations of different production parameters. These results uncovered a complex interplay of sequence composition and manufacturing parameters and emphasize the importance of assessing changes to key quality attributes when optimizing mAb manufacturing, including the use of synonymous gene recoding.","PeriodicalId":9263,"journal":{"name":"Bioengineering & Translational Medicine","volume":"206 1","pages":""},"PeriodicalIF":7.4,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143054910","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A non‐surgical method for subretinal delivery by trans‐scleral microneedle injection
IF 7.4 2区 医学 Q1 ENGINEERING, BIOMEDICAL Pub Date : 2025-01-28 DOI: 10.1002/btm2.10755
Amir Hejri, Micah A. Chrenek, Nolan T. Goehring, Isabella I. Bowland, Richard Noel, Jiong Yan, John M. Nickerson, Mark R. Prausnitz
Novel therapeutics have emerged for treating neurodegenerative eye diseases but are limited by non‐optimal methods of ocular administration. Subretinal injection is the preferred method of delivery for retinal gene and stem‐cell therapies, but its invasive and complex surgical procedure is a major limiting factor in clinical investigations and practice. Here, we engineered a novel trans‐scleral injection technique to safely administer to the subretinal space in a simple, non‐surgical, and minimally invasive procedure. Subretinal injection using this technique in rodents and rabbits took <1 min per injection and did not require a surgical microscope. Extensive safety examinations in rats showed that the injection technique reliably administered into the subretinal space with no incidence of retinal perforation, little or no choroidal bleeding, and no evidence of retinal toxicity. We further found that repeated subretinal injection in the same eye, in rats, was well tolerated. The developed technique may enable non‐surgical subretinal injection without vitrectomy, potentially increasing safety, efficacy, and access to ocular therapies.
{"title":"A non‐surgical method for subretinal delivery by trans‐scleral microneedle injection","authors":"Amir Hejri, Micah A. Chrenek, Nolan T. Goehring, Isabella I. Bowland, Richard Noel, Jiong Yan, John M. Nickerson, Mark R. Prausnitz","doi":"10.1002/btm2.10755","DOIUrl":"https://doi.org/10.1002/btm2.10755","url":null,"abstract":"Novel therapeutics have emerged for treating neurodegenerative eye diseases but are limited by non‐optimal methods of ocular administration. Subretinal injection is the preferred method of delivery for retinal gene and stem‐cell therapies, but its invasive and complex surgical procedure is a major limiting factor in clinical investigations and practice. Here, we engineered a novel trans‐scleral injection technique to safely administer to the subretinal space in a simple, non‐surgical, and minimally invasive procedure. Subretinal injection using this technique in rodents and rabbits took &lt;1 min per injection and did not require a surgical microscope. Extensive safety examinations in rats showed that the injection technique reliably administered into the subretinal space with no incidence of retinal perforation, little or no choroidal bleeding, and no evidence of retinal toxicity. We further found that repeated subretinal injection in the same eye, in rats, was well tolerated. The developed technique may enable non‐surgical subretinal injection without vitrectomy, potentially increasing safety, efficacy, and access to ocular therapies.","PeriodicalId":9263,"journal":{"name":"Bioengineering & Translational Medicine","volume":"59 1","pages":""},"PeriodicalIF":7.4,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143054907","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Amelioration of biased neuronal differentiation in humanized mouse model of valproic acid‐induced autism by precisely targeted transcranial magnetic stimulation
IF 7.4 2区 医学 Q1 ENGINEERING, BIOMEDICAL Pub Date : 2025-01-24 DOI: 10.1002/btm2.10748
Yilin Hou, Youyi Zhao, Dingding Yang, Tingwei Feng, Yuqian Li, Xiang Li, Zhou'an Liu, Xiao Yan, Hui Zhang, Shengxi Wu, Xufeng Liu, Yazhou Wang
Autism spectrum disorder (ASD) is a group of developmental diseases, which still lacks effective treatments. Pregnant exposure of Valproic acid (VPA) is an important environmental risk factor for ASD, but it's long‐term effects on the development of human neural cells, particularly in vivo, and the corresponding treatment have yet been fully investigated. In the present study, we first made a humanized ASD mouse model by transplanting VPA‐pretreated human neural progenitor cells (hNPCs) into the cortex of immune‐deficient mice. In comparison with wild type and control chimeric mice, ASD chimeric mice (VPAhNPC mice) exhibit core syndromes of ASD, namely dramatic reduction of sociability, social interaction and social communication, and remarkable increase of stereotype repetitive behaviors and anxiety‐like behaviors. At cellular level, VPA‐pretreatment biased the differentiation of human excitatory neurons and their axonal projections in host brain. Chemogenetic suppression of human neuronal activity restored most behavior abnormalities of VPAhNPC mice. Further, specific modulation of human neurons by a newly developed transcranial magnetic stimulation (TMS) device which could precisely target hPNCs effectively recued the core syndromes of ASD‐like behaviors, restored the excitatory‐inhibitory neuronal differentiation and axonal projection, and reversed the expression of over half of the VPA‐affected genes. These data demonstrated that VPAhNPC mice could be used as a humanized model of ASD and that precisely targeted TMS could ameliorate the VPA‐biased human neuronal differentiation in vivo.
{"title":"Amelioration of biased neuronal differentiation in humanized mouse model of valproic acid‐induced autism by precisely targeted transcranial magnetic stimulation","authors":"Yilin Hou, Youyi Zhao, Dingding Yang, Tingwei Feng, Yuqian Li, Xiang Li, Zhou'an Liu, Xiao Yan, Hui Zhang, Shengxi Wu, Xufeng Liu, Yazhou Wang","doi":"10.1002/btm2.10748","DOIUrl":"https://doi.org/10.1002/btm2.10748","url":null,"abstract":"Autism spectrum disorder (ASD) is a group of developmental diseases, which still lacks effective treatments. Pregnant exposure of Valproic acid (VPA) is an important environmental risk factor for ASD, but it's long‐term effects on the development of human neural cells, particularly in vivo, and the corresponding treatment have yet been fully investigated. In the present study, we first made a humanized ASD mouse model by transplanting VPA‐pretreated human neural progenitor cells (hNPCs) into the cortex of immune‐deficient mice. In comparison with wild type and control chimeric mice, ASD chimeric mice (<jats:sup>VPA</jats:sup>hNPC mice) exhibit core syndromes of ASD, namely dramatic reduction of sociability, social interaction and social communication, and remarkable increase of stereotype repetitive behaviors and anxiety‐like behaviors. At cellular level, VPA‐pretreatment biased the differentiation of human excitatory neurons and their axonal projections in host brain. Chemogenetic suppression of human neuronal activity restored most behavior abnormalities of <jats:sup>VPA</jats:sup>hNPC mice. Further, specific modulation of human neurons by a newly developed transcranial magnetic stimulation (TMS) device which could precisely target hPNCs effectively recued the core syndromes of ASD‐like behaviors, restored the excitatory‐inhibitory neuronal differentiation and axonal projection, and reversed the expression of over half of the VPA‐affected genes. These data demonstrated that <jats:sup>VPA</jats:sup>hNPC mice could be used as a humanized model of ASD and that precisely targeted TMS could ameliorate the VPA‐biased human neuronal differentiation in vivo.","PeriodicalId":9263,"journal":{"name":"Bioengineering & Translational Medicine","volume":"38 1","pages":""},"PeriodicalIF":7.4,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143030923","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Milk extracellular vesicles: A burgeoning new presence in nutraceuticals and drug delivery
IF 7.4 2区 医学 Q1 ENGINEERING, BIOMEDICAL Pub Date : 2025-01-23 DOI: 10.1002/btm2.10756
Spencer R. Marsh, Claire E. Beard, Robert G. Gourdie
Mammalian milk, a multifaceted developmental biofluid, has attracted new attention due to its diverse constituents and their implications for health and disease. Among these constituents, extracellular vesicles (EVs) have emerged as focal points of investigation. EVs, including exosomes and small EVs, have demonstrated biological activity in preclinical studies—including reports of enhancement of cognition and neural complexity, promotion of gastrointestinal development, barrier function and microbiome richness, the bolstering of immune response, and facilitation of musculoskeletal maturation in neonates. The richness of milk as a source of EVs is noteworthy, with hundreds of milliliters (at >1012 EVs/mL) of nanovesicles extractable from a single liter of milk (>1014 EVs/starting liter of milk). Techniques such as tangential flow filtration hold promise for scalable production, potentially extending to thousands of liters. Together with the scale and increasing sophistication of the dairy industry, the abundance of EVs in milk underscores their commercial potential in various nutraceutical applications. Beyond natural bioactivity, milk EVs (mEVs) present intriguing possibilities as orally deliverable, non‐immunogenic pharmaceutical carriers, with burgeoning interest in their utilization for heart disease and cancer chemotherapy and as vectors for gene‐editing modules such as CrispR. This review synthesizes current knowledge on mEV biogenesis, characterization, isolation methodologies, and cargo contents. Moreover, it delves into the therapeutic potential of mEVs, both as inherently bioactive nanovesicles and as versatile platforms for drug delivery. As efforts progress toward large‐scale implementation, rigorous attention to safe, industrial‐scale production and robust assay development will be pivotal in harnessing the translational promise of small EVs from milk.
{"title":"Milk extracellular vesicles: A burgeoning new presence in nutraceuticals and drug delivery","authors":"Spencer R. Marsh, Claire E. Beard, Robert G. Gourdie","doi":"10.1002/btm2.10756","DOIUrl":"https://doi.org/10.1002/btm2.10756","url":null,"abstract":"Mammalian milk, a multifaceted developmental biofluid, has attracted new attention due to its diverse constituents and their implications for health and disease. Among these constituents, extracellular vesicles (EVs) have emerged as focal points of investigation. EVs, including exosomes and small EVs, have demonstrated biological activity in preclinical studies—including reports of enhancement of cognition and neural complexity, promotion of gastrointestinal development, barrier function and microbiome richness, the bolstering of immune response, and facilitation of musculoskeletal maturation in neonates. The richness of milk as a source of EVs is noteworthy, with hundreds of milliliters (at &gt;10<jats:sup>12</jats:sup> EVs/mL) of nanovesicles extractable from a single liter of milk (&gt;10<jats:sup>14</jats:sup> EVs/starting liter of milk). Techniques such as tangential flow filtration hold promise for scalable production, potentially extending to thousands of liters. Together with the scale and increasing sophistication of the dairy industry, the abundance of EVs in milk underscores their commercial potential in various nutraceutical applications. Beyond natural bioactivity, milk EVs (mEVs) present intriguing possibilities as orally deliverable, non‐immunogenic pharmaceutical carriers, with burgeoning interest in their utilization for heart disease and cancer chemotherapy and as vectors for gene‐editing modules such as CrispR. This review synthesizes current knowledge on mEV biogenesis, characterization, isolation methodologies, and cargo contents. Moreover, it delves into the therapeutic potential of mEVs, both as inherently bioactive nanovesicles and as versatile platforms for drug delivery. As efforts progress toward large‐scale implementation, rigorous attention to safe, industrial‐scale production and robust assay development will be pivotal in harnessing the translational promise of small EVs from milk.","PeriodicalId":9263,"journal":{"name":"Bioengineering & Translational Medicine","volume":"25 1","pages":""},"PeriodicalIF":7.4,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143027199","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Establishment of a chemoresistant laryngeal cancer cell model to study chemoresistance and chemosensitization responses via transcriptomic analysis and a tumor‐on‐a‐chip platform 建立化疗耐药喉癌细胞模型,通过转录组学分析和肿瘤芯片平台研究化疗耐药和化疗致敏反应
IF 7.4 2区 医学 Q1 ENGINEERING, BIOMEDICAL Pub Date : 2025-01-22 DOI: 10.1002/btm2.10741
Christian R. Moya‐Garcia, Meghana Munipalle, Alain Pacis, Nader Sadeghi, Maryam Tabrizian, Nicole Y. K. Li‐Jessen
Tumor resistance to chemotherapy is a common cause of cancer recurrence in patients with head and neck squamous cell carcinoma. The goal of this study is to establish and characterize a chemoresistant laryngeal cancer cell model and test its potential utility for chemosensitizing therapy. At the genotypic level, RNA sequencing confirmed that the cells acquired putative resistance with upregulated docetaxel‐resistant (DR) genes (e.g., TUBB3, CYP24A1) and signaling pathways (e.g., PI3K/mTOR, autophagy). For phenotypic analysis, DR cells were co‐cultured with laryngeal fibroblasts in a 2‐channel microfluidic chip that mimics a hypoxic tumor core in vivo. A drug sensitivity test with a chemosensitizer, metformin (MTF), was performed on the laryngeal tumor‐on‐a‐chip. Compared to non‐treated controls, MTF‐primed cancer cells exhibit higher sensitivity to docetaxel (DTX), that is, cell death. Collectively, this resistance‐acquired cell model displayed presumed genotypic and phenotypic profiles of chemoresistance providing a viable option for testing new therapeutic strategies for restoring tumor sensitivity to DTX.
肿瘤耐药是头颈部鳞状细胞癌复发的常见原因。本研究的目的是建立和表征一种化疗耐药喉癌细胞模型,并测试其在化疗增敏治疗中的潜在效用。在基因型水平上,RNA测序证实细胞获得了假定的耐多西他赛(DR)基因(如TUBB3、CYP24A1)和信号通路(如PI3K/mTOR、自噬)上调的耐药。为了进行表型分析,DR细胞与喉成纤维细胞在模拟体内缺氧肿瘤核心的2通道微流控芯片中共培养。用化学增敏剂二甲双胍(MTF)对喉部肿瘤芯片进行药物敏感性试验。与未处理的对照组相比,MTF引发的癌细胞对多西紫杉醇(DTX)表现出更高的敏感性,即细胞死亡。总的来说,这种耐药获得性细胞模型显示了化疗耐药的基因型和表型特征,为测试恢复肿瘤对DTX敏感性的新治疗策略提供了可行的选择。
{"title":"Establishment of a chemoresistant laryngeal cancer cell model to study chemoresistance and chemosensitization responses via transcriptomic analysis and a tumor‐on‐a‐chip platform","authors":"Christian R. Moya‐Garcia, Meghana Munipalle, Alain Pacis, Nader Sadeghi, Maryam Tabrizian, Nicole Y. K. Li‐Jessen","doi":"10.1002/btm2.10741","DOIUrl":"https://doi.org/10.1002/btm2.10741","url":null,"abstract":"Tumor resistance to chemotherapy is a common cause of cancer recurrence in patients with head and neck squamous cell carcinoma. The goal of this study is to establish and characterize a chemoresistant laryngeal cancer cell model and test its potential utility for chemosensitizing therapy. At the genotypic level, RNA sequencing confirmed that the cells acquired putative resistance with upregulated docetaxel‐resistant (DR) genes (e.g., TUBB3, CYP24A1) and signaling pathways (e.g., PI3K/mTOR, autophagy). For phenotypic analysis, DR cells were co‐cultured with laryngeal fibroblasts in a 2‐channel microfluidic chip that mimics a hypoxic tumor core in vivo. A drug sensitivity test with a chemosensitizer, metformin (MTF), was performed on the laryngeal tumor‐on‐a‐chip. Compared to non‐treated controls, MTF‐primed cancer cells exhibit higher sensitivity to docetaxel (DTX), that is, cell death. Collectively, this resistance‐acquired cell model displayed presumed genotypic and phenotypic profiles of chemoresistance providing a viable option for testing new therapeutic strategies for restoring tumor sensitivity to DTX.","PeriodicalId":9263,"journal":{"name":"Bioengineering & Translational Medicine","volume":"24 1","pages":""},"PeriodicalIF":7.4,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143020087","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microbead‐based synthetic niches for in vitro expansion and differentiation of human naïve B‐cells 基于微珠的人naïve B细胞体外扩增和分化的合成壁龛
IF 7.4 2区 医学 Q1 ENGINEERING, BIOMEDICAL Pub Date : 2025-01-17 DOI: 10.1002/btm2.10751
Pearlson Prashanth Austin Suthanthiraraj, Sydney Bone, Kyung‐Ho Roh
As the prospect of engineering primary B‐cells for cellular therapies in cancer, autoimmune diseases, and infectious diseases grows, there is an increasing demand for robust in vitro culture systems that effectively activate human B‐cells isolated from peripheral blood for consistent and efficient expansion and differentiation into various effector phenotypes. Feeder cell‐based systems have shown promise in providing long‐term signaling for expanding B‐cells in vitro. However, these co‐culture systems necessitate more rigorous downstream processing to prevent various feeder cell‐related contaminations in the final product, which limits their clinical potential. In this study, we introduce a microbead‐based CD40L‐presentation platform for stable and consistent activation of human naïve B‐cells. By employing a completely synthetic in vitro culture approach integrating B‐cell receptor, CD21 co‐receptor, toll‐like receptor (TLR‐9), and cytokine signals, we demonstrate that naïve B‐cells can differentiate into memory B‐cells (IgD‐CD38‐/lo + CD27+) and antibody‐secreting cells (IgD‐CD38++CD27+). During this process, B‐cells underwent up to a 50‐fold expansion, accompanied by isotype class switching and low levels of somatic hypermutation, mimicking physiological events within the germinal center. The reproducible generation of highly expanded and differentiated effector B‐cells from naïve B‐cells of multiple donors positions this feeder‐free in vitro synthetic niche as a promising platform for large‐scale production of effector B‐cell therapeutics.
随着工程原代B细胞用于癌症、自身免疫性疾病和传染病的细胞治疗的前景日益增长,对强大的体外培养系统的需求日益增加,这些系统可以有效地激活从外周血中分离的人B细胞,使其持续有效地扩增和分化为各种效应表型。基于饲养细胞的系统已显示出为体外扩增的B细胞提供长期信号的希望。然而,这些共培养系统需要更严格的下游处理,以防止最终产品中各种饲养细胞相关的污染,这限制了它们的临床潜力。在这项研究中,我们引入了一种基于微珠的CD40L呈递平台,用于稳定和一致地激活人类naïve B细胞。通过采用整合B细胞受体、CD21共受体、toll样受体(TLR‐9)和细胞因子信号的体外完全合成培养方法,我们证明naïve B细胞可以分化为记忆B细胞(IgD‐CD38‐/lo +CD27+)和抗体分泌细胞(IgD‐CD38++CD27+)。在这个过程中,B细胞经历了高达50倍的扩增,伴随着同型转换和低水平的体细胞超突变,模拟了生发中心内的生理事件。从多个供体的naïve B细胞中可再生产生高度扩增和分化的效应B细胞,使这种无喂食器的体外合成生态位成为大规模生产效应B细胞治疗药物的有希望的平台。
{"title":"Microbead‐based synthetic niches for in vitro expansion and differentiation of human naïve B‐cells","authors":"Pearlson Prashanth Austin Suthanthiraraj, Sydney Bone, Kyung‐Ho Roh","doi":"10.1002/btm2.10751","DOIUrl":"https://doi.org/10.1002/btm2.10751","url":null,"abstract":"As the prospect of engineering primary B‐cells for cellular therapies in cancer, autoimmune diseases, and infectious diseases grows, there is an increasing demand for robust in vitro culture systems that effectively activate human B‐cells isolated from peripheral blood for consistent and efficient expansion and differentiation into various effector phenotypes. Feeder cell‐based systems have shown promise in providing long‐term signaling for expanding B‐cells in vitro. However, these co‐culture systems necessitate more rigorous downstream processing to prevent various feeder cell‐related contaminations in the final product, which limits their clinical potential. In this study, we introduce a microbead‐based CD40L‐presentation platform for stable and consistent activation of human naïve B‐cells. By employing a completely synthetic in vitro culture approach integrating B‐cell receptor, CD21 co‐receptor, toll‐like receptor (TLR‐9), and cytokine signals, we demonstrate that naïve B‐cells can differentiate into memory B‐cells (IgD‐CD38‐/lo + CD27+) and antibody‐secreting cells (IgD‐CD38++CD27+). During this process, B‐cells underwent up to a 50‐fold expansion, accompanied by isotype class switching and low levels of somatic hypermutation, mimicking physiological events within the germinal center. The reproducible generation of highly expanded and differentiated effector B‐cells from naïve B‐cells of multiple donors positions this feeder‐free in vitro synthetic niche as a promising platform for large‐scale production of effector B‐cell therapeutics.","PeriodicalId":9263,"journal":{"name":"Bioengineering & Translational Medicine","volume":"7 1","pages":""},"PeriodicalIF":7.4,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142988889","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The BAM‐GelMA‐ADSCs bilayer patch promotes tissue regeneration and functional recovery after large‐area bladder defects in beagles BAM - GelMA - ADSCs双分子层贴片促进小猎犬大面积膀胱缺损后的组织再生和功能恢复
IF 7.4 2区 医学 Q1 ENGINEERING, BIOMEDICAL Pub Date : 2025-01-15 DOI: 10.1002/btm2.10745
Ziyan An, Pengchao Wang, Zhengyun Ling, Kaipeng Bi, Zheng Wang, Jinpeng Shao, Jian Zhao, Zhouyang Fu, Meng Huang, Wenjie Wei, Shuwei Xiao, Jin Zhou, Weijun Fu
Previous studies of bladder tissue engineering simply seeded cells onto the surface of the material, which makes the cells lack protection and makes it difficult to face the complex in vivo environment. The gelatin methacryloyl (GelMA) hydrogel possesses outstanding biocompatibility and distinctive photo‐crosslinking characteristics and is capable of offering a suitable three‐dimensional growth environment for cells. This study explored the optimal concentration of GelMA for encapsulating adipose‐derived stem cells (ADSCs) and combined it with bladder acellular matrix (BAM) to create a tissue‐engineered bladder patch. Results indicated that 10% GelMA more effectively promoted ADSCs proliferation and spreading compared to 7.5% and 12.5% concentrations, which can offer a better extracellular matrix environment for cells. BAM performed as an excellent substrate with mechanical properties and stitchability similar to natural tissues. Animal experiments demonstrated that the encapsulated ADSCs in GelMA enhanced patch vascularization in vivo and BAM‐GelMA‐ADSCs tissue‐engineered bladder patch can repair large‐scale bladder defects in beagles and promote bladder tissue regeneration and functional recovery. This photocrosslinking hydrogel‐acellular matrix patch provides a protective semi‐controlled environment for ADSCs, supporting the growth and viability of encapsulated cells in vivo, while being easy to suture and preventing leakage, and has significant clinical potential.
以往的膀胱组织工程研究简单地将细胞植入材料表面,使得细胞缺乏保护,难以面对复杂的体内环境。明胶甲基丙烯酰(GelMA)水凝胶具有出色的生物相容性和独特的光交联特性,能够为细胞提供合适的三维生长环境。本研究探索了用于包封脂肪源性干细胞(ADSCs)的GelMA的最佳浓度,并将其与膀胱脱细胞基质(BAM)结合,以创建组织工程膀胱贴片。结果表明,与7.5%和12.5%的浓度相比,10%的GelMA能更有效地促进ADSCs的增殖和扩散,为细胞提供了更好的细胞外基质环境。BAM作为一种优良的基材,具有与天然组织相似的机械性能和可缝合性。动物实验结果表明,经GelMA包封的ADSCs可增强小猎犬体内血管化,BAM - GelMA - ADSCs组织工程膀胱贴片可修复大面积膀胱缺损,促进膀胱组织再生和功能恢复。这种光交联水凝胶-脱细胞基质贴片为ADSCs提供了一个保护性的半受控环境,支持被包被细胞在体内的生长和活力,同时易于缝合和防止渗漏,具有重要的临床潜力。
{"title":"The BAM‐GelMA‐ADSCs bilayer patch promotes tissue regeneration and functional recovery after large‐area bladder defects in beagles","authors":"Ziyan An, Pengchao Wang, Zhengyun Ling, Kaipeng Bi, Zheng Wang, Jinpeng Shao, Jian Zhao, Zhouyang Fu, Meng Huang, Wenjie Wei, Shuwei Xiao, Jin Zhou, Weijun Fu","doi":"10.1002/btm2.10745","DOIUrl":"https://doi.org/10.1002/btm2.10745","url":null,"abstract":"Previous studies of bladder tissue engineering simply seeded cells onto the surface of the material, which makes the cells lack protection and makes it difficult to face the complex in vivo environment. The gelatin methacryloyl (GelMA) hydrogel possesses outstanding biocompatibility and distinctive photo‐crosslinking characteristics and is capable of offering a suitable three‐dimensional growth environment for cells. This study explored the optimal concentration of GelMA for encapsulating adipose‐derived stem cells (ADSCs) and combined it with bladder acellular matrix (BAM) to create a tissue‐engineered bladder patch. Results indicated that 10% GelMA more effectively promoted ADSCs proliferation and spreading compared to 7.5% and 12.5% concentrations, which can offer a better extracellular matrix environment for cells. BAM performed as an excellent substrate with mechanical properties and stitchability similar to natural tissues. Animal experiments demonstrated that the encapsulated ADSCs in GelMA enhanced patch vascularization in vivo and BAM‐GelMA‐ADSCs tissue‐engineered bladder patch can repair large‐scale bladder defects in beagles and promote bladder tissue regeneration and functional recovery. This photocrosslinking hydrogel‐acellular matrix patch provides a protective semi‐controlled environment for ADSCs, supporting the growth and viability of encapsulated cells in vivo, while being easy to suture and preventing leakage, and has significant clinical potential.","PeriodicalId":9263,"journal":{"name":"Bioengineering & Translational Medicine","volume":"23 1","pages":""},"PeriodicalIF":7.4,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142986004","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Convective forces contribute to post-traumatic degeneration after spinal cord injury 对流力有助于脊髓损伤后的创伤后变性
IF 6.1 2区 医学 Q1 ENGINEERING, BIOMEDICAL Pub Date : 2025-01-14 DOI: 10.1002/btm2.10739
Hoi Y. Kwon, Christopher Streilein, R. Chase Cornelison

Spinal cord injury (SCI) initiates a complex cascade of chemical and biophysical phenomena that result in tissue swelling, progressive neural degeneration, and formation of a fluid-filled cavity. Previous studies show fluid pressure above the spinal cord (supraspinal) is elevated for at least 3 days after injury and contributes to a phase of damage called secondary injury. Currently, it is unknown how fluid forces within the spinal cord itself (interstitial) are affected by SCI and if they contribute to secondary injury. We find spinal interstitial pressure increases from −3 mmHg in the naive cord to a peak of 13 mmHg at 3 days post-injury (DPI) but relatively normalizes to 2 mmHg by 7 DPI. A computational fluid dynamics model predicts interstitial flow velocities up to 0.9 μm/s at 3 DPI, returning to near baseline by 7 DPI. By quantifying vascular leakage of Evans Blue dye after a cervical hemi-contusion in rats, we confirm an increase in dye infiltration at 3 DPI compared to 7 DPI, suggestive of higher fluid velocities at the time of peak fluid pressure. In vivo expression of the apoptosis marker caspase-3 is strongly correlated with regions of interstitial flow at 3 DPI, and exogenously enhancing interstitial flow exacerbates tissue damage. In vitro, we show overnight exposure of neuronal cells to low pathological shear stress (0.1 dynes/cm2) significantly reduces cell count and neurite length. Collectively, these results indicate that interstitial fluid flow and shear stress may play a detrimental role in post-traumatic neural degeneration.

脊髓损伤(SCI)引发了一系列复杂的化学和生物物理现象,导致组织肿胀、进行性神经变性和充满液体的空洞的形成。先前的研究表明,脊髓(棘上)上方的流体压力在损伤后至少3天升高,并导致称为继发性损伤的损伤阶段。目前尚不清楚脊髓本身(间质)内的流体力如何受到脊髓损伤的影响,以及它们是否会导致继发性损伤。我们发现脊髓间质压力从初始脊髓的- 3 mmHg增加到损伤后3天(DPI)的峰值13 mmHg,但到7 DPI时相对正常化至2 mmHg。计算流体动力学模型预测,在3 DPI时,间隙流速可达0.9 μm/s,在7 DPI时恢复到接近基线。通过量化大鼠颈部半挫伤后Evans蓝染料的血管渗漏,我们证实与7 DPI相比,3 DPI时染料浸润增加,这表明在流体压力峰值时流体速度更高。在体内,凋亡标志物caspase‐3的表达与DPI时间质血流的区域密切相关,外源性增强间质血流会加剧组织损伤。在体外,我们发现神经元细胞暴露在低病理性剪切应力(0.1 dynes/cm2)下过夜,可显著减少细胞计数和神经突长度。总之,这些结果表明,间质液流动和剪切应力可能在创伤后神经变性中起不利作用。
{"title":"Convective forces contribute to post-traumatic degeneration after spinal cord injury","authors":"Hoi Y. Kwon,&nbsp;Christopher Streilein,&nbsp;R. Chase Cornelison","doi":"10.1002/btm2.10739","DOIUrl":"10.1002/btm2.10739","url":null,"abstract":"<p>Spinal cord injury (SCI) initiates a complex cascade of chemical and biophysical phenomena that result in tissue swelling, progressive neural degeneration, and formation of a fluid-filled cavity. Previous studies show fluid pressure above the spinal cord (supraspinal) is elevated for at least 3 days after injury and contributes to a phase of damage called secondary injury. Currently, it is unknown how fluid forces within the spinal cord itself (interstitial) are affected by SCI and if they contribute to secondary injury. We find spinal interstitial pressure increases from −3 mmHg in the naive cord to a peak of 13 mmHg at 3 days post-injury (DPI) but relatively normalizes to 2 mmHg by 7 DPI. A computational fluid dynamics model predicts interstitial flow velocities up to 0.9 μm/s at 3 DPI, returning to near baseline by 7 DPI. By quantifying vascular leakage of Evans Blue dye after a cervical hemi-contusion in rats, we confirm an increase in dye infiltration at 3 DPI compared to 7 DPI, suggestive of higher fluid velocities at the time of peak fluid pressure. In vivo expression of the apoptosis marker caspase-3 is strongly correlated with regions of interstitial flow at 3 DPI, and exogenously enhancing interstitial flow exacerbates tissue damage. In vitro, we show overnight exposure of neuronal cells to low pathological shear stress (0.1 dynes/cm<sup>2</sup>) significantly reduces cell count and neurite length. Collectively, these results indicate that interstitial fluid flow and shear stress may play a detrimental role in post-traumatic neural degeneration.</p>","PeriodicalId":9263,"journal":{"name":"Bioengineering & Translational Medicine","volume":"10 2","pages":""},"PeriodicalIF":6.1,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/btm2.10739","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142981182","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Artificial intelligence‐enabled innovations in cochlear implant technology: Advancing auditory prosthetics for hearing restoration 人工智能技术在人工耳蜗植入技术中的创新:促进听力修复的听觉修复
IF 7.4 2区 医学 Q1 ENGINEERING, BIOMEDICAL Pub Date : 2025-01-10 DOI: 10.1002/btm2.10752
Guodao Zhang, Rui Chen, Hamzeh Ghorbani, Wanqing Li, Arsen Minasyan, Yideng Huang, Sen Lin, Minmin Shao
This comprehensive review explores the implications of artificial intelligence (AI) in addressing cochlear implant (CI) issues and revolutionizing the landscape of auditory prosthetics. It begins with an overview of ear anatomy and hearing loss, then explores a review of CI technology and its current challenges. The review emphasizes how advanced AI algorithms and data‐driven approaches enhance CI adaptability and functionality, enabling personalized rehabilitation strategies and improving speech enhancement. It highlights diverse AI applications in auditory rehabilitation, including real‐time adaptive control mechanisms and cognitive hearing assistants that help users manage their auditory health. By outlining innovative pathways and future directions for AI‐enhanced CIs, the paper sets the stage for a transformative shift in auditory prosthetics, aiming to improve the quality of life for individuals with hearing loss.
这篇全面的综述探讨了人工智能(AI)在解决人工耳蜗(CI)问题和彻底改变听觉假肢领域的意义。它从耳部解剖和听力损失的概述开始,然后探讨了CI技术及其当前挑战的回顾。该综述强调了先进的人工智能算法和数据驱动方法如何增强CI的适应性和功能,实现个性化康复策略并提高语音增强。它强调了各种人工智能在听觉康复中的应用,包括实时自适应控制机制和帮助用户管理听觉健康的认知听力助手。通过概述人工智能增强的CIs的创新途径和未来方向,该论文为听觉假肢的变革转变奠定了基础,旨在改善听力损失患者的生活质量。
{"title":"Artificial intelligence‐enabled innovations in cochlear implant technology: Advancing auditory prosthetics for hearing restoration","authors":"Guodao Zhang, Rui Chen, Hamzeh Ghorbani, Wanqing Li, Arsen Minasyan, Yideng Huang, Sen Lin, Minmin Shao","doi":"10.1002/btm2.10752","DOIUrl":"https://doi.org/10.1002/btm2.10752","url":null,"abstract":"This comprehensive review explores the implications of artificial intelligence (AI) in addressing cochlear implant (CI) issues and revolutionizing the landscape of auditory prosthetics. It begins with an overview of ear anatomy and hearing loss, then explores a review of CI technology and its current challenges. The review emphasizes how advanced AI algorithms and data‐driven approaches enhance CI adaptability and functionality, enabling personalized rehabilitation strategies and improving speech enhancement. It highlights diverse AI applications in auditory rehabilitation, including real‐time adaptive control mechanisms and cognitive hearing assistants that help users manage their auditory health. By outlining innovative pathways and future directions for AI‐enhanced CIs, the paper sets the stage for a transformative shift in auditory prosthetics, aiming to improve the quality of life for individuals with hearing loss.","PeriodicalId":9263,"journal":{"name":"Bioengineering & Translational Medicine","volume":"129 1","pages":""},"PeriodicalIF":7.4,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142961440","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mesenchymal stem cell extracellular vesicle vascularization bioactivity and production yield are responsive to cell culture substrate stiffness 间充质干细胞细胞外囊泡血管化的生物活性和产量与细胞培养基质硬度有关
IF 7.4 2区 医学 Q1 ENGINEERING, BIOMEDICAL Pub Date : 2025-01-07 DOI: 10.1002/btm2.10743
Emily H. Powsner, Stephanie M. Kronstadt, Kristin Nikolov, Amaya Aranda, Steven M. Jay
Mesenchymal stem cell‐derived extracellular vesicles (MSC EVs) are an attractive therapeutic option for regenerative medicine applications due to their inherently pro‐angiogenic and anti‐inflammatory properties. However, reproducible and cost‐effective production of highly potent therapeutic MSC EVs is challenging, limiting their translational potential. Here, we investigated whether the well‐characterized responsiveness of MSCs to their mechanical environment—specifically, substrate stiffness—could be exploited to generate EVs with increased therapeutic bioactivity without the need for biochemical priming or genetic manipulation. Using polydimethylsiloxane and bone marrow‐derived MSCs (BM‐MSCs), we show that decreasing the stiffness of MSC substrates to as low as 3 kPa significantly improves the pro‐angiogenic bioactivity of EVs as measured by tube formation and gap closure assays. We also demonstrate that lower substrate stiffness improves EV production and overall yield, important for clinical translation. Furthermore, we establish the mechanoresponsiveness of induced pluripotent stem cell‐derived MSC (iMSC) EVs and their comparability to BM‐MSC EVs, again using tube formation and gap closure assays. With this data, we confirm iMSCs' feasibility as an alternative, renewable cell source for EV production with reduced donor variability. Overall, these results suggest that utilizing substrate stiffness is a promising, simple, and a potentially scalable approach that does not require exogenous cargo or extraneous reagents to generate highly potent pro‐angiogenic MSC EVs.
间充质干细胞衍生的细胞外囊泡(MSC EVs)由于其固有的促血管生成和抗炎特性,在再生医学应用中是一种有吸引力的治疗选择。然而,高效治疗性MSC EVs的可重复性和成本效益的生产具有挑战性,限制了它们的转化潜力。在这里,我们研究了MSCs对其机械环境(特别是底物刚度)的充分表征的响应性是否可以在不需要生化启动或基因操作的情况下用于产生具有更高治疗生物活性的ev。使用聚二甲基硅氧烷和骨髓来源的间充质干细胞(BM - MSCs),我们发现将MSC底物的刚度降低至3 kPa,通过管形成和间隙闭合实验可以显著提高ev的促血管生成生物活性。我们还证明了较低的基底刚度可以提高EV的生产和总体产量,这对临床翻译很重要。此外,我们再次利用试管形成和间隙闭合试验,建立了诱导多能干细胞衍生的MSC (iMSC) ev的机械反应性及其与BM - MSC ev的可比性。有了这些数据,我们证实了iMSCs作为电动汽车生产的替代可再生细胞来源的可行性,减少了供体的可变性。总的来说,这些结果表明,利用底物刚度是一种有前途的、简单的、潜在的可扩展的方法,不需要外源性货物或外来试剂来产生高效的促血管生成MSC ev。
{"title":"Mesenchymal stem cell extracellular vesicle vascularization bioactivity and production yield are responsive to cell culture substrate stiffness","authors":"Emily H. Powsner, Stephanie M. Kronstadt, Kristin Nikolov, Amaya Aranda, Steven M. Jay","doi":"10.1002/btm2.10743","DOIUrl":"https://doi.org/10.1002/btm2.10743","url":null,"abstract":"Mesenchymal stem cell‐derived extracellular vesicles (MSC EVs) are an attractive therapeutic option for regenerative medicine applications due to their inherently pro‐angiogenic and anti‐inflammatory properties. However, reproducible and cost‐effective production of highly potent therapeutic MSC EVs is challenging, limiting their translational potential. Here, we investigated whether the well‐characterized responsiveness of MSCs to their mechanical environment—specifically, substrate stiffness—could be exploited to generate EVs with increased therapeutic bioactivity without the need for biochemical priming or genetic manipulation. Using polydimethylsiloxane and bone marrow‐derived MSCs (BM‐MSCs), we show that decreasing the stiffness of MSC substrates to as low as 3 kPa significantly improves the pro‐angiogenic bioactivity of EVs as measured by tube formation and gap closure assays. We also demonstrate that lower substrate stiffness improves EV production and overall yield, important for clinical translation. Furthermore, we establish the mechanoresponsiveness of induced pluripotent stem cell‐derived MSC (iMSC) EVs and their comparability to BM‐MSC EVs, again using tube formation and gap closure assays. With this data, we confirm iMSCs' feasibility as an alternative, renewable cell source for EV production with reduced donor variability. Overall, these results suggest that utilizing substrate stiffness is a promising, simple, and a potentially scalable approach that does not require exogenous cargo or extraneous reagents to generate highly potent pro‐angiogenic MSC EVs.","PeriodicalId":9263,"journal":{"name":"Bioengineering & Translational Medicine","volume":"5 1","pages":""},"PeriodicalIF":7.4,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142935713","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Bioengineering & Translational Medicine
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1